
Mining Confident Rules Without Support Requirement �

Ke Wang
Simon Fraser University

wangk@cs.sfu.ca

Yu He
Hewlett-Packard Singapore

yu he@hp.com

David W. Cheung
Francis Y. L. Chin

University of Hong Kong

dcheung,chin@csis.hku.hk

ABSTRACT
An open problem is to �nd all rules that satisfy a minimum
con�dence but not necessarily a minimum support� Without
the support requirement� the classic support�based pruning
strategy is inapplicable� The problem demands a con�dence�
based pruning strategy� In particular� the following mono�
tonicity of con�dence� called the universal�existential up�

ward closure� holds� if a rule of size k is con�dent �for the
given minimum con�dence�� for every other attribute not in
the rule� some specialization of size k	
 using the attribute
must be con�dent� Like the support�based pruning� the bot�
tleneck is at the memory that often is too small to store the
candidates required for search� We implement this strategy
on disk and study its performance�

1. INTRODUCTION
The problem of mining association rules ���
� is to �nd all
rules X � Y between itemsets X and Y � from a given collec�
tion of transactions� that have the user�speci�ed minimum
support and minimum con�dence� A high support ensures
the statistical signi�cance and a high con�dence ensures the
predictability� The classic support�based pruning strategy�
such as Apriori ���
�� is to push the support requirement into
the search by exploiting the downward closure property� if
an itemset fi�� � � � � ikg is frequent� i�e�� above the minimum
support� so is every subset of size k �
� Thus� an itemset
fi�� � � � � ikg needs to be examined only if all its subsets of
size k �
 are frequent� The con�dence requirement is en�
tirely ignored until frequent itemsets are screened for rules
of high con�dence�

The above approach su�ers from an unnecessary bottleneck
if there are many frequent itemsets but a few con�dent rules�
which occurs when the minimum support is low and the
minimum con�dence is high� an interesting case pointed out

�Research was supported in part by research grants from
the Natural Science and Engineering Research Council of
Canada

recently ��� ��� In fact� with a high minimum support� dis�
covered rules often are obvious and well known� and rules
of low support but high con�dence� which usually provides
new insights� are not discovered� For example� a recom�
mendation rule is expected to have high con�dence for a
high hit rate� but each rule applies to a small number of
customers because of their non�uniform tastes� The doc�
ument classi�cation provides another example for con�dent
rules with low support ��� where most topics have alternative
characteristics� each of which applies to a small number of
documents� Our experience is that very few datasets have a
�clean� structure that is captured by a small number of rules
of high support� Much often� the structure is less clean and
is described by many rules� each of which captures a small
portion of the structure�

With low or no minimum support� the classic support�based
pruning strategy becomes inapplicable� What is needed is a
con�dence�based pruning strategy by pushing the con�dence
requirement into the search� This change� from support�
based pruning to con�dence�based pruning� tends out to
be drastic� Unlike support� con�dence does not have the
downward closure property� shorter rules Age �
� �
Salary � High and Gender � M � Salary � High
could have lower con�dence than longer rule Age �
� �
Gender � M � Salary � High� The con�dence does
not have the upward closure property either� longer rule
Age �
��Gender � M � Salary � Low could have lower
con�dence than shorter rules Age �
� � Salary � Low
and Gender � M � Salary � Low�

Recently� ��� pointed out the following pruning property of
con�dence� if a rule of size k� Ai� � ai� � � � ��Aik � aik �
C � c� is con�dent �for the given minimum con�dence��
some specialization of size k 	
� Ai� � ai� � � � � � Aik �
aik � Aik�� � aik�� � C � c� must be con�dent� There�
fore� to generate candidate con�dent rules of size k� we only
need to examine con�dent rules of size k 	
� For a large
database� the bottleneck of this approach is at the memory
that is often too small to hold all candidates�rules� Indeed�
it is not uncommon that candidates�rules take more space
than the input database� Thus� an unsolved problem is to
minimize the I�O cost where rules�candidates are kept on
disk� A major challenge is that candidates�rules often are
not clustered on disk in the way they are requested� In this
paper� we present a clustering scheme and an access method
to solve this problem� Our goal is to minimize the dominat�
ing I�O cost as in a typical database environment�

The rest of the paper is organized as follows� In Section �� we
present an overview of our approach� which covers the prob�
lem studied� the con�dence�based pruning strategy� and a
conceptual algorithm� In Section
� we present a disk�based
implementation� In Section �� we evaluate the implemen�
tation� In Section �� we review related work� We conclude
this paper in Section ��

2. THE CONFIDENCE-BASED PRUNING
We assume that the database is a relational table T over
m non�class attributes A�� � � � �Am and one class attribute

C� All attributes are categorical� A tuple in T has the
form � a�� � � � � am� c �� where ai are values of Ai� and c
is a value of C� called a class� A rule� or a k�rule� has the
form Ai� � ai� � � � � � Aik � aik � C � c� with each
attribute occurring at most once� By assuming that each
value ai is pre�xed with its attribute Ai� we can simply write
a rule as ai� � � � � � aik � c without mentioning attributes� x
often denotes one or more values� A tuple t and a rule
x � c match if t contains all the values in x� A rule of the
form x� ai � c is called a Ai�specialization of rule x � c
if ai is a value of Ai� jT j denotes the number of tuples
in T � and num�x� denotes the number of tuples in T that
contain all the values in x� The support of rule x � c�
denoted sup�x � c�� is num�x� c��jT j� The con�dence of
rule x � c� denoted conf�x � c�� is num�x� c��num�x��
Given a minimum con�dence minconf � a rule is con�dent if
conf�x� c� �minconf �

Definition ��� �Mining confident rules�� The prob�
lem of mining con�dent rules is to �nd all con�dent rules for
a given minimum con�dence� �

Importantly� we drop the usual minimum support require�
ment adopted in most association rule mining algorithms�
Thus� the support�based pruning� such as ���
�� is not ap�
plicable to the con�dent rule mining problem� ��� observed
a con�dence�based pruning strategy that pushes the con��
dence requirement into the search of rules� The following
rules illustrate the idea�

r
� Age�young � Buy�yes
r�� Age�young� Gender�M � Buy�yes
r
� Age�young� Gender�F � Buy�yes�

r� and r
 are two specializations of r
� by having the ad�
ditional conditions Gender�M and Gender�F � These con�
ditions are exclusive and exhaustive in the sense that ex�
actly one will hold for each tuple� Therefore� if one condi�
tion has a negative impact on con�dence� the other must
have a positive impact� and vice versa� Put di�erently� one
of r� and r
 must have as much con�dence as the origi�
nal rule r
� or equivalently� we can prune r
 if none of
r� and r
 is con�dent for the given minimum con�dence�
The same argument applies to attribute Education with
two values high and low� if r
 is con�dent� at least one
of Age�young� Education�high � Buy�yes and Age�young�
Education�low � Buy�yes must be con�dent� This obser�
vation was stated as the following upward closure property�

Theorem ��
� For every attribute Ai not occurring in a
rule x � c� �i� some Ai�specialization of x� c has at least
the con�dence of x � c� �ii� if x � c is con�dent� so is
some Ai�specialization of x� c� This property is called the
universal�existential upward closure�

The universal�existential upward closure suggests the follow�
ing level�wise generation of con�dent rules�

The level�wise candidate generation� Assume that all
con�dent k�rules are generated� starting with k � m� the
number of non�class attributes� We generate a candidate
�k�
��rule x� c only if for every attribute Ai not occurring
in x � c� some Ai�specialization of x � c is con�dent� In
other words� a �k �
��rule is pruned if for some attribute
Ai� no Ai�specialization of the rule �of size k� was found
con�dent�

We can implement this generation in relational algebra sup�
ported by any database system as follows� Let Rulek and
Candk be the set of con�dent k�rules and candidate k�rules�
Let Rulek�X�C� and Candk�X�C� be the set of rules in
Rulek and the set of rules in Candk with attributes X on
the left�hand�side� We represent rules ai� � � � � � aik � c by
tuples � ai� � � � � � aik � c � on attributes Ai� � � � � � Aik � C� and
Rulek�X�C� and Candk�X�C� by relational tables over at�
tributes X�C� With this notation� Theorem ��
�ii� gives the
following relational computation of Cand�

Corollary ��
� Let Candk���X�C� � �Ai�X�CRulek
�X�Ai� C�� where �X�C denotes the projection onto the at�
tributes X and C� and Ai ranges over all non�class attributes
not in X� Then Candk�X�C� � Rulek�X�C�� �

Corollary ��
 identi�es two kinds of candidate pruning�

Projection�based pruning� Every candidate of size k�

�except longest ones� must come from some con�dent Ai�
specialization� i�e�� a projection of a con�dent k�rule�

Intersection�based pruning� Every candidate of size k�

 �except longest ones� must come from a con�dent Ai�
specialization for every attribute Ai not yet in the candi�
date� There are m�k	
 such attributes Ai for a candidate
of size k �
� so each candidate of size k �
 comes from
intersecting the projection of m � k 	
 con�dent �k 	
��
rules� Note that this pruning assumes the projection�based
pruning�

Figure
 gives an overview of the level�wise generation� The
search starts with the seed Rulem containing all tuples in
T that represent con�dent rules �line ��� In iteration k�
starting with k � m� we generate Candk�� based on Corol�
lary ��
 �line ��� compute the con�dence of candidates in
Candk�� in one pass of T �line ��� and collect con�dent
�k �
��rules �line ��� To compute the con�dence of candi�
dates� we need to scan the tuples in T � and for each tuple
t� we update num�x� and num�x� c� for all matching can�
didates x � c in Candk��� if t contains class c� we incre�
ment both num�x� and num�x� c�� otherwise� we increment
num�x�� At the end of the scan� the con�dence of x� c is
num�x� c��num�x��

Input� table T over A�� � � � � Am� C and minconf �
Output� all con�dent rules�
Method�
� k � m�
� Rulem � all con�dentm�rules�
� while k � � and Rulek is not empty do
	 generate Candk�� from Rulek
based on Corollary �����

 compute the con�dence of candidates in one pass of T �
� Rulek�� �all con�dent candidates in Candk�� �
� k � ��
� return all Rulek�

Figure �� The overview of mining con�dent rules

This algorithm works �ne if T � Rulek � Candk�� all �t in
memory� However� we frequently observed that rules�candidates
generated are many times larger than the input database�
in which case this assumption no longer holds� In the rest
of the paper� we consider a disk�based implementation of the
con�dence�based pruning strategy� where T � Rulek � Candk��
are stored on disk� Our goal is to minimize the I�O cost�
i�e�� the number of disk pages accessed� The major chal�
lenge is that these data structures are not clustered in the
way they are requested� and a straightforward implementa�
tion yields excessive I�O� Without a careful clustering and
access method� the extra I�O generated for performing the
con�dence�based pruning can wipe out the bene�t of the
pruning� In the next section� we propose a clustering scheme
and an access method with the goal of minimizing the I�O
cost�

3. THE DISK-BASED IMPLEMENTATION
In this section� we implement the algorithm in Figure
 as�
suming that T � Candk��� and Rulek are stored on disk� Our
goal is to minimize the disk access� We focus on Step �� �
and �� Let us �rst analyze some common requirements of
these steps� In Step �� we need to search for all tuples that
agree on all non�class attribute values� In Step �� we need
to search for the rules in Rulek that agree on k�
 non�class
values and disagree on the remaining non�class attribute� In
Step �� we need to search for the candidates that match a
given tuple in T � A common operation of all is to retrieve
tuples or rules by non�class values� Since tuples and rules are
not clustered on disk for such retrievals� a straightforward
implementation will result in excessive repeated disk access�
We like to cluster tuples and rules on disk so that those that
are �likely to share similar values� are retrieved together�
Two tuples or rules are likely to share values if they belong
to the same bucket determined by a hash�partitioning on
those values� Let us consider such a partitioning scheme�

Consider a hash function hi for attribute Ai with the range
����qi�� qi � � if no partitioning is chosen for Ai� hi hashes
the tuples in the database T into �q� 	
� � � � � � �qm 	
�
buckets� called T�buckets� A T�bucket denoted by bucket
id �b�� � � � � bm� contains all the tuples � a�� � � � � am� c � in
T such that hi�ai� � bi for
 	 i 	 m� Similarly� the
same hash functions partition the candidates in Candk��
and rules in Rulek into C�buckets and R�buckets� Note that
hash values for di�erent attributes should not be mixed up�
This can be enforced by representing each hash value bi as

Ai�bi� where Ai is the attribute for bi� We assume that there
is a mapping from bucket ids to disk addresses of buckets�
We say that a C�bucket �b�i� � � � � � b

�

ik
� matches a T�bucket

�b�� � � � � bm� if fb�i� � � � � � b
�
ik
g is a subset of fb�� � � � � bmg�

The major advantage of hash�partitioning is that certain
prunings can be performed at the bucket id level before ac�
cessing actual tuples and candidates� and only when this fails
are tuples and candidate accessed� These prunings come
from the properties of hash�partitioning� projection�based
pruning� intersection�based pruning discussed in Section ��
Let us consider such prunings�

Match�based pruning for bucket ids� A candidate in
a C�bucket of Candk�� matches a tuple in a T�bucket only
if the C�bucket matches the T�bucket� Thus� a T�bucket
is relevant to computing the con�dence for candidates in a
C�bucket only if the C�bucket matches the T�bucket� This
condition can be checked by examining the bucket ids in�
volved�

Projection�based pruning for bucket ids� A C�bucket
�b�� � � � � bk��� of Candk���X�C� �except longest ones� is non�
empty only if some R�bucket �b�� � � � � bk��� b

�

i� is non�empty�
where b�i is for some attribute Ai not in X� Thus� we need
to generate C�bucket �b�� � � � � bk��� only if some R�bucket
�b�� � � � � bk��� b

�

i� is non�empty� Since we never keep empty
buckets� this condition can be checked e�ciently�

Intersection�based pruning bucket ids� A C�bucket
�b�� � � � � bk��� of Candk���X�C� �except longest ones� is non�
empty only if� for every attribute Ai not in X� some R�
bucket �b�� � � � � bk��� b�i� is non�empty� where each b�i is for
Ai� Thus� we need to generate C�bucket �b�� � � � � bk��� only
if this condition is satis�ed� Again� this can be checked e��
ciently�

We can represent the �matching� relationship between C�
buckets and T�buckets by the hypergraph Hk�� de�ned be�
low�

HypergraphHk��� A vertex corresponds to a T�bucket and a
hyperedge corresponds to a �non�empty� C�bucket ofCandk���
A hyperedge contains a vertex if and only if the correspond�
ing C�bucket matches the corresponding vertex� The terms
�vertex� and �T�bucket� are interchangeable� and so are
�hyperedge� and �C�bucket�� We keep Hk�� in memory
because it contains only bucket ids� not buckets themselves�

3.1 Computing the seed Rulem
Conceptually� a grouping operation on T by all non�class
attributes can �nd all the rules with the same left�hand�
side� For each group of size n� the con�dence of each rule
in the group is
�n� Since we have partitioned T into T�
buckets� we only need to perform the grouping operation on
each T�bucket� Thus� we read each T�bucket into memory�
one at a time� perform the in�memory group�by� and write
the con�dent m�rules as a R�bucket of Rulem�

3.2 Generating candidates Candk��
We generate the C�buckets of Candk�� from the R�buckets
of Rulek in two steps�

Step ��
�� for each bucket id �b�� � � � � bi��� bi� bi�� � � � � � bk� of Rulek do
�� add tuples � b�� � � � � bi��� bi��� � � � � bk � Ai � to Wk���

� � i � k� Ai being the attribute of bi �
�� group the tuples in Wk�� by the �rst k � � �elds�
	� prune all groups of size less than m� k � ��
Step ��

� for each group with the �rst k � � �elds b�� � � � � bk�� do
�� intersect the unions represented by the tuples in the group�
�� if the result is not empty then
�� add the result as bucket �b�� � � � � bk��� of Candk���

Figure �� Generating candidates in Candk��

Step �� This step prunes empty buckets of Candk�� based
on the intersection�based pruning for bucket ids discussed
earlier� Thus� no I�O is involved� For each �non�empty�
bucket id �b�� � � � � bi��� bi� bi��� � � � � bk� of Rulek� we create
k tuples � b�� � � � � bi��� bi��� � � � � bk �Ai ��
 	 i 	 k� where
Ai is the attribute of bi� Let Wk�� denote this set of tuples�
We group the tuples in Wk�� by the �rst k �
 �elds and
prune the groups of size less than m � k 	
� For each
surviving group �of size m�k	
� with the �rst k�
 �elds
b�� � � � � bi��� bi��� � � � � bk � we add �b�� � � � � bi��� bi�� � � � � � bk �
as a bucket id of Candk���

Step �� This step generates the actual bucket for each
bucket id of Candk�� determined in Step
� Assume that
a bucket id �b�� � � � � bk��� determined in Step
 comes from
the group�

� b�� � � � � bk���Ai� �� � � � �� b�� � � � � bk���Aim�k�� ��

Each � b�� � � � � bk���Aij � represents the union of all the R�
buckets �b�� � � � � bk���Aij ��� of Rulek� where Aij �� denotes
any hash value on Aij � The C�bucket �b�� � � � � bk��� is com�
puted by intersecting all these unions over the �rst k �

�elds� If the intersection result is not empty� we write it as
C�bucket �b�� � � � � bk��� onto disk�

The algorithm for generating Candk�� is given in Figure ��

3.3 Computing the confidence of candidates
To compute the con�dence for candidates in Candk��� we
read a block of several T�buckets at a time� subject to the
memory space allocated for holding T�buckets�� and for the
T�buckets currently in memory� we access all the matching
C�buckets� We make use of the match�based pruning for
bucket ids to determine which C�buckets are accessed� In
Hk��� these C�buckets correspond to the hyperedges that
contain one or more vertices corresponding to the T�buckets
in memory�

In details� we partition the memory into two bu�ers� M�

and M�� M� is used for reading several T�buckets� called
a T�block� M� is used for holding C�buckets that are read�
A larger M� reduces the repeated I�O access by keeping
more C�buckets in memory� but also reduces the sharing of
accessed C�buckets because fewer T�buckets can be read in

one T�block� A read C�bucket is kept in M� if there is free
space in M�� When a C�bucket is requested� a disk read is
performed only if the C�bucket is not in M�� A replacement
policy can be adopted for replacing C�buckets in M�� For
simplicity� we replace a C�bucket in M� only if it is no longer
needed� In our algorithm� this condition arises when the
hyperedge for the C�bucket becomes empty�

A C�bucket matches a T�block if it matches some T�bucket
in the T�block� For each T�block� we need to access all
matching C�buckets for updating the con�dence informa�
tion� Therefore� a C�bucket on disk will be read as many
times as the number of matching T�blocks� The key to re�
ducing the I�O cost is to group T�buckets into T�blocks in
such a way that the disk read of C�buckets is minimized�
�The disk read of T�buckets is always the same�� Let us
formalize this optimization problem�

Definition
�
� Given a set of T�buckets� a set of C�
buckets� and sizes M� and M�� an optimal blocking is a se�
quence � B�� � � � �Bt � of T�blocks such that size�Bi� 	M�

and the I�O cost of accessing C�buckets is minimized� where
size�Bi� denotes the total number of tuples in the T�buckets
contained in Bi� �

Finding an optimal blocking is feasible only for applications
of a trivial size� In practice� it su�ces to �nd an approximate
solution� but e�ciently� One approximation is to ignore the
ordering of T�blocks� thereby� simplifying the above problem
into the hypergraph partitioning of Hk��� �nd a partitioning
fB�� � � � �Btg of the set of vertices such that size�Bi� 	
M� and if E is the set of hyperedges that contain a vertex
from di�erent Bi�

P
e�E

disk�e� is minimized� where disk�e�
denotes the I�O cost for reading the C�bucket corresponding
to e� disk�e� � � if the C�bucket is M�� The hypergraph
partitioning minimizes the total size of the C�buckets that
are read more than once� To account for the number of
times that a C�bucket is read� we can replace

P
e�E

disk�e�
with

P
e�E times�e��disk�e�� where times�e� is the number

of Bi such that Bi � e
� �� However� even the hypergraph
partitioning is NP�hard� For a body of heuristic algorithms�
see ����

We are interested in simple heuristics for determining the
next T�block to read� We consider two such heuristics�

Heuristic I� The more T�buckets match a C�bucket� the

higher priority such T�buckets should be included in the next

T�block� The number of T�buckets that match the same C�
bucket is the maximum number of times that the C�bucket
will be read in the worst case� by reading the T�buckets
that maximize this number in the next T�block� we hope to
eliminate this worst case�

Heuristic II� The more C�buckets matches a T�bucket� the

higher priority this T�bucket should be included in the next

T�block� The rationale is to maximize the number of C�
buckets matched by a T�block� By maximizing this number�
we hope to eliminate the worst case that these C�buckets are
read repeatedly for di�erent T�blocks�

4. EXPERIMENTS

We have conducted experiments to evaluate the proposed
algorithm� We evaluated�
� the e�ectiveness of pruning
strategies� �� the e�ectiveness of partitioning scheme� block�
ing heuristics� bu�er allocation�
� the scalability of with
respect to the size and dimension of databases�

We compared our algorithm with Dense�Miner ���� To our
knowledge� Dense�Miner is the only algorithm that can be
used for �nding general con�dent rules without a support
requirement� ��� �� �nds only con�dent
�rules where the
left�hand�side contains a single value� whereas we �nd con��
dent k�rules for all size k� which are substantially more than
con�dent
�rules� As such� these two cases are not really
comparable� Our experiments were conducted on PIII ���
PC with �
�MB memory and Windows NT Server ����

4.1 The experimental setup
We selected the synthetic databases generated by the gener�
ator in �
�� This choice gives us the �exibility of controlling
the size and dimension of the database� The default at�
tributes of this database are shown in Table
 plus one class
attribute �not shown�� The �rst three columns were copied
from �
�� Attributes elevel� car and zipcode are categorical
and the other attributes are non�categorical� Each tuple
has a class value generated using one of the classi�cation
functions documented in the source code� We used the clas�
si�cation function that determines the class value of each
person using the intervals of three attributes� namely� age�
salary� and loan� In all experiments� except for the scala�
bility study� we set the number of tuples at
��K and the
number of classes at
�� We discretized non�categorical val�
ues using the equal�width interval partitioning and replaced
non�categorical values by their corresponding intervals� The
numbers of intervals for non�categorical attributes are shown
in the last column in Table
�

4.2 The effect of pruning strategies
We compare several search spaces de�ned below� �Proj	Inter�
refers the number of candidates generated by applying both
the projection�based pruning and the intersection�based prun�
ing� �Proj� refers the number of candidates generated by
applying only the projection�based pruning� �Dense�Miner�
refers to the number of candidates generated by Dense�
Miner� �Con�dent rules� refers to the number of con��
dent rules� The di�erence between �Proj	Inter� and �Proj�
represents the e�ectiveness of the intersection�based prun�
ing� The di�erence between �Proj	Inter� or �Proj� and
�Dense�Miner� represents the e�ectiveness of our pruning
strategies compared to Dense�Miner� The di�erence be�
tween �Proj	Inter� or �Proj� and �Con�dent rules� rep�
resents the tightness of our pruning strategies� We do not
have �Inter� because the intersection�based pruning must
use the projection�based pruning�

Figure
�a� shows the search space vs various minimum con�
�dence� and Figure
�b� shows the search space for each it�
eration at minimum con�dence of ���� The iteration No�
is named by the size of rules� Thus� our algorithm proceeds
from iteration No� � to iteration No�
� whereas Dense�
Miner proceeds in the opposite direction� For Dense�Miner�
we have to stop the algorithm after � hours running� which
only reached iteration No� �� This explains why the curve

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

50 60 70 80 90 100N
um

be
r o

f c
an

di
da

te
s/

co
nf

id
en

t r
ul

es

Minimum confidence (%)

Confident rules
Proj+Inter

Proj

�a�

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

123456789N
um

be
r o

f c
an

di
da

te
s/

co
nf

id
en

t r
ul

es
Iteration No.

Confident rules
Proj+Inter

Proj
Dense Miner

�b�

Figure �� The e�ect of pruning strategies

�Dense�Miner� is not shown in Figure
�a�� There are sev�
eral �ndings from this experiment�

First� the iteration�by�iteration comparison in Figure
�b�
shows that Dense�Miner generated far more candidates than
�Proj	Inter�� For example� at minimum con�dence of ����
Dense�Miner runs out of memory after
� minutes when it
just started iteration No� �� From Figure
�b�� most con�
�dent rules have a large size and are generated between it�
eration No� � to �� In such cases� Dense Miner will have
to examine all the shorter rules� con�dent or not� that have
con�dent specializations� In contrast� our algorithm exam�
ines only con�dent rules for generating candidates� Thus�
the downward candidate generation based on the universal�
existential upward closure of con�dence is indeed an e�ective
strategy�

Second� the big di�erence between �Proj� and �Proj	Inter�
shows that the intersection pruning is highly e�ective� With�
out the intersection pruning� the number of candidates gen�
erated is close to that of Dense�Miner �for iteration No
 to
��� In early iterations� say � to �� there are more possible
rules but fewer projections participating in the intersection
pruning� This explains the quick increase in the number
of candidates in early iterations� In fact� the intersection
pruning takes e�ect only after the �rst � iterations� at it�
eration No� �� no candidate is pruned by the intersection
pruning because there is no Ai�specialization� at iteration
No� �� no candidate is pruned by the intersection pruning
because only one projection participates in the intersection�
For these iterations� only the projection pruning is in e�ect�
thus� �Proj� and �Proj	Inter� coincide� However� after the
�rst two iterations� the intersection pruning takes a strong

Attribute Description Domain Number of
attribute values

salary salary uniformly distributed from ������ to �
����� �
commission commission salary � �
���� �� commission � � else �

uniformly distributed from ������ to �
����
age age uniformly distributed from �� to �� 	
elevel education level uniformly chosen from � to 	

car make of the car uniformly chosen from � to �� ��
zipcode zip code of the town uniformly chosed from � available zipcodes �
hvalue value of the house uniformly distributed from ��
k�������

to ��
k�������� where k � f� � � ��g
depends on zipcode

hyears years house owned uniformly distributed from � to �� �
loan total loan amount uniformly distributed from � to
������ �

Table �� Description of attributes	

e�ect by pruning a large portion of candidates�

Third� the comparison of �Proj	Inter� and �Con�dent rules�
shows that the ratio of the number of candidates generated
over the number of con�dent rules is about
��� In other
words� � out of every
 candidates generated are actually
con�dent rules This shows that our search space is indeed
rather tight� thanks to the e�ective pruning strategies�

In the following� we study the e�ciency of our algorithm
in terms of the I�O cost and the execution time� and the
scalability of the algorithm for large databases� The I�O
cost refers to the number of candidates accessed from disk�

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

5.5e+06

6e+06

6.5e+06

7e+06

0.1 0.3 0.7 1

I/O
 c

os
ts

Size of M1 (Mega bytes)

Random
Heuristic I

Heuristic II

�a�

1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800

0.1 0.3 0.7 1

E
xe

cu
tio

n
tim

e
(s

ec
)

Size of M1 (Mega bytes)

Random
Heuristic I
Heuristic II

�b�

Figure
� The e�ect of bu�er allocation

4.3 The effect of buffer allocation

We study how the bu�er allocation of M� and M�� for a �xed
memory size� a�ects the algorithm� Recall that M� holds one
T�block and M� holds some C�buckets during computing the
con�dence of candidates� and both hold some R�buckets dur�
ing generating candidates� In this experiment� the memory
size is �xed at
MB� and the size of M� is varied from the
maximum size of T�buckets� which is �����MB� to
MB� the
rest is used for M�� The minimum con�dence is set at ���
and the number of partitions at
�� �see Table � for the de�
tail of partitioning�� The size of the database is
��K tuples�
which takes up ���MB� The space required by C�buckets in
a single iteration can be as large as �
MB� Larger databases
will be considered in the study of scalability shortly� Figure
��a��b� shows the I�O cost and the execution time� �Ran�
dom� refers to no use of blocking heuristic� and �Heuristic I�
and �Heuristic II� refer to the blocking heuristics discussed
in Section
�

First� Figure ��a� shows that� as the size of M� increases�
the I�O cost of accessing the candidates decreases� With a
larger M�� more T�buckets can be read in one T�block and
so more I�O access to C�buckets can be shared by such T�
buckets� Put di�erently� a larger M� leaves more room to the
blocking heuristic to minimize the I�O access to C�blocks�
In addition� a larger M� means fewer T�blocks� therefore�
fewer scans of candidates in general� On the other hand� a
larger M� also means a smaller M�� thereby� more C�buckets
on disk� Overall� however� the I�O cost is reduced by hav�
ing a larger M�� In fact� with the total size of C�buckets
being much larger than the memory size �i�e�� �
���MB in
the maximum case�� the impact of bu�ering C�buckets to
reduce the I�O cost is very limited� In such a case� reducing
the number of scans of C�buckets by allocating more space
to M� outweighs the bene�t of bu�ering C�buckets�

4.4 The effect of blocking heuristics
Figure ��a��b� also shows the e�ectiveness of Heuristics I
and II in terms of reducing the I�O cost and execution
time� �Random� means that the a T�block is randomly de�
termined without using any heuristic and that the average
of � random selections is used� The experiments show that
both heuristics are highly e�ective in reducing the I�O and
execution time� compared to the random blocking� For a
small M�� each T�block contains fewer T�buckets� thus� the
sharing of C�buckets among the T�buckets in memory is lim�
ited� As the size of M� increases� both heuristics have more

Total � of buckets � of buckets per attribute
car zipcode commission

� � � �
�� �� � �

� ��
 �
��� ��
 �
��� �� 	 �
�
� ��
 �
��� ��
 	

Table �� The partitioning of attributes

5e+06

5.2e+06

5.4e+06

5.6e+06

5.8e+06

6e+06

6.2e+06

6.4e+06

6.6e+06

6.8e+06

200 150 120100 50 10 1

I/O
 c

os
t

Number of partitions
�a�

2300

2400

2500

2600

2700

2800

2900

3000

3100

3200

200 150 120 100 50 10 1

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of partitions
�b�

Figure �� The e�ect of partitioning

room to decide what T�buckets should be read as a T�block
for sharing the I�O access of C�buckets� For example� as
M� varies from �����MB to ��
MB� the average number of
T�buckets in a T�block increases from
�� to
� for Heuristic
I� This e�ect� however� decreases as the size of M� gets close
to the maximum size� i�e��
MB� This is because� for very
large T�blocks� the likelihood of sharing the same C�buckets
is also decreased�

4.5 The effect of partitioning
In this experiment� we study how the hash�partitioning af�
fects the algorithm� We use the minimum con�dence of ����
the memory size of
MB�
�� of which is allocated to M��
and Heuristic I� The hash function is attr val mod !bucket�
The three attributes with the most number of values are
hashed� see Table � for the detail� Figure ��a��b� shows the
I�O cost and execution time for the di�erent partitionings�
Both the I�O cost and execution time have a �V� shape
as the number of buckets is varied from ��� to
�� For

under�partitioning� i�e�� a small number of buckets� reading
a bucket involves more I�O� If there is no partitioning� for
example� the whole candidate set Candk�� has to been read
for each T�block� It is less obvious why over�partitioning
also increases the I�O and execution time� We observed
that� when the database is over�partitioned� some �related
T�buckets� tend to be read in di�erent T�blocks� which in
turn increases the cost of reading candidates� For exam�
ple� suppose that only commission� not zipcode� is impor�
tant for high con�dence� It is possible that two T�buckets
�commission�c�zipcode�z
� and �commission�c�zipcode�z���
which agree on commission but disagree on zipcode� are read
in two di�erent T�blocks� If this happens� the C�bucket
�commission�c� will be read once for each of these T�buckets�
If we do not hash on zipcode� these T�buckets become one
T�bucket and the above C�bucket will be read only once�

0

1000

2000

3000

4000

5000

6000

7000

8000

1000500250100

E
xe

cu
tio

n
tim

e
(s

ec
)

Size of database (K)

Total
Generating candidates

Counting candidates

�a�

500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

4.5e+06
5e+06

5.5e+06

1000500250100N
um

be
r o

f c
an

di
da

te
s/

co
nf

id
en

t r
ul

es

Size of database (K)

Confident rules
Proj+Inter

�b�

Figure �� The scalability with the database size

4.6 The scalability
We set the minimum con�dence at ���� the memory size at

�MB� and M� at
�� of the memory� Figure ��a��b� shows
the scalability with respect to the database size� which is var�
ied from
�K to
���K� As the database size increases� the
execution time of the algorithm linearly increases� Figure
��a��b� shows the scalability with respect to the database
dimensionality� with the database size �xed at
��K� We
varied the number of dimensions from � to
�� The database
of � dimensions is generated by removing the two attributes
that have the smallest number of values� i�e�� hyears and
loan� The database of � dimensions is generated by remov�
ing the next two attributes that have the smallest number of
values among the remaining attributes� i�e�� age and salary�
The database of
� dimensions is generated by adding two
attributes with uniformly distributed values chosen from �
to
������ and discretizing them into two intervals� Each

0

2000

4000

6000

8000

10000

12000

14000

6 8 10 12

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of attributes

Total
Generating candidates

Counting candidates

�a�

0
2e+06
4e+06
6e+06
8e+06
1e+07

1.2e+07
1.4e+07
1.6e+07
1.8e+07

2e+07

6 8 10 12N
um

be
r o

f c
an

di
da

te
s/

co
nf

id
en

t r
ul

es

Number of attributes

Confident rules
Proj+Inter

�b�

Figure
� The scalability with the database dimen�
sionality

database is partitioned on attributes car� zipcode� commis�
sion� with the number of buckets being
�� �� �� respec�
tively� The experiment shows that� as the dimension in�
creases� there is a quick growth in both the number of can�
didates�con�dent rules and the execution time� The time
for generating candidates dominates the growth�

5. RELATED WORK
Most work on mining association rules makes use of the
support requirement to prune rules of small support ���
��
The problem of mining association rules without support
requirement was recently considered in ��� �� and ���� ��� ��
considered tuples of ��
 binary values and a very low
�to�
� ratio� e�g��
� or less �similar to a transaction in ���
���
More importantly� ��� �� restricts rules to the form a � b
where a and b are single values� In contrast� we considered
attributes of arbitrary domains and rules of multiple values
on the left�hand side� �We observed that most con�dent
rules do contain more than one value on the left�hand side��
The explosion of the number of such rules presents a new
challenge and demands a new method to deal with� In fact� if
the counting method in ��� �� is used� counters must be main�
tained for combinations of any number of columns� which is
prohibitively large� We dealt with this problem by exploring
a con�dence�based level�wise pruning� The con�dence�based
pruning was proposed in ���� However� ��� did not address
the issue that memory may not hold the candidates�rules
required to perform the pruning� In fact� the main topic of
��� is building classi�ers using con�dent rules �without sup�
port requirement�� not �nding such rules for large databases�
Experiments show that a straightforward disk�based imple�
mentation results in excessive I�O�

Dense Miner ��� applies all of minimum support� minimum
con�dence� and minimum improvement to constraint the
search space� Our experiments show that without a mini�
mum support� Dense Miner generates too many candidates�
Also� the e�ectiveness of Dense Miner critically depends on
the tightness of the estimated bound� which in turn depends
on whether items can be ordered so that unpromising rules
are forced into the same portion of the enumeration tree�

6. CONCLUSION
Mining con�dent rules without support requirement was
previously identi�ed as an important problem� With only
the con�dence requirement available� the widely used support�
based pruning strategy does not apply� We exploit a certain
monotonicity of con�dence� called the universal�existential

upward closure� so that only con�dent rules of larger size
need to be examined for generating con�dent rules of smaller
size� This property yields a level�wise candidate generation
with a con�dence�based pruning� The main topic of this
paper is to implement this pruning strategy in a disk�based
environment� We addressed several performance related is�
sues� namely� data partitioning and data blocking� Experi�
ments show that the new pruning method often yields a very
tight search space� in the sense that out of every three candi�
dates generated� two are actually con�dent� This translates
into a superior performance compared to existing methods�

7. REFERENCES
�
� R� Agrawal� S� Ghosh� T� Imielinski� B� Iyer� and

A� Swami� An interval classi�er for database mining
applications� In VLDB� pages ���"��
� Sept
����

��� R� Agrawal� T� Imielinski� and A� Swami� Mining
association rules between sets of items in large
datasets� In SIGMOD� pages ���"�
�� May
��
�

�
� R� Agrawal and R� Srikant� Fast algorithm for mining
association rules� In VLDB� pages ���"���� Sept
����

��� R� Bayardo� R� Agrawal� and D� Gunopulos�
Constraint�based rule mining in large� dense databases�
In ICDE� pages
��"
��� Feb
����

��� E� Cohen� M� Datar� S� Fujiwara� A� Gionis� P� Indyk�
R� Motwani� J� Ullman� and C� Yang� Finding
interesting associations without support pruning� In
ICDE� pages ���"���� Feb �����

��� S� Fujiwara� J� D� Ullman� and R� Motwani� Dynamic
miss�counting algorithms� �nding implication and
similarity rules with con�dence pruning� In ICDE� Feb
�����

��� G� Karypis� R� Aggarwal� V� Kumar� and S� Shekhar�
Multilevel hypergraph partitioning� applications in vlsi
domain� In The ��th Design Automation Conference�

����

��� K� Wang� S� Zhou� and Y� He� Growing decision trees
on support�less association rules� In KDD� pages
���"���� August �����

��� K� Wang� S� Zhou� and S� Liew� Building hierarchical
classi�ers using class proximity� In VLDB� pages

�
"
��� Sept
����

