
Clustering Transactions Using Large Items

Ke Wang Chu Xu Bing Liu

School of Computing

National University of Singapore

fwangk�xuchu�liubg�comp�nus�edu�sg

Abstract

In traditional data clustering� similarity of a cluster of
objects is measured by pairwise similarity of objects
in that cluster� We argue that such measures are not
appropriate for transactions that are sets of items� We
propose the notion of large items� i�e�� items contained
in some minimum fraction of transactions in a cluster�
to measure the similarity of a cluster of transactions�
The intuition of our clustering criterion is that there
should be many large items within a cluster and little
overlapping of such items across clusters� We discuss
the rationale behind our approach and its implication
on providing a better solution to the clustering problem�
We present a clustering algorithm based on the new
clustering criterion and evaluate its e�ectiveness�

� Introduction

In this paper� the term �transaction� refers to a set of
items in general� An example of a transaction is the
set of terms in an article� a basket of items purchased
during a shopping� a customer pro�le of interests� a set
of symptoms of a patient� a set of features of an im�
age� etc� Transaction clustering refers to partitioning a
collection of transactions into clusters such that simi�
lar transactions are in the same cluster and dissimilar
transactions are in di�erent clusters� Due to the recent
developments in IR� Web technologies� and data min�
ing� transaction clustering plays an important role and
receives new attentions in many applications and �elds
that go beyond just accelerating near�neighbor search�
For example� 	
� demonstrated transaction clustering as
an e�ective browsing method in its own right� 	
� iden�
ti�ed transaction clustering as an essential technique

to many web applications� transaction clustering pro�
vides solutions to targeted marketing�advertising� dis�
covering the causes of diseases� content�based image re�
trieval� recommending links to web users� organizing
folders and bookmarks� constructing information hier�
archies like Yahoo� and Infoseek� etc�
Most clustering approaches adopt a pairwise similar�

ity �e�g�� cosine measure� the Dice and Jaccard coe��
cient� etc� for measuring the �distance� of two transac�
tions� See 	�
� for example� We argue that� for trans�
actions that are made of sparsely distributed items�
pairwise similarity is neither necessary nor su�cient
for judging whether a cluster of transactions are sim�
ilar� Consider transactions t�� � � � � tk such that every
pair �ti� tj� shares many items in common� In any pair�
wise similarity measure� ft�� � � � � tkg are considered as a
cluster of similar transactions� However� it may well be
the case that the items shared by each pair have no over�
lapping with the items shared by any other pair� For
a collection of documents� this means that no term is
contained in more than two documents� thus� no central
topic for the collection� The next example shows that
pairwise similarity is not necessary either for a cluster
of transactions to be similar�

Example ��� Consider a cluster of �ve transactions

t� � fa� e� h� kg� t� � fa� c� fg� t� � fa� b� cg�
t� � fb� c� i� jg� t� � fb� e� gg�

Each transaction ti represents a set of favorite combat
movies of a person� Out of the �� pairs of transac�
tions� only two pairs� i�e�� �t�� t�� and �t�� t��� share two
movies in common� all other pairs share no more than
one movie in common� Therefore� pairwise similarity in
this cluster is weak� However� we can see that a� b� c are
	typical
 combat movies in that each of them is liked by
���
i�e�� �� cluster members� These 	typical
 movies
can be used to characterize the interest of this cluster
of people� as opposed to� say� 	typical
 movies that are
used to characterize the interest of a cluster of people
interested in romantic movies�

In general� given a large number of combat movies
and a large cluster of people who like combat movies�
it is unlikely that every person shares many combat
movies with every other person in that cluster� What is
likely is that there are some �or many� �typical� movies
that are liked by at least some fraction of people in the
cluster �i�e�� ��� in Example ����� To our knowledge�
this notion of similarity that directly addresses a cluster
of transactions without relying on pairwise similarity
has not been studied before� Clustering transactions
using such similarity is the focus of this paper�
We propose a similarity measure for a cluster of

transactions based on the notion of large items� An
item is large in a cluster of transactions if it is contained
in a user�speci�ed fraction of transactions in that clus�
ter� This user�speci�ed fraction is called the minimum
support� We use large items to measure the similarity
of the cluster� Our criterion of a good clustering is that
there are many large items within a cluster and there
is little overlapping of such items across clusters� Here
are several features of this approach�

� Incorporating user�s expectation� Often the user
has some expectation on the similarity for a clus�
ter� For example� a cluster of Sports product buy�
ers is expected to have less similarity than a cluster
of Golf product buyers because there are far more
Sports products than Golf products� Indeed� a
Sports product purchased by ��� buyers or more
in the �rst cluster may be considered as �typical��
whereas a Golf product purchased by
�� buyers
may not in the second cluster� In our framework�
the user can specify his�her notion of large items
through the minimum support�

� Discriminating features and noises� An often heard
criticism against clustering approaches is that they
do not discriminate attributes� Take the congres�
sional voting as an example �see Section ��� Re�
publicans and democrats often vote similarly on
many issues and such issues are thus noises for
separating the voting behaviours of the two par�
ties� In our approach� the user can specify a large
minimumsupport to exclude such issues from con�
sideration�

� Polythetic vs monothetic clusterings� By specify�
ing a minimum support less than ����� the clus�
tering is polythetic where a transaction may have
some items in common with other transactions in
that cluster but where there are no speci�c items
required for clustering membership� This is more
useful than the monothetic clustering produced by
the minimum support of ���� where all of the
transactions in a given cluster must contain cer�
tain items� An example of monothetic clustering
approach is 	����

� Dynamic clustering without using ad hoc param�
eters� Several dynamic clusterings that we know
of use threshold values to determine the destina�
tion of a new transaction� � e�g�� 	��� using thresh�
olds on dissimilarity and 	�� ��� using thresholds
on data density�distribution� The whole family of
partitional clustering methods require the number
of clusters �such as k�means and k�medoids 	����
as an input parameter� Instead of using threshold
values� our clustering criterion penalizes a wrong
decision in the search of a good clustering� This
feature makes our approach more robust and adap�
tive in a dynamic environment�

� Scalable clustering� Our algorithm makes only a
few �typically no more than
� scans of transac�
tions� thus� highly e�cient for disk�resident data
sets where the I�O cost becomes the bottleneck of
e�ciency�

� Related Work

Data clustering has been extensively studied in Statis�
tics� Machine Learning� and Information Retrieval� See
	�� �� ��� �
� for a list� Most methods rely on the notion
of pairwise similarity� i�e�� a distance measure� between
a pair of objects �such as Lp metric� the cosine measure�
and the Dice and Jaccard coe�cient�� These methods
su�er from the anomalies for transactions discussed in
Introduction� The notion of document frequency �i�e��
the fraction of documents that contain a term� widely
used in text document classi�cation and clustering 	���
is related to our notion of large items� However� there
are important di�erences� Unlike document frequency�
large items are de�ned with respect to a cluster of trans�
actions� not the whole collection of transactions� There�
fore� during the construction of clusters� large items
must be maintained as clusters grow� which is one of
the performance issues we address in this paper� Exist�
ing work� however� do not address the e�cient update of
document frequency as documents are added or deleted�
therefore� can deal with only a �xed set of documents�
Our method is similar to k�means algorithms in that

it scans transactions and assigns the next transaction
to the �best� cluster� However� two important di�er�
ences exist� First� we do not require the number k of
clusters� This is very important as the user usually does
not know this number in advance or the number may
change as the transaction population changes� Second�
we choose a cluster for the next transaction not based
on the �distance� between the cluster and the trans�
action� i�e�� a local goodness� but based on the global
goodness of clustering� In fact� this is a consequence of
the �rst di�erence because the local goodness implies
creating a new cluster for every transaction�

	
� de�nes clusters as maximal connected compo�
nents of some pairwise similarity of transactions� thus�
su�ers from the breakdown of the transitivity of pair�
wise similarity �e�g�� A � B �� � and B � C �� � does
not imply A�C �� ��� 	�� adopts hypergraph partition�
ing for transaction clustering� but the result is a clus�
tering of items �not transactions� that occur together
in the transactions� 	�� noted some limitations of tra�
ditional similarity measures for transactions and pro�
posed the common �neighbors� of two transactions as
a measure of pairwise similarity� Our method does not
use any notion of pairwise similarity� 	��� proposes an
I�O�e�cient clustering algorithm based on incremental
update of some key information maintained for each
cluster� 	��� �� �� use the distribution and density�
connectivity of data points to guide the construction of
clusters� All these methods make certain assumptions
on the clustering structures� i�e�� maximum dissimilar�
ity in a cluster 	���� uniform distribution of data points
in a cluster 	���� and maximum size of neighborhood
and minimum density 	���
The term �large item� comes from the work on min�

ing association rules 	��� While 	�� groups the items
that occur in similar transactions� we cluster transac�
tions that contain similar items� The di�erence is that
clustering emphasizes the dissimilarity of clusters�

� A New Clustering Criterion

In this section� we de�ne our clustering criterion based
on the notion of large items� Consider a collection of
transactions ft�� � � � � tng� where each transaction ti is a
set of items fi�� � � � � ipg� A clustering C is a partition
fC�� � � � � Ckg of ft�� � � � � tng� Each Ci is called a cluster�

��� The large item based approach

We propose to use large items as the similarity mea�
sure of a cluster of transactions� The support of an
item in cluster Ci is the number of transactions in Ci

that contain the item� Let jSj denote the number of
elements in set S� For a user�speci�ed minimum sup�
port � �� � � � ��� an item is large in cluster Ci if its
support in Ci is at least � � jCij� otherwise� the item is
small in Ci� Intuitively� large items are popular items
in a cluster �as per the user�speci�ed minimum sup�
port�� thus� contribute to similarity in a cluster� whereas
small items contribute to dissimilarity in a cluster� Let
Largei denote the set of large items in Ci� and Smalli
denote the set of small items in Ci� Consider a clus�
tering C � fC�� � � � � Ckg� The cost of C to be mini�
mized has two components� the intra�cluster cost and
the inter�cluster cost�

The intra�cluster cost� This component is charged
for intra�cluster dissimilarity�measured by the total num�

ber of small items�

Intra�C� � j �k
i�� Smalli j� ���

This component will restrain creating loosely bound
clusters that have too many small items� Note that we
didn�t use �k

i��jSmallij� Our experiments show that
�k
i��jSmallij tends to put all transactions into a sin�
gle or few clusters even though they are not similar�
To see this� consider two clusters that are not similar
but share some small items� Merging these two clus�
ters will reduce �k

i��jSmallij because each small item
previously counted twice is now counted only once and
because large items remain large after the merging� But
this merging is intuitively incorrect because sharing of
small items should not be considered as similarity�

The inter�cluster cost� This component is charged
for inter�cluster similarity� Since large items contribute
to similarity in a cluster� each cluster should have as
little overlapping of large items as possible� This over�
lapping is de�ned by

Inter�C� � �k
i��jLargeij 	 j �k

i�� Largeij� �
�

In words� Inter�C� measures the duplication of large
items in di�erent clusters� This component will restrain
creating similar clusters�
To put the two together� one can specify weights for

their relative importance� The criterion function of the
clustering C then is de�ned as

Cost�C� � w � Intra�C� Inter�C�� �
�

A weight w � � gives more emphasis to the intra�cluster
similarity� and a weight w � � gives more emphasis to
the inter�cluster dissimilarity� By default� w � �� We
now state a formal de�nition of the transaction cluster�
ing problem�

De�nition ��� �Transaction clustering� Given a col�
lection of transactions and a minimum support� �nd a
clustering C such that Cost�C� is minimum�

Finding an exact solution is infeasible due to the
large number of ways to partition transactions� In prac�
tical applications� it su�ces to �nd an approximate so�
lution� This will be the topic in Sections � and �� At this
point� several properties of our approach are worth men�
tioning� First� the de�nition does not require a num�
ber of clusters as an input parameter and the cost is
minimized over all numbers of clusters� An useful vari�
ation is to impose some maximum number of clusters�
Second� we do not use �hard� threshold values to stop
grouping dissimilar transactions together� instead� we
penalize a wrong decision in the search of a good clus�
tering� These features are crucial for dynamic clustering
where the number of clusters and similarity in a cluster

may change as new transactions are added� Third� the
notion of large items is not another notion of centroid of
a cluster� In fact� we do not measure any �closeness� of
a transaction to a cluster� like in k�means algorithms�
Instead� we use large items to evaluate the quality of
the whole clustering�

Example ��� Consider � transactions�

t� � fa� b� cg� t� � fa� b� c� dg� t� � fa� b� c� eg
t� � fa� b� fg� t� � fd� g� hg� t� � fd� g� ig�

Assume that the user�speci�ed minimum support is ����
A large item must be contained in at least � transac�
tions
i�e�� ������� Consider the clustering C� � fC� �
ft�� t�� t�� t�� t�� t�gg� We have Large� � fa� bg� Small� �
fc� d� e� f� g� h� ig� Intra�C�� � �� and Inter�C�� � �� So
Cost�C�� � ��

Consider the clustering C� � fC� � ft�� t�� t�� t�g� C� �
ft�� t�gg� For C�� a large item should be contained
in at least � transactions in C�� We have Large� �
fa� b� cg and Small� � fd� e� fg� Similarly� Large� �
fd� gg and Small� � fh� ig� Therefore� Intra�C�� � ��
Inter�C�� � �� and Cost�C�� � �� Thus� C� improves C�
by reducing intra�cluster dissimilarity without increas�
ing inter�cluster similarity�

Consider the clustering C� � fC� � ft�� t�g� C� �
ft�� t�g� C� � ft�� t�gg� We have Large� � fa� b� cg�
Small� � fdg� Large� � fa� bg� Small� � fc� e� fg�
Large� � fd� gg� Small� � fh� ig� Intra�C�� � �� and
Inter�C�� �
� So Cost�C�� � �� Compared to C�� split�
ting ft�� t�� t�� t�g into C� and C� creates more inter�
cluster similarity�

��� The minimum support

In choosing the minimum support the user should con�
sider how frequently items are expected to occur in the
transactions of a cluster in order for them to charac�
terize the cluster� Besides the user�s expectation� hi�
erarchical clustering can also help address the choice
of the minimum support� Initially� a small minimum
support is used to produce a small number of clusters
where only very dissimilar transactions go to di�erent
clusters� For each cluster� a larger minimum support
is used to ��ne�cluster� transactions� This is repeated
recursively until the cost of a cluster cannot be reduced
by further �ne�clustering�
For a chosen minimum support� Cost�C� re!ects the

user�s satisfaction level with respect to his�her expec�
tation as speci�ed by the minimum support� Conse�
quently� it does not make sense to compare Cost�C� and
clustering results produced by di�erent minimum sup�
ports� In fact� with the minimum support of ��n� where
n is the number of transactions� grouping all transac�
tions into a single cluster will give Cost�C���� Obvi�
ously� this should not be interpreted as saying that the

�" Allocation phase "�
��� while not end of the �le do
�
� read the next transaction � t�	 ��
�
� allocate t to an existing or a new cluster Ci to

maximize Cost�C��
��� write � t�Ci ��

�" Re�nement phase "�
��� repeat
��� not moved�true�
��� while not end of the �le do
��� read the next transaction � t�Ci ��
��� move t to an existing non�singleton cluster

Cj to minimize Cost�C��
���� if Ci �� Cj then
���� write � t�Cj ��
��
� not moved�false�
��
� eliminate any empty cluster�
���� until not moved�

Figure �� The overview of the clustering algorithm

single cluster is always the best solution� What it does
say is that if the user�s expectation of cluster similar�
ity is low� grouping all transactions into a single cluster
gives the most satisfactory solution �because the user
does not care anyway��

� Overview of Our Algorithm

Figure � shows the overview of our algorithm� The col�
lection of transactions is stored in a �le on disk� We
read each transaction t in sequence� either assign t to
an existing cluster �initially none� or create t as a new
cluster� whichever minimizes Cost�C� for the current
clustering C� The cluster identi�er of each transaction
is written back to the �le� This is called Allocation
phase� In Re�nement phase� we read each transaction
t �in the same order as in Allocation phase�� move t to
an existing non�singleton cluster �possibly stay where it
is� to minimize Cost�C�� After each move� the cluster
identi�er is updated and any empty cluster is eliminated
immediately� If no transaction is moved in one pass of
all transactions� Re�nement phase terminates� other�
wise� a new pass begins� Essentially� at each step we
locally optimize the criterion Cost�C�� The key step is
�nding the destination cluster for allocating or moving
a transaction� This will be the topic in Section ��
The paradigm of allocation phase followed by re�ne�

ment phase has been adopted in partitional clustering
algorithms such as the k�means and k�medoids� How�
ever� there are important di�erences in our algorithm�
First� we do not require a pre�determined number k

of clusters� instead� we create and eliminate clusters
dynamically on the basis of optimizing our criterion
Cost�C�� Second� the destination cluster of a trans�
action is determined not by the nearest distance to a
cluster or any mean�centroid of a cluster� but by opti�
mizing the criterion Cost�C�� In fact� the nearest dis�
tance approach does not work in our case because a new
cluster can always be created to be nearest to the next
transaction�

� Update the Criterion Function

In our algorithm� a key step is �nding the destination
cluster for a transaction at lines �
� and ��� in Figure ��
This requires to compute the new Cost�C� for each pos�
sible destination cluster� To avoid scanning all transac�
tions in the destination cluster� we maintain jLargeij�
j�k

i��Smalli j� and j�
k
i��Largeij after each allocation or

move of a transaction� We expect only a small change
on Largei and Smalli as a single transaction is added
to or moved out of Ci� Therefore� this maintenance can
be very e�cient� We consider only the maintenance for
adding a transaction to a cluster� The maintenance for
moving a transaction out of a cluster is similar� First�
let us explain the data structures maintained for each
cluster Ci�
Let MinSupi � d� � jCije� The support of an item

in Ci refers to the number of transactions in Ci that
contain the item� Thus� an item is large in Ci if and
only if its support in Ci is greater than or equal to
MinSupi� For each cluster Ci� we maintain two data
structures in memory� i�e�� hash table Hashi and B�tree
Btreei� Hash tables and B�trees are standard indexing
techniques for large databases� For more information�
we recommend 	�
� or any database text book�

Hashi� The hash table for Ci with items as the index
key� For each item e in Ci� there is an entry of the
form � e� tree addr � in Hashi� where tree addr is the
address of the corresponding leaf entry for e in Btreei
�see below�� Hashi provides the access path to insert�
delete� or update the support of a given item�

Btreei� The B�tree with the support of items in Ci

as the index key� For each item e in Ci� there is a
leaf entry of the form � sup� hash addr � in Btreei�
where sup is the support of e in Ci and hash addr is
the address of the corresponding entry for e in Hashi�
Btreei provides the access path to �nd all items having
a given support�
The minimum support MinSupi separates the leaf

entries of Btreei into those for Largei �on the right�
and those for Smalli �on the left�� Of particular inter�
ests are those items near the boundary� the small items
having support MinSupi	� and the large items having
support MinSupi� As a transaction is allocated to or
moved away from Ci� the support of some of these items

will be increased or decreased by �� Consequently� these
items may move across the boundary� Keeping track of
such changes e�ciently is the main task of the mainte�
nance� First� we de�ne two operations�
We de�ne Inc�Ci� e� to be the operation that in�

creases the support of a given item e in Ci by �� Several
steps are involved�

�� Look upHashi for the entry � e� tree addr �� Let
� sup� hash addr � be the leaf entry in Btreei
addressed by tree addr�

� Increase sup by � in � sup� hash addr ��

� Move � sup� hash addr � to the right to pass all
leaf entries � sup�� hash addr� � with sup� � sup�

�� For each entry � sup�� hash addr� � moved in
�c�� update its tree address contained in the cor�
responding entry in Hashi�

�� Update ancestor index entries of� sup� hash addr �
to re!ect the change of the support� if necessary�

��� Join transaction t into cluster Ci

As transaction t joins cluster Ci�MinSupi increases by
at most � and the support of every item in t increases by
�� Let OldMinSupi andMinSupi denote the minimum
support for Ci before and after t joins Ci�

����� Update jLargeij

The algorithm for updating jLargeij is given in Figure

� For each item e in t� we look up Hashi� If e is found�
we increment its sup in Btreei� If e is not found� we
insert e with sup � � into Hashi and Btreei� These
are given in lines ��������

Small items become large� A small item e becomes
large if �a� MinSupi � OldMinSupi� �b� e is in t� and
�c� sup �MinSupi� This case is checked by lines �����
��
��

Large items become small� A large item e becomes
small if �a� MinSupi � OldMinSupi �� �b� e is not
in t� and �c� sup � OldMinSupi� This case is checked
in lines ����������

����� Update j �k
i�� Smallij and j �k

i�� Largeij

We use two hash tables LargeHash and SmallHash
to maintain the number of clusters in which an item is
large and small� As a small item e becomes large in
a cluster� its number in SmallHash is decreased by �
and its number in LargeHash is increased by �� Sim�
ilarly� as a large item e becomes small in a cluster� its
numbers in LargeHash and SmallHash are updated
accordingly� Whenever a number reaches � in a hash ta�
ble� the corresponding entry is deleted from that table�

��� jCij �
�
� OldMinSupi �MinSupi�
�
� MinSupi � d� � jCije�

�" update the support of items in t "�
��� foreach item e in t do
��� look up Hashi for e�
��� if e is found then
��� Inc�Ci� e��
��� else
��� insert e into Hashi and Btreei with sup � ��

�" small items become large "�
���� if MinSupi �� OldMinSupi then
���� search Btreei for the items e with sup �MinSupi�
��
� foreach returned item e do
��
� if e is in t then jLargeij �

�" large items become small "�
���� if MinSupi �� OldMinSupi � then
���� search Btreei for the items e

with sup � OldMinSupi�
���� foreach item e returned do
���� if e is not in t then jLargeij 	 	�

Figure
� Update jLargeij for joining t into Ci

Whenever a new item e is added to a cluster� a new en�
try with the initial number � is inserted to LargeHash
or SmallHash� depending on whether e is large or small
in that cluster� As a transaction t joins a cluster� the
change of j �k

i�� Smalli j �j �k
i�� Largeij� resp�� is the

number of new entries inserted minus the number of en�
tries deleted in SmallHash �LargeHash� resp��� These
computations can be easily incorporated into the algo�
rithm in Figure
�
In actual implementation� the update of data struc�

tures is performed only after all potential destination
clusters are tested�

��� Move transaction t away from cluster Ci

A similar reasoning applies to the case of moving a
transaction away from a cluster� We omit the detail�

� Experiments

Most clustering algorithms do not scale up for large
databases because they require to examine pairs of ob�
jects due to a pairwise similarity measure� k�means al�
gorithms� on the other hand� assume a �xed number
k of clusters� thus� cannot be applied to applications
where the number of clusters can evolve� In this exper�
iment� we compare our method with two algorithms�
the traditional hierarchical clustering 	��� denoted HC�
and the link�based hierarchical clustering 	��� denoted

LBHC� 	�� addressed the limitation of distance met�
ric between points �which we call pairwise similarity�
using the concept of links to measure the similarity be�
tween a pair of data points� where links are the common
�neighbors�� in any distance measure� of the two points�
It was shown in 	�� that the link�based measure pro�
duces better clusterings than distance�based measures�
To facilitate comparison� we use the same data sets as
used in 	��� i�e�� the Congressional votes and Mushroom
data sets from the UCI Machine Learning Repository
�http���www�ics�uci�edu � mlearn�MLRepository�html��
�The US Mutual Funds in 	�� is not available to us
because the web page does not exist any more�� We
map a table to a collection of transactions by creating
one transaction to contain attribute�value pairs in each
record in the table�

Congressional votes� This is the ���� United
States Congressional Votes Records Database� Every
record contains �� boolean attributes corresponding to
one congressman�s votes on �� key issues� �A few records
contain missing values� which we treat as NO�� There
are �
� records� ��� for Republicans and
�� for Democrats�
All clustering algorithms ignore the class labels �Repub�
licans� and �Democrats�� The class labels are only used
to verify the clustering result�
Table ��a� contrasts the clustering results on the

Congressional votes data� In our algorithm� we set
the minimum support to ��� to re!ect the fact that
democrats and republican do vote similarly on many
issues� The clusters produced by BLHC covers only

�
 records out of the �
� records because the rest are
treated as outliers by 	��� The clusters produced by
our algorithm and HC cover all �
� records� Our algo�
rithm better separates �Democrat� and �Republican�
than HC and BLHC in terms of class purity of each
cluster� Table ��b� shows some characteristics of the
two larger clusters produced by our algorithm� given
by large items� For example� �physician�fee�freeze����
��
��� for Cluster � means that ��� or �
� records
in this cluster vote for physician�fee�freeze� As Table
��b� indicates� these two clusters� one representing Re�
publicans and one representing Democrats� have very
di�erent voting characteristics�

Mushroom� Each record contains information about
the physical attributes of a single mushroom� e�g�� color�
odor� shape� habitat� etc� A class label of �Poisonous�
or �Edible� is assigned to each record� There are ���
�
records for ��
�� edible mushrooms and
���� poisonous
mushrooms�
Table
 shows the clusters and class distribution pro�

duced by the three algorithms� In our algorithm� Clus�
ters ���� are obtained hierarchically� First� we set the
minimum support at
�� and obtain Clusters ��� and a
huge cluster called X� We �ne�cluster X at the minimum
support of ���� yielding Clusters ��� and a huge clus�

HC LBHC Our algorithm
Cluster No No of Rep No of Demo No of Rep No of Demo No of Rep No of Demo

� ��� �
 ���

 ���

 ��
�� �
�� �
��

 � �

�a� Class distribution in clusters

Cluster � �for Republicans� Cluster
 �for Democrats�

�physician�fee�freeze� ��� ��
��� �adoption�of�the�budget�resolution�

� ������
�crime� ��� ��
��� �aid�to�nicaraguan�contras�
�� ������
�el�salvador�aid� ��� ��
��� �anti�satellite�test�ban� ��� ������
�religious�groups�in�schools� ��� ������ �mx�missle� ��� ������
�superfund�right�to�sue� �

 ������ �export�administration�act�south�africa���
 ������
�education�spending� �
� ������

�b� Voting characteristics produced by our algorithm

Table �� Clustering results on the congressional vote data set

ter called Y� We further �ne�cluster Y at the minimum
support of
�� and obtain Clusters ����� The decision
on whether to �ne�cluster a cluster is made on the basis
of reducing Cost�C� and the minimum support is cho�
sen based on our expectation� Except for Clusters ���
and �
� which together contains only
��� of the data�
our algorithm is able to distinguish the two classes� We
can further �ne�cluster Clusters ��� and �
 to get more
purity� but we are satis�ed with the current clustering�
As Table
 shows� our algorithm and LBHC per�

form much better than HC� LBHC achieves the purity
of classes by producing more clusters� However� the pu�
rity alone does not capture the �structure� of the data
in a concise representation� To explain this point� let
us consider the
 largest clusters produced by each al�
gorithm �because
 is the ideal number of clusters�� For
LBHC� the
 largest clusters� i�e�� Clusters � and ���
cover �
� of the data with pure separation� For our
algorithm� the
 largest clusters� i�e�� Clusters � and ��
cover ��� of the data with nearly pure separation� By
doubling the coverage without losing separation power�
our algorithm better captures the structure of the data�
Due to the space limitation� the characteristics of clus�
ters are left out�
In summary� our algorithm does group similar trans�

actions together and group dissimilar transactions apart�
In several other experiments� we studied the scalability
and order sensitivity of our algorithm� The result shows
that our algorithm makes only a few� typically
 or
�
scans of the database and the execution time scales up
linearly with the size of the database� The result also
shows that the processing order of transactions does not
have a major impact on the clustering� Due to the space
limitation� we omit the detail�

	 Conclusion

Most clustering methods rely on a measure of pairwise
similarity� i�e�� the distance measure� For transactions
made of sparsely distributed items� we argued that pair�
wise similarity is neither necessary nor su�cient for a
cluster of transactions to be similar� We proposed a
new clustering criterion based on the notion of large
items without using any measure of pairwise similarity�
This new clustering criterion helps address several im�
portant issues in transaction clustering� namely� robust�
ness of similarity measures� incorporating user expec�
tation of similarity� discriminating features and noises�
dynamic clustering� and handling large data sets� We
presented an I�O�e�cient clustering algorithmbased on
the new clustering criterion� Experiments show that our
approach is e�ective�

References

	�� R� Agrawal� T� Imielinski� A� Swami� Mining associ�
ation rules between sets of items in large databases�
SIGMOD ���
�
���
��

	
� A� Z� Broder� S� C� Glassman� M� S� Manasse and G�
Zweig� Syntactic clustering of the web� WWW Con�
ference ����

	
� D� R� Cutting� D� R� Karger� J� O� Pederson and
J� W� Turkey� Scatter�Gather� A cluster�based ap�
proach to browsing large document collections� SIGIR
���
�
���
�

	�� P� Cheeseman� J� Stutz� Baysian classi�cation �au�
toclass�� Theory and results� In U�M� Fayyad� G�

HC

Cluster No No of Edible No of Poisonous Cluster No No of Edible No of Poisonous

� ��� ��� �� ��� ���

� ��	 	�� �� ��� ���

	 ��� ��� �	 ��� ��	

� ��� ��� �� �
� ��	

� �
� ��� �� �	� ���

� ��� ��� �� ��� ���

� �		 �	� �� ��� ���

� ��� �	
 �� �
� ���

 �	� �� �
 ��� ���

�� ��� ��� �� ��� ���

LBHC

Cluster No No of Edible No of Poisonous Cluster No No of Edible No of Poisonous

�
� � �� �� �

� � ��� �	 � ���

	 ��� � �� �
� �

�
� � �� 	� ��

� ��� � �� � ����

� � �
� �� ��� �

� ���� � �� � �

� � 	� �
 �
� �

 � ��
� �� �� �

�� � � �� � 	�

�� �� �

Our algorithm

Cluster No No of Edible No of Poisonous Cluster No No of Edible No of Poisonous

�
� � � � ���

� �	 �
 �� 		��

	 � � �� 	�� ��

� ��� �� ��
 �

� ��	� 	� �� �
 ��

� ��� 	� �	 �� �

� �
 �� �� ��� �

Table
� Clustering results on the mushroom data set

Piatetsky�Shapiro� O� Smith� and R� Uthurusamy�
editors� Advances in Knowledge Discovery and Data
Mining� ��
����� AAAI�MIT Press� ����

	�� M� Ester� H� P� Kriegel� J� Sander� M� Wimmer�
X� Xu� Incremental clustering for mining in a data
warehousing environment� VLDB ����� New York�
USA

	�� M� Ester� H�P Kriegel� J� Sander� and X� Xu� A
density�based algorithm for discovering clusters in
large spatial databases with noise� KDD ����

	�� S� Guba� R� Rastogi� K� Shim� A clustering algo�
rithm for categorical attributes� ICDE ����

	�� E�H� Han� G� Karypis� V� Kumar and B� Mobasher�
Clustering based on association rule hypergraphs�
SIGMOD workshop on research issues on Data Min�
ing and Knowledge Discovery� ����

	�� A�K� Jain� R�C� Dubes� Algorithms for clustering
data� Prentice�Hall� Englewood Cli�s� N�J�� ����

	��� L� Kaufman and P�J� Rousseeuw� Finding groups in
data� an introduction to cluster analysis� John Wiley
Son� ����

	��� Van Rijsbergen� C�J� Information retrieval� Lon�
don� Butterworths� ����

	�
� R� Ramakrishnan� Database Management Sys�
tems� McGRAW�HILL� ����

	�
� P� Willet� Recent trends in hierarchical document
clustering� A critical review� Information Processing
Management�
������������� �����

	��� X� Xu� M� Ester� H�P�Kriegel� J� Sander� A
distribution�based clustering algorithm for mining in
large spatial databases� ICDE ����

	��� O� Zamir� O� Etzioni� O� Madani and R� M� Karp�
Fast and intuitive clustering of web documents� KDD
�����
���
��

	��� T� Zhang� R� Ramakrishnan� and M� Livny�
BIRCH� An e�cient data clustering method for very
large databases� SIGMOD ����� ��
�����

