Clustering Transactions Using Large Items

Ke Wang

Chu Xu

Bing Liu

School of Computing
National University of Singapore
{wangk,xuchu,liub}@comp.nus.edu.sg

Abstract

In traditional data clustering, similarity of a cluster of
objects 1s measured by pairwise similarity of objects
in that cluster. We argue that such measures are not
appropriate for transactions that are sets of items. We
propose the notion of large items, i.e., items contained
in some minimum fraction of transactions in a cluster,
to measure the similarity of a cluster of transactions.
The intuition of our clustering criterion is that there
should be many large items within a cluster and little
overlapping of such items across clusters. We discuss
the rationale behind our approach and its implication
on providing a better solution to the clustering problem.
We present a clustering algorithm based on the new
clustering criterion and evaluate its effectiveness.

1 Introduction

In this paper, the term “transaction” refers to a set of
items in general. An example of a transaction is the
set of terms in an article, a basket of items purchased
during a shopping, a customer profile of interests, a set
of symptoms of a patient, a set of features of an im-
age, etc. Transaction clustering refers to partitioning a
collection of transactions into clusters such that simi-
lar transactions are in the same cluster and dissimilar
transactions are in different clusters. Due to the recent
developments in IR, Web technologies, and data min-
ing, transaction clustering plays an important role and
recelves new attentions in many applications and fields
that go beyond just accelerating near-neighbor search.
For example, [3] demonstrated transaction clustering as
an effective browsing method in its own right; [2] iden-
tified transaction clustering as an essential technique

to many web applications; transaction clustering pro-
vides solutions to targeted marketing/advertising, dis-
covering the causes of diseases, content-based image re-
trieval, recommending links to web users, organizing
folders and bookmarks, constructing information hier-
archies like Yahoo! and Infoseek, etc.

Most clustering approaches adopt a pairwise similar-
ity (e.g., cosine measure, the Dice and Jaccard coeffi-
cient, etc) for measuring the “distance” of two transac-
tions. See [13] for example. We argue that, for trans-
actions that are made of sparsely distributed items,
pairwise similarity is neither necessary nor sufficient
for judging whether a cluster of transactions are sim-
ilar. Consider transactions ¢1,...,%x such that every
pair (t;,%;) shares many items in common. In any pair-
wise similarity measure, {{1,...,1x} are considered as a
cluster of similar transactions. However, it may well be
the case that the items shared by each pair have no over-
lapping with the items shared by any other pair. For
a collection of documents, this means that no term is
contained in more than two documents, thus, no central
topic for the collection. The next example shows that
pairwise similarity is not necessary either for a cluster
of transactions to be similar.

Example 1.1 Consider a cluster of five transactions

tl = {a’e’h’k}’ tz = {a’c’ f}’ t3 == {a’b’ C}?
ly = {bacaiaj}a is = {b,e,g}.

Fach transaction t; represents a set of favorite combat
movies of a person. Qut of the 10 pairs of transac-
tions, only two pairs, i.e., (ta,t3) and (t3,14), share two
mouvies in common, all other pairs share no more than
one mouvie in common. Therefore, pairwise similarity in
this cluster 1s weak. However, we can see that a,b, c are
“typical” combat movies in that each of them is liked by
60% (i.e., 3) cluster members. These “typical” movies
can be used to characterize the interest of this cluster
of people, as opposed to, say, “typical” movies that are
used to characterize the interest of a cluster of people
wnterested in romantic movies.

In general, given a large number of combat movies
and a large cluster of people who like combat movies,
it is unlikely that every person shares many combat
movies with every other person in that cluster. What is
likely is that there are some (or many) “typical” movies
that are liked by at least some fraction of people in the
cluster (i.e., 60% in Example 1.1). To our knowledge,
this notion of similarity that directly addresses a cluster
of transactions without relying on pairwise similarity
has not been studied before. Clustering transactions
using such similarity is the focus of this paper.

We propose a similarity measure for a cluster of
transactions based on the notion of large items. An
item 18 large in a cluster of transactions if it is contained
in a user-specified fraction of transactions in that clus-
ter. This user-specified fraction is called the minimum
support. We use large items to measure the similarity
of the cluster. Our criterion of a good clustering is that
there are many large items within a cluster and there
is little overlapping of such items across clusters. Here
are several features of this approach.

e Incorporating user’s expectation. Often the user
has some expectation on the similarity for a clus-
ter. For example, a cluster of Sports product buy-
ers is expected to have less similarity than a cluster
of Golf product buyers because there are far more
Sports products than Golf products. Indeed, a
Sports product purchased by 10% buyers or more
in the first cluster may be considered as “typical”,
whereas a Golf product purchased by 20% buyers
may not in the second cluster. In our framework,
the user can specify his/her notion of large items
through the minimum support.

e Discriminating features and noises. An often heard
criticism against clustering approaches is that they
do not discriminate attributes. Take the congres-
sional voting as an example (see Section 6). Re-
publicans and democrats often vote similarly on
many issues and such issues are thus noises for
separating the voting behaviours of the two par-
ties. In our approach, the user can specify a large
minimum support to exclude such issues from con-
sideration.

e Polythetic vs monothetic clusterings. By specify-
ing a minimum support less than 100%, the clus-
tering 18 polythetic where a transaction may have
some items in common with other transactions in
that cluster but where there are no specific items
required for clustering membership. This is more
useful than the monothetic clustering produced by
the minimum support of 100% where all of the
transactions in a given cluster must contain cer-
tain items. An example of monothetic clustering
approach is [15].

e Dynamic clustering without using ad hoc param-
eters. Several dynamic clusterings that we know
of use threshold values to determine the destina-
tion of a new transaction, , e.g., [16] using thresh-
olds on dissimilarity and [5, 14] using thresholds
on data density/distribution. The whole family of
partitional clustering methods require the number
of clusters (such as k-means and k-medoids [10])
as an input parameter. Instead of using threshold
values, our clustering criterion penalizes a wrong
decision in the search of a good clustering. This
feature makes our approach more robust and adap-
tive in a dynamic environment.

e Scalable clustering. Our algorithm makes only a
few (typically no more than 3) scans of transac-
tions, thus, highly efficient for disk-resident data
sets where the I/0 cost becomes the bottleneck of
efficiency.

2 Related Work

Data clustering has been extensively studied in Statis-
tics, Machine Learning, and Information Retrieval. See
[4, 9, 11, 13] for a list. Most methods rely on the notion
of pairwise similarity, i.e., a distance measure, between
a pair of objects (such as L, metric, the cosine measure,
and the Dice and Jaccard coefficient). These methods
suffer from the anomalies for transactions discussed in
Introduction. The notion of document frequency (i.e.,
the fraction of documents that contain a term) widely
used in text document classification and clustering [11]
is related to our notion of large items. However, there
are important differences. Unlike document frequency,
large 1items are defined with respect to a cluster of trans-
actions, not the whole collection of transactions. There-
fore, during the construction of clusters, large items
must be maintained as clusters grow, which is one of
the performance issues we address in this paper. Exist-
ing work, however, do not address the efficient update of
document frequency as documents are added or deleted,
therefore, can deal with only a fixed set of documents.

Our method is similar to k-means algorithms in that
it scans transactions and assigns the next transaction
to the “best” cluster. However, two important differ-
ences exist. First, we do not require the number k of
clusters. This is very important as the user usually does
not know this number in advance or the number may
change as the transaction population changes. Second,
we choose a cluster for the next transaction not based
on the “distance” between the cluster and the trans-
action, i.e., a local goodness, but based on the global
goodness of clustering. In fact, this is a consequence of
the first difference because the local goodness implies
creating a new cluster for every transaction.

[2] defines clusters as maximal connected compo-
nents of some pairwise similarity of transactions, thus,
suffers from the breakdown of the transitivity of pair-
wise similarity (e.g., AN B # @ and BN C # (§ does
not imply ANC # (). [8] adopts hypergraph partition-
ing for transaction clustering, but the result is a clus-
tering of items (not transactions) that occur together
in the transactions. [7] noted some limitations of tra-
ditional similarity measures for transactions and pro-
posed the common “neighbors” of two transactions as
a measure of pairwise similarity. Our method does not
use any notion of pairwise similarity. [16] proposes an
I/O-efficient clustering algorithm based on incremental
update of some key information maintained for each
cluster. [14, 6, 5] use the distribution and density-
connectivity of data points to guide the construction of
clusters. All these methods make certain assumptions
on the clustering structures, i.e., maximum dissimilar-
ity in a cluster [16], uniform distribution of data points
in a cluster [14], and maximum size of neighborhood
and minimum density [5].

The term “large item” comes from the work on min-
ing association rules [1]. While [1] groups the items
that occur in similar transactions, we cluster transac-
tions that contain similar items. The difference is that
clustering emphasizes the dissimilarity of clusters.

3 A New Clustering Criterion

In this section, we define our clustering criterion based
on the notion of large items. Consider a collection of
transactions {t1,...,1,}, where each transaction t; is a
set of items {i1,...,4p}. A clustering C is a partition

{Cy,...,Crtof {t1,... t,}. Each C; is called a cluster.

3.1 The large item based approach

We propose to use large items as the similarity mea-
sure of a cluster of transactions. The support of an
item in cluster C; is the number of transactions in Cj
that contain the item. Let |S| denote the number of
elements in set S. For a user-specified minimum sup-
port 8 (0 < 6 < 1), an item is large in cluster C; if its
support in C; is at least @ x |C;|; otherwise, the item is
small in C;. Intuitively, large items are popular items
in a cluster (as per the user-specified minimum sup-
port), thus, contribute to similarity in a cluster, whereas
small items contribute to dissimilarity in a cluster. Let
Large; denote the set of large items in C;, and Small;
denote the set of small items in ;. Consider a clus-
tering C = {C4,...,Ck}. The cost of C to be mini-
mized has two components: the intra-cluster cost and
the inter-cluster cost.

The intra-cluster cost. This component is charged
for intra-cluster dissimilarity, measured by the total num-

ber of small items:
Intra(C) = | UF_, Small;]|. (1)

This component will restrain creating loosely bound
clusters that have too many small items. Note that we
didn’t use X*_,|Small;]. Our experiments show that
Y5 |Small;| tends to put all transactions into a sin-
gle or few clusters even though they are not similar.
To see this, consider two clusters that are not similar
but share some small items. Merging these two clus-
ters will reduce ¥f_,|Small;| because each small item
previously counted twice is now counted only once and
because large items remain large after the merging. But
this merging is intuitively incorrect because sharing of
small items should not be considered as similarity.

The inter-cluster cost. This component is charged
for inter-cluster similarity. Since large items contribute
to similarity in a cluster, each cluster should have as
little overlapping of large items as possible. This over-
lapping is defined by

Inter(C) = XF_|Large;| — | US| Large;|. (2)

In words, Inter(C) measures the duplication of large
items in different clusters. This component will restrain
creating similar clusters.

To put the two together, one can specify weights for
their relative importance. The eriterion function of the
clustering C then is defined as

Cost(C) = w Intra(C) + Inter(C). (3)

A weight w > 1 gives more emphasis to the intra-cluster
similarity, and a weight w < 1 gives more emphasis to
the inter-cluster dissimilarity. By default, w = 1. We
now state a formal definition of the transaction cluster-
ing problem.

Definition 3.1 (Transaction clustering) Given a col-
lection of transactions and a mintmum support, find a
clustering C such that Cost(C) is minimum.

Finding an exact solution is infeasible due to the
large number of ways to partition transactions. In prac-
tical applications, it suffices to find an approximate so-
lution. This will be the topic in Sections 4 and 5. At this
point, several properties of our approach are worth men-
tioning. First, the definition does not require a num-
ber of clusters as an input parameter and the cost is
minimized over all numbers of clusters. An useful vari-
ation 1s to iImpose some maximum number of clusters.
Second, we do not use “hard” threshold values to stop
grouping dissimilar transactions together; instead, we
penalize a wrong decision in the search of a good clus-
tering. These features are crucial for dynamic clustering
where the number of clusters and similarity in a cluster

may change as new transactions are added. Third, the
notion of large items is not another notion of centroid of
a cluster. In fact, we do not measure any “closeness” of
a transaction to a cluster, like in k-means algorithms.
Instead, we use large items to evaluate the quality of
the whole clustering.

Example 3.1 Consider 6 transactions:

ty ={a,bc}, ta={ab,e,d}, t3=1{a,bc e}
t4:{aabaf}7 t5:{dagah}7 t6:{dagal}
Assume that the user-specified minimum support is 60%.

A large item must be contained in at least j transac-

tions (i.e., 6*60%). Consider the clustering C; = {Cy =

{t1,12,13,ta,15,16}}. We have Large; = {a, b}, Small; =

{e,dye, f,g,h, i}, Intra(Cy) =7, and Inter(C1) = 0. So
Cost(Cy) =1T7.

Consider the clustering Co = {Cy = {t1,12,13,t4},Co =

{ts,te}}. For C1, a large item should be contained
wmn at least 3 transactions in Cy. We have Large, =
{a,b,c} and Smally = {d,e, f}. Similarly, Larges =
{d, g9} and Smally = {h,i}. Therefore, Intra(Cs) = b,
Inter(Cy) = 0, and Cost(Cy) = 5. Thus, Cy improves Cy
by reducing ntra-cluster dissimilarity without increas-
ing wnter-cluster stmilarity.

Consider the clustering Cs = {C) = {t1,12},Cs =
{ts,t4},C3 = {ts5,t6}}. We have Large;, = {a,b,c},
Small;, = {d}, Larges = {a,b}, Smally = {c,e, [},
Larges = {d, g}, Smalls = {h,i}, Intra(C3) = 6, and
Inter(Cs3) = 2. So Cost(C3) = 8. Compared to Cy, split-
ting {t1,12,15,t4} into Cy and Cs crealtes more inter-
cluster similarity.

3.2 The minimum support

In choosing the minimum support the user should con-
sider how frequently items are expected to occur in the
transactions of a cluster in order for them to charac-
terize the cluster. Besides the user’s expectation, hi-
erarchical clustering can also help address the choice
of the minimum support. Initially, a small minimum
support 1s used to produce a small number of clusters
where only very dissimilar transactions go to different
clusters. For each cluster, a larger minimum support
1s used to “fine-cluster” transactions. This i1s repeated
recursively until the cost of a cluster cannot be reduced
by further fine-clustering.

For a chosen minimum support, C'ost(C) reflects the
user’s satisfaction level with respect to his/her expec-
tation as specified by the minimum support. Conse-
quently, it does not make sense to compare C'ost(C) and
clustering results produced by different minimum sup-
ports. In fact, with the minimum support of 1/n, where
n 1s the number of transactions, grouping all transac-
tions into a single cluster will give Cost(C)=0. Obvi-
ously, this should not be interpreted as saying that the

/* Allocation phase */

(1) while not end of the file do

(2) read the next transaction < ¢, — >;

(3) allocate ¢ to an existing or a new cluster C; to
maximize Cost(C);

(4) write < t,C; >;

/* Refinement phase */

(5) repeat

(6) not_moved=true;

(7) while not end of the file do

(8) read the next transaction < t,C; >;

(9) move ¢ to an existing non-singleton cluster
C; to minimize C'ost(C);

(10) if C; # C; then

(11) write < ¢, >;

(12) not_moved=false;

(13) eliminate any empty cluster;

(14) until not_moved;

Figure 1: The overview of the clustering algorithm

single cluster is always the best solution. What it does
say 1s that if the user’s expectation of cluster similar-
ity is low, grouping all transactions into a single cluster
gives the most satisfactory solution (because the user
does not care anyway).

4 Overview of Our Algorithm

Figure 1 shows the overview of our algorithm. The col-
lection of transactions is stored in a file on disk. We
read each transaction ¢ in sequence, either assign ¢ to
an existing cluster (initially none) or create ¢ as a new
cluster, whichever minimizes Cost(C) for the current
clustering C. The cluster identifier of each transaction
is written back to the file. This is called Allocation
phase. In Refinement phase, we read each transaction
t (in the same order as in Allocation phase), move t to
an existing non-singleton cluster (possibly stay where it
is) to minimize Cost(C). After each move, the cluster
identifier is updated and any empty cluster is eliminated
immediately. If no transaction is moved in one pass of
all transactions, Refinement phase terminates; other-
wise, a new pass begins. FEssentially, at each step we
locally optimize the criterion Cost(C). The key step is
finding the destination cluster for allocating or moving
a transaction. This will be the topic in Section 5.

The paradigm of allocation phase followed by refine-
ment phase has been adopted in partitional clustering
algorithms such as the k-means and k-medoids. How-
ever, there are important differences in our algorithm.
First, we do not require a pre-determined number k

of clusters; instead, we create and eliminate clusters
dynamically on the basis of optimizing our criterion
Cost(C). Second, the destination cluster of a trans-
action i1s determined not by the nearest distance to a
cluster or any mean/centroid of a cluster, but by opti-
mizing the criterion Cost(C). In fact, the nearest dis-
tance approach does not work in our case because a new
cluster can always be created to be nearest to the next
transaction.

5 Update the Criterion Function

In our algorithm, a key step is finding the destination
cluster for a transaction at lines (3) and (9) in Figure 1.
This requires to compute the new Cost(C) for each pos-
sible destination cluster. To avoid scanning all transac-
tions in the destination cluster, we maintain |Large;|,
|UE_, Small;|, and |U_, Large;| after each allocation or
move of a transaction. We expect only a small change
on Large; and Small; as a single transaction is added
to or moved out of C;. Therefore, this maintenance can
be very efficient. We consider only the maintenance for
adding a transaction to a cluster. The maintenance for
moving a transaction out of a cluster is similar. First,
let us explain the data structures maintained for each
cluster C;.

Let MinSup; = [0 % |C;|]. The support of an item
in C; refers to the number of transactions in C; that
contain the item. Thus, an item is large in C; if and
only if its support in Cj is greater than or equal to
MinSup;. For each cluster (;, we maintain two data
structures in memory, i.e., hash table Hash; and B-tree
Btree;. Hash tables and B-trees are standard indexing
techniques for large databases. For more information,
we recommend [12] or any database text book.

Hash;: The hash table for C; with items as the index
key. For each item e in Cj, there i1s an entry of the
form < e, tree_addr > in Hash;, where tree_addr is the
address of the corresponding leaf entry for e in Btree;
(see below). Hash; provides the access path to insert,
delete, or update the support of a given item.

Btree;: The B-tree with the support of items in C;
as the index key. For each item e in Cj, there is a
leaf entry of the form < sup, hash_addr > in Btree;,
where sup is the support of e in C; and hash_addr is
the address of the corresponding entry for e in Hash;.
Btree; provides the access path to find all items having
a given support.

The minimum support MinSup; separates the leaf
entries of Btree; into those for Large; (on the right)
and those for Small; (on the left). Of particular inter-
ests are those items near the boundary: the small items
having support MinSup; —1 and the large items having
support MinSup;. As a transaction is allocated to or
moved away from C}, the support of some of these items

will be increased or decreased by 1. Consequently, these
items may move across the boundary. Keeping track of
such changes efficiently is the main task of the mainte-
nance. First, we define two operations.

We define Inc(Cj,e) to be the operation that in-
creases the support of a given item e in C; by 1. Several
steps are involved:

1. Look up Hash; for the entry < e, tree_addr >. Let
< sup, hash_addr > be the leaf entry in Btree;
addressed by tree_addr.

2. Increase sup by 1 in < sup, hash_addr >.

3. Move < sup, hash_addr > to the right to pass all
leaf entries < sup’, hash_addr’ > with sup’ < sup.

4. For each entry < sup’, hash_addr’ > moved in
(c), update its tree address contained in the cor-
responding entry in Hash;.

5. Update ancestor index entries of < sup, hash_addr >
to reflect the change of the support, if necessary.

5.1 Join transaction ¢ into cluster C;

As transaction ¢ joins cluster C;, MinSup; increases by
at most 1 and the support of every item in ¢ increases by
1. Let OldMinSup; and MinSup; denote the minimum
support for C; before and after ¢ joins Cj.

5.1.1 Update |Large;]

The algorithm for updating |Large;| is given in Figure
2. For each item e in ¢, we look up Hash;. If e is found,
we increment its sup in Btree;. If e is not found, we
insert e with sup = 1 into Hash; and Btree;. These
are given in lines (4)-(9).

Small items become large: A small item e becomes
large if (a) MinSup; = OldMinSup;, (b) e isin ¢, and
(c) sup = MinSup;. This case is checked by lines (10)-
(13).

Large items become small: A large item e becomes
small if (a) MinSup; = OldMinSup; + 1, (b) e is not
in ¢, and (c) sup = OldMinSup;. This case is checked
in lines (14)-(17).

5.1.2 Update |UY_, Small;| and |UF_, Large;|

We use two hash tables LargeHash and SmallHash
to maintain the number of clusters in which an item is
large and small. As a small item e becomes large in
a cluster, its number in SmallHash is decreased by 1
and its number in LargeHash is increased by 1. Sim-
ilarly, as a large item e becomes small in a cluster, its
numbers in LargeHash and SmallHash are updated
accordingly. Whenever a number reaches 0 in a hash ta-
ble, the corresponding entry is deleted from that table.

(1) G|+ +;
(2) OldMinSup; = MinSup;;
(3) MinSup; = [0 % |Ci|];

/* update the support of items in ¢ */
(4) foreach item e in t do
(5) look up Hash; for e;
(6) if e is found then
(7) Ine(Cy, e);
(8) else
(9) insert e into Hash; and Btree; with sup = 1;
/* small items become large */
if MinSup; == OldMinSup; then

search Biree; for the items e with sup = MinSup;;

(10)
(1)
(12) foreach returned item e do
(13) if e isin ¢ then |Large;| + +;

/* large items become small */
(14) if MinSup; == OldMinSup; + 1 then
(15) search Btree; for the items e

with sup = OldMinSup;;

(16) foreach item e returned do
(17) if e is not in ¢ then |Large;| — —;

Figure 2: Update |Large;| for joining ¢ into C;

Whenever a new item e is added to a cluster, a new en-
try with the initial number 1 is inserted to LargeHash
or Small Hash, depending on whether e is large or small
in that cluster. As a transaction t joins a cluster, the
change of | U¥_, Small;| (] U¥_, Large;|, resp.) is the
number of new entries inserted minus the number of en-
tries deleted in Small Hash (LargeHash, resp.). These
computations can be easily incorporated into the algo-
rithm in Figure 2.

In actual implementation, the update of data struc-
tures is performed only after all potential destination
clusters are tested.

5.2 Move transaction ¢t away from cluster C;

A similar reasoning applies to the case of moving a
transaction away from a cluster. We omit the detail.

6 Experiments

Most clustering algorithms do not scale up for large
databases because they require to examine pairs of ob-
jects due to a pairwise similarity measure. k-means al-
gorithms, on the other hand, assume a fixed number
k of clusters, thus, cannot be applied to applications
where the number of clusters can evolve. In this exper-
iment, we compare our method with two algorithms,
the traditional hierarchical clustering [9], denoted HC,
and the link-based hierarchical clustering [7], denoted

LBHC. [7] addressed the limitation of distance met-
ric between points (which we call pairwise similarity)
using the concept of links to measure the similarity be-
tween a pair of data points, where links are the common
“neighbors” | in any distance measure, of the two points.
It was shown in [7] that the link-based measure pro-
duces better clusterings than distance-based measures.
To facilitate comparison, we use the same data sets as
used in [7], i.e., the Congressional votes and Mushroom
data sets from the UCI Machine Learning Repository
(http://www.ics.uci.edu / mlearn/MLRepository.html).
(The US Mutual Funds in [7] is not available to us
because the web page does not exist any more.) We
map a table to a collection of transactions by creating
one transaction to contain attribute/value pairs in each
record in the table.

Congressional votes. This is the 1984 United
States Congressional Votes Records Database. Every
record contains 16 boolean attributes corresponding to
one congressman’s votes on 16 key issues. (A few records
contain missing values, which we treat as NO.) There

are 435 records, 168 for Republicans and 267 for Democrats.

All clustering algorithmsignore the class labels “Repub-
licans” and “Democrats”. The class labels are only used
to verify the clustering result.

Table 1(a) contrasts the clustering results on the
Congressional votes data. In our algorithm, we set
the minimum support to 60% to reflect the fact that
democrats and republican do vote similarly on many
issues. The clusters produced by BLHC covers only
372 records out of the 435 records because the rest are
treated as outliers by [7]. The clusters produced by
our algorithm and HC cover all 435 records. Our algo-
rithm better separates “Democrat” and “Republican”
than HC and BLHC in terms of class purity of each
cluster. Table 1(b) shows some characteristics of the
two larger clusters produced by our algorithm, given
by large items. For example, (physician-fee-freeze,157
(93%)) for Cluster 1 means that 157 or 93% records
in this cluster vote for physician-fee-freeze. As Table
1(b) indicates, these two clusters, one representing Re-
publicans and one representing Democrats, have very
different voting characteristics.

Mushroom. Each record contains information about
the physical attributes of a single mushroom, e.g., color,
odor, shape, habitat, etc. A class label of “Poisonous”
or “Edible” is assigned to each record. There are 8,124
records for 4,208 edible mushrooms and 3,916 poisonous
mushrooms.

Table 2 shows the clusters and class distribution pro-
duced by the three algorithms. In our algorithm, Clus-
ters 1-14 are obtained hierarchically. First, we set the
minimum support at 20% and obtain Clusters 1-4 and a
huge cluster called X. We fine-cluster X at the minimum
support of 50%, yielding Clusters 5-8 and a huge clus-

HC

LBHC Our algorithm

Cluster No | No of Rep | No of Demo | No of Rep | No of Demo | No of Rep | No of Demo
1 157 52 22 161 3
2 11 215 201 7 257
3 0 7

(a) Class distribution in clusters

| Cluster 1 (for Republicans)

| Cluster 2 (for Democrats) |

(physician-fee-freeze, 157 (93%))

(adoption-of-the-budget-resolution, 226 (85%))

crime, 154 (92%))

aid-to-nicaraguan-contras, 215 (81%))

el-salvador-aid, 154 (92%))

anti-satellite-test-ban, 197 (74%))

superfund-right-to-sue, 132 (78%))

(

(

(mx-missle, 185 (69%))
(export-administration-act-south-africa,173 (65%))

(
(
(religious-groups-in-schools, 145 (86%))
(
(

education-spending, 131 (78%))

(b) Voting characteristics produced by our algorithm

Table 1: Clustering results on the congressional vote data set

ter called Y. We further fine-cluster Y at the minimum
support of 35% and obtain Clusters 9-14. The decision
on whether to fine-cluster a cluster is made on the basis
of reducing Cost(C) and the minimum support is cho-
sen based on our expectation. Except for Clusters 6,7
and 12, which together contains only 3.9% of the data,
our algorithm is able to distinguish the two classes. We
can further fine-cluster Clusters 6,7 and 12 to get more
purity, but we are satisfied with the current clustering.

As Table 2 shows, our algorithm and LBHC per-
form much better than HC. LBHC achieves the purity
of classes by producing more clusters. However, the pu-
rity alone does not capture the “structure” of the data
in a concise representation. To explain this point, let
us consider the 2 largest clusters produced by each al-
gorithm (because 2 is the ideal number of clusters). For
LBHC, the 2 largest clusters, i.e., Clusters 7 and 16,
cover 43% of the data with pure separation. For our
algorithm, the 2 largest clusters, i.e., Clusters 5 and 9,
cover 84% of the data with nearly pure separation. By
doubling the coverage without losing separation power,
our algorithm better captures the structure of the data.
Due to the space limitation, the characteristics of clus-
ters are left out.

In summary, our algorithm does group similar trans-

actions together and group dissimilar transactions apart.

In several other experiments, we studied the scalability
and order sensitivity of our algorithm. The result shows
that our algorithm makes only a few, typically 2 or 3,
scans of the database and the execution time scales up
linearly with the size of the database. The result also
shows that the processing order of transactions does not
have a major impact on the clustering. Due to the space
limitation, we omit the detail.

7 Conclusion

Most clustering methods rely on a measure of pairwise
similarity, i.e., the distance measure. For transactions
made of sparsely distributed items, we argued that pair-
wise similarity is neither necessary nor sufficient for a
cluster of transactions to be similar. We proposed a
new clustering criterion based on the notion of large
items without using any measure of pairwise similarity.
This new clustering criterion helps address several im-
portant issues in transaction clustering, namely, robust-
ness of similarity measures, incorporating user expec-
tation of similarity, discriminating features and noises,
dynamic clustering, and handling large data sets. We
presented an I/O-efficient clustering algorithm based on
the new clustering criterion. Experiments show that our
approach is effective.

References

[1] R. Agrawal, T. Imielinski, A. Swami. Mining associ-
ation rules between sets of items in large databases.

SIGMOD 1993, 207-216

[2] A.Z.Broder, S. C. Glassman, M. S. Manasse and G.
Zweig. Syntactic clustering of the web. WWW Con-
ference 1997

[3] D. R. Cutting, D. R. Karger, J. O. Pederson and
J. W. Turkey. Scatter/Gather: A cluster-based ap-
proach to browsing large document collections. SIGIR

1992, 318-29

[4] P. Cheeseman, J. Stutz. Baysian classification (au-
toclass): Theory and results. In U.M. Fayyad, G.

HC

Cluster No | No of Edible | No of Poisonous || Cluster No | No of Edible | No of Poisonous
1 666 478 11 120 144
2 283 318 12 128 140
3 201 188 13 144 163
4 164 227 14 198 163
5 194 125 15 131 211
6 207 150 16 201 156
7 233 238 17 151 140
8 181 139 18 190 122
9 135 78 19 175 150
10 172 217 20 168 206

LBHC

Cluster No | No of Edible | No of Poisonous || Cluster No | No of Edible | No of Poisonous
1 96 0 12 48 0
2 0 256 13 0 288
3 704 0 14 192 0
4 96 0 15 32 72
5 768 0 16 0 1728
6 0 192 17 288 0
7 1728 0 18 0 8
8 0 32 19 192 0
9 0 1296 20 16 0
10 0 8 21 0 36
11 48 0

Our algorithm

Cluster No | No of Edible | No of Poisonous || Cluster No | No of Edible | No of Poisonous
1 94 0 8 0 287
2 13 0 9 61 3388
3 6 0 10 372 77
4 682 26 11 9 0
5 2631 30 12 19 10
6 121 37 13 21 0
7 69 61 14 110 0

Table 2: Clustering results on the mushroom data set

Piatetsky-Shapiro, O. Smith, and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data

Mining, 153-180. AAAT/MIT Press, 1996

[6] M. Ester, H. P. Kriegel, J. Sander, M. Wimmer,
X. Xu. Incremental clustering for mining in a data

warehousing environment. VLDB 1998, New York,
USA

[6] M. Ester, H-P Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. KDD 1996

[7] S. Guba, R. Rastogi, K. Shim. A clustering algo-
rithm for categorical attributes. ICDE 1999

[8] E.H. Han, G. Karypis, V. Kumar and B. Mobasher.
Clustering based on association rule hypergraphs.
SIGMOD workshop on research issues on Data Min-
ing and Knowledge Discovery, 1997

[9] A.K. Jain, R.C. Dubes. Algorithms for clustering
data. Prentice-Hall, Englewood Cliffs; N.J., 1988

[10] L. Kaufman and P.J. Rousseeuw. Finding groups in
data: an introduction to cluster analysis, John Wiley

& Son, 1990

[11] Van Rijsbergen, C.J. Information retrieval. Lon-
don: Butterworths, 1979

[12] R. Ramakrishnan, Database Management Sys-
tems, McGRAW-HILL, 1998

[13] P. Willet. Recent trends in hierarchical document
clustering: A critical review. Information Processing

& Management, 24(5):577-597, 1988.

[14] X. Xu, M. Ester, H.P.Kriegel, J. Sander. A
distribution-based clustering algorithm for mining in
large spatial databases. ICDE 1998

[15] O. Zamir, O. Etzioni, O. Madani and R. M. Karp.
Fast and intuitive clustering of web documents. KDD

1997, 287-290

[16] T. Zhang, R. Ramakrishnan, and M. Livny.
BIRCH: An efficient data clustering method for very
large databases. SIGMOD 1996, 103-114.

