Mining Confident Rules Without Support Requirement ~

Ke Wang
Simon Fraser University

wangk@cs.sfu.ca

ABSTRACT

An open problem is to find all rules that satisfy a minimum
confidence but not necessarily a minimum support. Without
the support requirement, the classic support-based pruning
strategy is inapplicable. The problem demands a confidence-
based pruning strategy. In particular, the following mono-
tonicity of confidence, called the universal-existential up-
ward closure, holds: if a rule of size k is confident (for the
given minimum confidence), for every other attribute not in
the rule, some specialization of size k + 1 using the attribute
must be confident. Like the support-based pruning, the bot-
tleneck is at the memory that often is too small to store the
candidates required for search. We implement this strategy
on disk and study its performance.

1. INTRODUCTION

The problem of mining association rules [2, 3] is to find all
rules X — Y between itemsets X and Y, from a given collec-
tion of transactions, that have the user-specified minimum
support and minimum confidence. A high support ensures
the statistical significance and a high confidence ensures the
predictability. The classic support-based pruning strategy,
such as Apriori [2, 3], is to push the support requirement into
the search by exploiting the downward closure property: if
an itemset {71,...,ix} is frequent, i.e., above the minimum
support, so i1s every subset of size k — 1. Thus, an itemset
{i1,...,1ix} needs to be examined only if all its subsets of
size k — 1 are frequent. The confidence requirement is en-
tirely ignored until frequent itemsets are screened for rules
of high confidence.

The above approach suffers from an unnecessary bottleneck
if there are many frequent itemsets but a few confident rules,
which occurs when the minimum support is low and the
minimum confidence is high, an interesting case pointed out

* .

Research was supported in part by research grants from
the Natural Science and Engineering Research Council of
Canada

Yu He
Hewlett-Packard Singapore

yu_he@hp.com

David W. Cheung

Francis Y. L. Chin
University of Hong Kong

dcheung,chin@csis.hku.hk

recently [5, 6]. In fact, with a high minimum support, dis-
covered rules often are obvious and well known, and rules
of low support but high confidence, which usually provides
new insights, are not discovered. For example, a recom-
mendation rule is expected to have high confidence for a
high hit rate, but each rule applies to a small number of
customers because of their non-uniform tastes. The doc-
ument classification provides another example for confident
rules with low support [9] where most topics have alternative
characteristics, each of which applies to a small number of
documents. Our experience is that very few datasets have a
“clean” structure that is captured by a small number of rules
of high support. Much often, the structure is less clean and
is described by many rules, each of which captures a small
portion of the structure.

With low or no minimum support, the classic support-based
pruning strategy becomes inapplicable. What is needed is a
confidence-based pruning strategy by pushing the confidence
requirement into the search. This change, from support-
based pruning to confidence-based pruning, tends out to
be drastic. Unlike support, confidence does not have the
downward closure property: shorter rules Age > 35 —
Salary = High and Gender = M — Salary = High
could have lower confidence than longer rule Age > 35 A
Gender = M — Salary = High. The confidence does
not have the upward closure property either: longer rule
Age > 35 NGender = M — Salary = Low could have lower
confidence than shorter rules Age > 35 — Salary = Low
and Gender = M — Salary = Low.

Recently, [8] pointed out the following pruning property of
confidence: if a rule of size k, A;; =ai;, A ANA; =a;, —
C = ¢, is confident (for the given minimum confidence),
some specialization of size k + 1, A;, = a;;, A...AA;, =
a, N A,'k_'_1 = Qipyy C' = ¢, must be confident. There-
fore, to generate candidate confident rules of size k, we only
need to examine confident rules of size k + 1. For a large
database, the bottleneck of this approach is at the memory
that is often too small to hold all candidates/rules. Indeed,
it is not uncommon that candidates/rules take more space
than the input database. Thus, an unsolved problem is to
minimize the 1/O cost where rules/candidates are kept on
disk. A major challenge is that candidates/rules often are
not clustered on disk in the way they are requested. In this
paper, we present a clustering scheme and an access method
to solve this problem. Our goal is to minimize the dominat-
ing 1/O cost as in a typical database environment.

The rest of the paper is organized as follows. In Section 2, we
present an overview of our approach, which covers the prob-
lem studied, the confidence-based pruning strategy, and a
conceptual algorithm. In Section 3, we present a disk-based
implementation. In Section 4, we evaluate the implemen-
tation. In Section 5, we review related work. We conclude
this paper in Section 6.

2. THE CONFIDENCE-BASED PRUNING

We assume that the database is a relational table T' over
m non-class attributes A1, ..., An and one class attribute
C. All attributes are categorical. A tuple in T has the
form < ai,...,am,c >, where a; are values of A;, and ¢
is a value of C, called a class. A rule, or a k-rule, has the
form A;;, = ai;, Ao AN A, = a;, - C = ¢, with each
attribute occurring at most once. By assuming that each
value a; 1s prefixed with its attribute A;, we can simply write
arule as ai,,...,a;, — c without mentioning attributes. »
often denotes one or more values. A tuple ¢ and a rule
x — ¢ match if t contains all the values in . A rule of the
form x,a; — c is called a A;-specialization of rule x — ¢
if a; is a value of A;. |T| denotes the number of tuples
in T, and num(z) denotes the number of tuples in T that
contain all the values in &. The support of rule x — «,
denoted sup(z — c¢), is num(z,c)/|T|. The confidence of
rule £ — ¢, denoted conf(z — ¢), is num(z, c)/num(z).
Given a minimum confidence minconf, a rule is confidentif
conf(x — ¢) > minconf.

DEFINITION 2.1
lem of meining confident rulesis to find all confident rules for
a given minimum confidence. O

Importantly, we drop the usual minimum support require-
ment adopted in most association rule mining algorithms.
Thus, the support-based pruning, such as [2, 3], is not ap-
plicable to the confident rule mining problem. [8] observed
a confidence-based pruning strategy that pushes the confi-
dence requirement into the search of rules. The following
rules illustrate the idea:

rl: Age.young — Buy.yes
r2: Age.young, Gender.M — Buy.yes
r3: Age.young, Gender.F' — Buy.yes.

r2 and r3 are two specializations of rl, by having the ad-
ditional conditions Gender.M and Gender.F'. These con-
ditions are exclusive and exhaustive in the sense that ex-
actly one will hold for each tuple. Therefore, if one condi-
tion has a negative impact on confidence, the other must
have a positive impact, and vice versa. Put differently, one
of r2 and r3 must have as much confidence as the origi-
nal rule rl, or equivalently, we can prune rl if none of
r2 and r3 is confident for the given minimum confidence.
The same argument applies to attribute Fducation with
two values high and low: if rl is confident, at least one
of Age.young, Fducation.high — Buy.yes and Age.young,
Fducation.low — Buy.yes must be confident. This obser-
vation was stated as the following upward closure property.

(MINING CONFIDENT RULES). The prob-

THEOREM 2.1. For every attribute A; not occurring in a
rule © — ¢, (i) some Aj;-specialization of x — ¢ has at least
the confidence of + — ¢, (ii) if + — ¢ is confident, so is
some A;-specialization of ¥ — ¢. This property is called the
universal-existential upward closure.

The universal-existential upward closure suggests the follow-
ing level-wise generation of confident rules.

The level-wise candidate generation: Assume that all
confident k-rules are generated, starting with & = m, the
number of non-class attributes. We generate a candidate
(k—1)-rule z — c only if for every attribute A; not occurring
in x = ¢, some A;-specialization of & — ¢ is confident. In
other words, a (k — 1)-rule is pruned if for some attribute
A;, no A;-specialization of the rule (of size k) was found
confident.

We can implement this generation in relational algebra sup-
ported by any database system as follows. Let Ruley and
Candy be the set of confident k-rules and candidate k-rules.
Let Ruler(X,C) and Candi(X,C) be the set of rules in
Ruley, and the set of rules in Cand; with attributes X on
the left-hand-side. We represent rules a;,,... ,a;, — ¢ by
tuples < a;,,...,a:,,c > on attributes A;,,..., A, ,C, and
Ruler (X, C) and Candy (X, C) by relational tables over at-
tributes X, C. With this notation, Theorem 2.1(ii) gives the
following relational computation of Cand.

COROLLARY 2.1. Let Candir_1(X,C) = Na,nx,cRuley
(X, A;, 0), where 7x ¢ denotes the projection onto the at-
tributes X and C, and A; ranges over all non-class attributes

not in X. Then Candi(X,C) D Rulex(X,C). O

Corollary 2.1 identifies two kinds of candidate pruning.

Projection-based pruning. Every candidate of size k — 1
(except longest ones) must come from some confident A;-
specialization, i.e., a projection of a confident k-rule.

Intersection-based pruning. Every candidate of size k —
1 (except longest ones) must come from a confident A;-
specialization for every attribute A; not yet in the candi-
date. There are m — k 4+ 1 such attributes A; for a candidate
of size k — 1, so each candidate of size k — 1 comes from
intersecting the projection of m — k + 1 confident (k + 1)-
rules. Note that this pruning assumes the projection-based
pruning.

Figure 1 gives an overview of the level-wise generation. The
search starts with the seed Rule,, containing all tuples in
T that represent confident rules (line 2). In iteration k,
starting with k = m, we generate Candi_; based on Corol-
lary 2.1 (line 4), compute the confidence of candidates in
Candy_; in one pass of T (line 5), and collect confident
(k — 1)-rules (line 6). To compute the confidence of candi-
dates, we need to scan the tuples in T, and for each tuple
t, we update num(z) and num(z,c) for all matching can-
didates * — ¢ in Candi—,: if t contains class ¢, we incre-
ment both num(z) and num(z, ¢); otherwise, we increment
num(z). At the end of the scan, the confidence of x+ — ¢ is
num(z, ¢)/num(z).

Input: table T over Ay,...,Am,C and minconf;
Output: all confident rules;

Method:

1 k=m;

2 Ruley, = all confident m-rules;

3 while k£ > 1 and Ruley is not empty do

4 generate Candy_; from Ruley (based on Corollary 2.1);
5 compute the confidence of candidates in one pass of T';
6 Rulep_1 =all confident candidates in Candg_1;

7T k——;

8 return all Ruley;

Figure 1: The overview of mining confident rules

This algorithm works fine if T', Ruley, Candi_, all fit in

memory. However, we frequently observed that rules/candidates

generated are many times larger than the input database,
in which case this assumption no longer holds. In the rest
of the paper, we consider a disk-based implementation of the
confidence-based pruning strategy, where T', Ruley, Candyi_;
are stored on disk. Our goal is to minimize the 1/O cost,
i.e., the number of disk pages accessed. The major chal-
lenge is that these data structures are not clustered in the
way they are requested, and a straightforward implementa-
tion yields excessive 1/O. Without a careful clustering and
access method, the extra I/O generated for performing the
confidence-based pruning can wipe out the benefit of the
pruning. In the next section, we propose a clustering scheme
and an access method with the goal of minimizing the 1/0O
cost.

3. THE DISK-BASED IMPLEMENTATION

In this section, we implement the algorithm in Figure 1 as-
suming that T', Candi_1, and Rule;, are stored on disk. Our
goal 1s to minimize the disk access. We focus on Step 2, 4
and 5. Let us first analyze some common requirements of
these steps. In Step 2, we need to search for all tuples that
agree on all non-class attribute values. In Step 4, we need
to search for the rules in Ruley that agree on k—1 non-class
values and disagree on the remaining non-class attribute. In
Step 5, we need to search for the candidates that match a
given tuple in 7. A common operation of all is to retrieve
tuples or rules by non-class values. Since tuples and rules are
not clustered on disk for such retrievals, a straightforward
implementation will result in excessive repeated disk access.
We like to cluster tuples and rules on disk so that those that
are “likely to share similar values” are retrieved together.
Two tuples or rules are likely to share values if they belong
to the same bucket determined by a hash-partitioning on
those values. Let us consider such a partitioning scheme.

Consider a hash function h; for attribute A; with the range
[0..¢;]. ¢ = O if no partitioning is chosen for A;. h; hashes
the tuples in the database T into (g1 + 1) x ... X (gm + 1)
buckets, called T-buckets. A T-bucket denoted by bucket
id [b1,...,bm] contains all the tuples < a1,...,am,c > in
T such that hi(a;) = b; for 1 < ¢ < m. Similarly, the
same hash functions partition the candidates in Candy_;
and rules in Ruley into C-buckets and R-buckets. Note that
hash values for different attributes should not be mixed up.
This can be enforced by representing each hash value b; as

A;.b;, where A; is the attribute for b;. We assume that there
is a mapping from bucket ids to disk addresses of buckets.
We say that a C-bucket [bj,,...,b;,] matches a T-bucket
[b1,... ,bm]if {b;,,... bl } is a subset of {b1,... ,bm}.

The major advantage of hash-partitioning is that certain
prunings can be performed at the bucket id level before ac-
cessing actual tuples and candidates, and only when this fails
are tuples and candidate accessed. These prunings come
from the properties of hash-partitioning, projection-based
pruning, intersection-based pruning discussed in Section 2.
Let us consider such prunings.

Match-based pruning for bucket ids. A candidate in
a C-bucket of Candy—; matches a tuple in a T-bucket only
if the C-bucket matches the T-bucket. Thus, a T-bucket
is relevant to computing the confidence for candidates in a
C-bucket only if the C-bucket matches the T-bucket. This
condition can be checked by examining the bucket ids in-
volved.

Projection-based pruning for bucket ids. A C-bucket
[b1, ... ,bk—1] of Candi_1(X, C) (except longest ones) is non-
empty only if some R-bucket [b1, ... ,by_1,b}] is non-empty,
where b} is for some attribute A; not in X. Thus, we need
to generate C-bucket [b1,...,brx—_1] only if some R-bucket
[b1,...,bk—1,b!] is non-empty. Since we never keep empty
buckets, this condition can be checked efficiently.

Intersection-based pruning bucket ids. A C-bucket
[b1, ... ,bk—1] of Candi_1(X, C) (except longest ones) is non-
empty only if, for every attribute A; not in X, some R-
bucket [b1,...,br_1,b!] is non-empty, where each b} is for
A;. Thus, we need to generate C-bucket [b1,... ,bg_1] only
if this condition is satisfied. Again, this can be checked effi-
ciently.

We can represent the “matching” relationship between C-
buckets and T-buckets by the hypergraph Hi_1 defined be-

low.

Hypergraph Hi—1: A vertex corresponds to a T-bucket and a
hyperedge corresponds to a (non-empty) C-bucket of Candy—
A hyperedge contains a vertex if and only if the correspond-
ing C-bucket matches the corresponding vertex. The terms
“vertex” and “T-bucket” are interchangeable, and so are
“hyperedge” and “C-bucket”. We keep Hi_i1 in memory
because it contains only bucket ids, not buckets themselves.

3.1 Computingtheseed Rule,,

Conceptually, a grouping operation on 7' by all non-class
attributes can find all the rules with the same left-hand-
side. For each group of size n, the confidence of each rule
in the group is 1/n. Since we have partitioned T into T-
buckets, we only need to perform the grouping operation on
each T-bucket. Thus, we read each T-bucket into memory,
one at a time, perform the in-memory group-by, and write
the confident m-rules as a R-bucket of Rule,,.

3.2 Generating candidates Candy_:
We generate the C-buckets of Clandi_; from the R-buckets
of Ruler in two steps.

1.

Step 1:
1. for each bucket id [b1,... ,b;—1,bi,bi41,... ,bg] of Ruley do
2. add tuples < by,... ,b,‘_l,b,‘+1,.. b, A > to Wi _q,
1 < <k, A; being the attribute of b;;
3. group the tuples in Wi _; by the first £ — 1 fields;
4. prune all groups of size less than m — k 4+ 1;
Step 2:
5. for each group with the first £ — 1 fields b1,... ,bx_; do
6. intersect the unions represented by the tuples in the group;
7. if the result is not empty then
8. add the result as bucket [b1,... ,b5_1] of Candg_1;

Figure 2: Generating candidates in Candy_;

Step 1. This step prunes empty buckets of Candi_1 based
on the intersection-based pruning for bucket ids discussed
earlier. Thus, no I/O is involved. For each (non-empty)
bucket id [b1,... ,bi—1,bi,bix1,... ,bx] of Ruler, we create
k tuples <bi,... ,bi—1,biy1,... b, A;i >, 1 <1 <k, where
A; is the attribute of b;. Let Wi_1 denote this set of tuples.
We group the tuples in Wi_; by the first & — 1 fields and
prune the groups of size less than m — k + 1. For each
surviving group (of size m — k 4 1) with the first £ — 1 fields
bl,... ,b,‘_l,b,‘+1,... ,bk, we add [bl,... ,b,‘_l,b,‘+1,... ,bk]
as a bucket id of Candy_1.

Step 2. This step generates the actual bucket for each
bucket id of Candy_1 determined in Step 1. Assume that
a bucket id [b1,... ,bx—1] determined in Step 1 comes from
the group:

<biyoobpon, Ay >, < by b Ay >

Each < by,... ,bg_1, A,'j > represents the union of all the R-
buckets [b1, ... ,bk_l,A,'j.*] of Ruley, where A;,.* denotes
any hash value on A;,. The C-bucket [b1,...,bk_1] is com-
puted by intersecting all these unions over the first k — 1
fields. If the intersection result is not empty, we write it as

C-bucket [b1, ... ,br—1] onto disk.

The algorithm for generating Candi_; is given in Figure 2.

3.3 Computing the confidence of candidates
To compute the confidence for candidates in Candi_1, we
read a block of several T-buckets at a time, subject to the
memory space allocated for holding T-buckets), and for the
T-buckets currently in memory, we access all the matching
C-buckets. We make use of the match-based pruning for
bucket ids to determine which C-buckets are accessed. In
Hi_1, these C-buckets correspond to the hyperedges that
contain one or more vertices corresponding to the T-buckets
in memory.

In details, we partition the memory into two buffers, M;
and M>. M, is used for reading several T-buckets, called
a T-block. M, is used for holding C-buckets that are read.
A larger M> reduces the repeated 1/O access by keeping
more C-buckets in memory, but also reduces the sharing of
accessed C-buckets because fewer T-buckets can be read in

one T-block. A read C-bucket is kept in M if there is free
space in M>. When a C-bucket is requested, a disk read is
performed only if the C-bucket is not in M>. A replacement
policy can be adopted for replacing C-buckets in M>. For
simplicity, we replace a C-bucket in M> only if it is no longer
needed. In our algorithm, this condition arises when the
hyperedge for the C-bucket becomes empty.

A C-bucket matches a T-block if it matches some T-bucket
in the T-block. For each T-block, we need to access all
matching C-buckets for updating the confidence informa-
tion. Therefore, a C-bucket on disk will be read as many
times as the number of matching T-blocks. The key to re-
ducing the 1/O cost is to group T-buckets into T-blocks in
such a way that the disk read of C-buckets is minimized.
(The disk read of T-buckets is always the same.) Let us
formalize this optimization problem.

DeFINITION 3.1. Given a set of T-buckets, a set of C-
buckets, and sizes M; and Mz, an optimal blockingis a se-
quence < By, ..., By > of T-blocks such that size(B;) < M,
and the 1/O cost of accessing C-buckets is minimized, where
size(B,') denotes the total number of tuples in the T-buckets
contained in B;. O

Finding an optimal blocking is feasible only for applications
of a trivial size. In practice, it suffices to find an approximate
solution, but efficiently. One approximation is to ignore the
ordering of T-blocks, thereby, simplifying the above problem
into the hypergraph partitioningof Hi_1: find a partitioning
{Bi1,...,B:} of the set of vertices such that size(B;) <
M and if F is the set of hyperedges that contain a vertex
from different B, >, 5 disk(e) is minimized, where disk(e)
denotes the 1/O cost for reading the C-bucket corresponding
to e. disk(e) = 0 if the C-bucket is M. The hypergraph
partitioning minimizes the total size of the C-buckets that
are read more than once. To account for the number of
times that a C-bucket is read, we can replace . disk(e)
with 37 _ 5 times(e) xdisk(e), where times(e) is the number
of B; such that B; Ne # 0. However, even the hypergraph
partitioning is NP-hard. For a body of heuristic algorithms,
see [7].

We are interested in simple heuristics for determining the
next T-block to read. We consider two such heuristics.

Heuristic I: The more T-buckets match a C-bucket, the
higher priority such T-buckets should be included in the next
T-block. The number of T-buckets that match the same C-
bucket is the maximum number of times that the C-bucket
will be read in the worst case; by reading the T-buckets
that maximize this number in the next T-block, we hope to
eliminate this worst case.

Heuristic II. The more C-buckets matches a T-bucket, the
higher priority this T-bucket should be included in the next
T-block. The rationale is to maximize the number of C-
buckets matched by a T-block. By maximizing this number,
we hope to eliminate the worst case that these C-buckets are
read repeatedly for different T-blocks.

4. EXPERIMENTS

We have conducted experiments to evaluate the proposed
algorithm. We evaluated: 1) the effectiveness of pruning
strategies; 2) the effectiveness of partitioning scheme, block-
ing heuristics, buffer allocation; 3) the scalability of with
respect to the size and dimension of databases.

We compared our algorithm with Dense-Miner [4]. To our
knowledge, Dense-Miner is the only algorithm that can be
used for finding general confident rules without a support
requirement. [5, 6] finds only confident 1-rules where the
left-hand-side contains a single value, whereas we find confi-
dent k-rules for all size k, which are substantially more than
confident 1-rules. As such, these two cases are not really
comparable. Our experiments were conducted on PIIT 500
PC with 512MB memory and Windows NT Server 4.0.

4.1 Theexperimental setup

We selected the synthetic databases generated by the gener-
ator in [1]. This choice gives us the flexibility of controlling
the size and dimension of the database. The default at-
tributes of this database are shown in Table 1 plus one class
attribute (not shown). The first three columns were copied
from [1]. Attributes elevel, car and zipcode are categorical
and the other attributes are non-categorical. Each tuple
has a class value generated using one of the classification
functions documented in the source code. We used the clas-
sification function that determines the class value of each
person using the intervals of three attributes, namely, age,
salary, and loan. In all experiments, except for the scala-
bility study, we set the number of tuples at 100K and the
number of classes at 10. We discretized non-categorical val-
ues using the equal-width interval partitioning and replaced
non-categorical values by their corresponding intervals. The
numbers of intervals for non-categorical attributes are shown
in the last column in Table 1.

4.2 Theeffect of pruning strategies

We compare several search spaces defined below. “Proj+Inter”

refers the number of candidates generated by applying both
the projection-based pruning and the intersection-based prun-
ing. “Proj” refers the number of candidates generated by
applying only the projection-based pruning. “Dense-Miner”
refers to the number of candidates generated by Dense-
Miner. “Confident rules” refers to the number of confi-
dent rules. The difference between “Proj+Inter” and ‘Proj”
represents the effectiveness of the intersection-based prun-
ing. The difference between “Proj+Inter” or ‘Proj” and
‘Dense-Miner” represents the effectiveness of our pruning
strategies compared to Dense-Miner. The difference be-
tween “Proj+Inter” or ‘Proj” and “Confident rules” rep-
resents the tightness of our pruning strategies. We do not
have “Inter” because the intersection-based pruning must
use the projection-based pruning.

Figure 3(a) shows the search space vs various minimum con-
fidence, and Figure 3(b) shows the search space for each it-
eration at minimum confidence of 80%. The iteration No.
is named by the size of rules. Thus, our algorithm proceeds
from iteration No. 9 to iteration No. 1, whereas Dense-
Miner proceeds in the opposite direction. For Dense-Miner,
we have to stop the algorithm after 4 hours running, which
only reached iteration No. 5. This explains why the curve

le+07 T — T T

1 Confident rules —e—
9e+06 Proj+inter ---m-- 7
8e+06 | PrO] et

Number of candidates/confident rules

Minimum confidence (%)

S 2.5e+06 ——

= /" Confident rules —e—
] 3 Proj+inter ---@-
= 2e+06 . Proj —+1}-
5 i " Dense Miner &
£ / po

B 1.5e+06 % |

L /

Ko / \

=]

S 1le+06 R

c

IS

o

S 500000 R

]

Qo

g 0 .-
= 9 8 7 6 5 4 3 2 1

Iteration No.

—_
=3
=

Figure 3: The effect of pruning strategies

“Dense-Miner” is not shown in Figure 3(a). There are sev-
eral findings from this experiment.

First, the iteration-by-iteration comparison in Figure 3(b)
shows that Dense-Miner generated far more candidates than
“Proj+Inter”. For example, at minimum confidence of 80%,
Dense-Miner runs out of memory after 14 minutes when it
just started iteration No. 5. From Figure 3(b), most con-
fident rules have a large size and are generated between it-
eration No. 9 to 5. In such cases, Dense Miner will have
to examine all the shorter rules, confident or not, that have
confident specializations. In contrast, our algorithm exam-
ines only confident rules for generating candidates. Thus,
the downward candidate generation based on the universal-
existential upward closure of confidence is indeed an effective
strategy.

Second, the big difference between “Proj” and “Proj+Inter”
shows that the intersection pruning is highly effective. With-
out the intersection pruning, the number of candidates gen-
erated is close to that of Dense-Miner (for iteration No 1 to
5). In early iterations, say 9 to 7, there are more possible
rules but fewer projections participating in the intersection
pruning. This explains the quick increase in the number
of candidates in early iterations. In fact, the intersection
pruning takes effect only after the first 2 iterations: at it-
eration No. 9, no candidate is pruned by the intersection
pruning because there is no A;-specialization; at iteration
No. 8, no candidate is pruned by the intersection pruning
because only one projection participates in the intersection.
For these iterations, only the projection pruning is in effect,
thus, “Proj” and “Proj+Inter” coincide. However, after the
first two iterations, the intersection pruning takes a strong

Attribute Description Domain Number of
attribute values
salary salary uniformly distributed from 20,000 to 150,000 | 3
commission | commission salary > 75,000 = commaussion = 0 else 8
uniformly distributed from 10,000 to 75,000
age age uniformly distributed from 20 to 80 4
elevel education level uniformly chosen from 0 to 4 5
car make of the car uniformly chosen from 1 to 20 20
zipcode zip code of the town | uniformly chosed from 9 available zipcodes 9
hvalue value of the house uniformly distributed from 0.55100,000 5
to 1.5k100,000, where k € {0...9}
depends on zipcode
hyears years house owned uniformly distributed from 1 to 30 3
loan total loan amount uniformly distributed from 0 to 500,000 2

Table 1: Description of attributes.

effect by pruning a large portion of candidates.

Third, the comparison of “Proj+Inter” and “Confident rules”
shows that the ratio of the number of candidates generated
over the number of confident rules is about 3/2. In other
words, 2 out of every 3 candidates generated are actually
confident rules! This shows that our search space is indeed
rather tight, thanks to the effective pruning strategies.

In the following, we study the efficiency of our algorithm
in terms of the I/O cost and the execution time, and the
scalability of the algorithm for large databases. The 1/0O
cost refers to the number of candidates accessed from disk.

7e+06 — T T

6.56+06 } Random —e—
’ Heuristic | —-—#--
6e+06 Heuristic Il *ooe

5.5e+06 1

5e+06
4.5e+06
4e+06 -
3.5e+06 |
3e+06

1/0 costs

0.1 0.3 0.7 1
Size of M1 (Mega bytes)

3800 — ' '
3600
3400
3200
3000
2800 |
2600
2400
2200
2000 ~
1800 T B -
1600 L ‘ ‘

0.1 0.3 0.7 1

Size of M1 (Mega bytes)

Random —e— -
Heuristic | --m-— |
Heuristic Il - - |

Execution time (sec)

Figure 4: The effect of buffer allocation

4.3 The effect of buffer allocation

We study how the buffer allocation of M; and M>, for a fixed
memory size, affects the algorithm. Recall that M; holds one
T-block and M> holds some C-buckets during computing the
confidence of candidates, and both hold some R-buckets dur-
ing generating candidates. In this experiment, the memory
size 1s fixed at 1MB, and the size of M; is varied from the
maximum size of T-buckets, which is 0.046MB, to 1MB; the
rest is used for M5. The minimum confidence is set at 80%
and the number of partitions at 100 (see Table 2 for the de-
tail of partitioning). The size of the database is 100K tuples,
which takes up 2.2MB. The space required by C-buckets in
a single iteration can be as large as 21MB. Larger databases
will be considered in the study of scalability shortly. Figure
4(a)(b) shows the I/O cost and the execution time. “Ran-
dom” refers to no use of blocking heuristic, and “Heuristic 17
and “Heuristic 117 refer to the blocking heuristics discussed
in Section 3.

First, Figure 4(a) shows that, as the size of M) increases,
the I/O cost of accessing the candidates decreases. With a
larger M1, more T-buckets can be read in one T-block and
so more 1/O access to C-buckets can be shared by such T-
buckets. Put differently, a larger M, leaves more room to the
blocking heuristic to minimize the I/O access to C-blocks.
In addition, a larger M; means fewer T-blocks, therefore,
fewer scans of candidates in general. On the other hand, a
larger M, also means a smaller M, thereby, more C-buckets
on disk. Overall, however, the I/O cost is reduced by hav-
ing a larger M;. In fact, with the total size of C-buckets
being much larger than the memory size (i.e., 21.97MB in
the maximum case), the impact of buffering C-buckets to
reduce the 1/O cost is very limited. In such a case, reducing
the number of scans of C-buckets by allocating more space
to My outweighs the benefit of buffering C-buckets.

4.4 The effect of blocking heuristics

Figure 4(a)(b) also shows the effectiveness of Heuristics I
and II in terms of reducing the 1/O cost and execution
time. “Random” means that the a T-block is randomly de-
termined without using any heuristic and that the average
of 5 random selections is used. The experiments show that
both heuristics are highly effective in reducing the 1/O and
execution time, compared to the random blocking. For a
small M, each T-block contains fewer T-buckets, thus, the
sharing of C-buckets among the T-buckets in memory is lim-
ited. As the size of M) increases, both heuristics have more

Total # of buckets | # of buckets per attribute
car | zipcode | commission

1 1 1 1

10 10 1 1

50 10 5 1

100 10 5 2

120 10 4 3

150 10 5 3

200 10 5 4

Table 2: The partitioning of attributes

6.8e+06 — : :
6.6e+06 | I
6.46+06 | Fa
6.26+06 | S

6e+06 | 7 1
5.86+06 T .. Jr 1
5.66+06 | . v i
5.4e+06 | = 1
5.2e+06 |- . s E

w--u
5e+06 L L

1/0 cost

! !

200 150 120100 50 101
Number of partitions

3200
3100
3000
2900‘
2800
2700
2600
2500
2400

2300 1 1 1 1 1
200 150 120100 50 101

Number of partitions

Execution time (sec)

Figure 5: The effect of partitioning

room to decide what T-buckets should be read as a T-block
for sharing the I/O access of C-buckets. For example, as
M, varies from 0.046MB to 0.3MB, the average number of
T-buckets in a T-block increases from 1.7 to 10 for Heuristic
I. This effect, however, decreases as the size of M; gets close
to the maximum size, i.e., IMB. This i1s because, for very
large T-blocks, the likelihood of sharing the same C-buckets
is also decreased.

45 Theeffect of partitioning

In this experiment, we study how the hash-partitioning af-
fects the algorithm. We use the minimum confidence of 80%,
the memory size of 1MB, 10% of which is allocated to Mj,
and Heuristic I. The hash function is attr_val mod #bucket.
The three attributes with the most number of values are
hashed, see Table 2 for the detail. Figure 5(a)(b) shows the
I/O cost and execution time for the different partitionings.
Both the I/O cost and execution time have a “V” shape
as the number of buckets is varied from 200 to 10. For

under-partitioning, i.e., a small number of buckets, reading
a bucket involves more 1/O. If there is no partitioning, for
example, the whole candidate set Candi—; has to been read
for each T-block. It is less obvious why over-partitioning
also increases the 1/O and execution time. We observed
that, when the database is over-partitioned, some “related
T-buckets” tend to be read in different T-blocks, which in
turn increases the cost of reading candidates. For exam-
ple, suppose that only commission, not zipcode, is impor-
tant for high confidence. It is possible that two T-buckets
[commission.c, zipcode.z1] and [commission.c, zipcode.z2],
which agree on commission but disagree on zipcode, are read
in two different T-blocks. If this happens, the C-bucket
[commission.c] will be read once for each of these T-buckets.
If we do not hash on zipcode, these T-buckets become one
T-bucket and the above C-bucket will be read only once.

8000 — T T

Total —e—
7000 [Generating candidates ---m--
6000 | Counting candidates

5000
4000
3000
2000
1000

Execution time (sec)

100 250 500 1000
Size of database (K)

5.5e+06
5e+06 | T 1
4.5e+06 | - 1
4e+06 7 1
3.5e+06 | - B
3e+06 A
2.5e+06
2e+06
1.5e+06
1e+06

500000 —— ! .
100 250 500 1000

Size of database (K)

Number of candidates/confident rules£-

—_
=3
=

Figure 6: The scalability with the database size

4.6 The scalability

We set the minimum confidence at 80%, the memory size at
10MB, and M; at 10% of the memory. Figure 6(a)(b) shows
the scalability with respect to the database size, which is var-
ied from 10K to 1000K. As the database size increases, the
execution time of the algorithm linearly increases. Figure
7(a)(b) shows the scalability with respect to the database
dimensionality, with the database size fixed at 100K. We
varied the number of dimensions from 6 to 12. The database
of 8 dimensions is generated by removing the two attributes
that have the smallest number of values, i.e., hyears and
loan. The database of 6 dimensions is generated by remov-
ing the next two attributes that have the smallest number of
values among the remaining attributes, 1.e., age and salary.
The database of 12 dimensions is generated by adding two
attributes with uniformly distributed values chosen from 0
to 100,000 and discretizing them into two intervals. FEach

14000 T

Total —e—
12000 Generating candidates &~
Counting candidates ----+---

10000
8000
6000
4000

Execution time (sec)

2000

Number of attributes

2e+07 T T
1.8e+07 | Confident rules —e— A
1.6e+07 | Proj+inter ---m--
1.4e+07 |
1.2e+07 |
1e+07 |
8e+06
6e+06
4e+06 [
2e+06
0 _

Number of candidates/confident rules£-

Number of attributes
(b

=z

Figure 7: The scalability with the database dimen-
sionality

database is partitioned on attributes car, zipcode, commis-
ston, with the number of buckets being 10, 5, 2, respec-
tively. The experiment shows that, as the dimension in-
creases, there is a quick growth in both the number of can-
didates/confident rules and the execution time. The time
for generating candidates dominates the growth.

5. RELATED WORK

Most work on mining association rules makes use of the
support requirement to prune rules of small support [2, 3].
The problem of mining association rules without support
requirement was recently considered in [5, 6] and [8]. [5, 6]
considered tuples of 0/1 binary values and a very low 1-to-
0 ratio, e.g., 1% or less (similar to a transaction in [2, 3]).
More importantly, [5, 6] restricts rules to the form a — b
where a and b are single values. In contrast, we considered
attributes of arbitrary domains and rules of multiple values
on the left-hand side. (We observed that most confident
rules do contain more than one value on the left-hand side.)
The explosion of the number of such rules presents a new
challenge and demands a new method to deal with. In fact, if
the counting method in [5, 6] is used, counters must be main-
tained for combinations of any number of columns, which is
prohibitively large. We dealt with this problem by exploring
a confidence-based level-wise pruning. The confidence-based
pruning was proposed in [8]. However, [8] did not address
the issue that memory may not hold the candidates/rules
required to perform the pruning. In fact, the main topic of
[8] is building classifiers using confident rules (without sup-
port requirement), not finding such rules for large databases.
Experiments show that a straightforward disk-based imple-
mentation results in excessive 1/0.

Dense_Miner [4] applies all of minimum support, minimum
confidence, and minimum improvement to constraint the
search space. Our experiments show that without a mini-
mum support, Dense_Miner generates too many candidates.
Also, the effectiveness of Dense_Miner critically depends on
the tightness of the estimated bound, which in turn depends
on whether items can be ordered so that unpromising rules
are forced into the same portion of the enumeration tree.

6. CONCLUSION

Mining confident rules without support requirement was
previously identified as an important problem. With only
the confidence requirement available, the widely used support-
based pruning strategy does not apply. We exploit a certain
monotonicity of confidence, called the universal-existential
upward closure, so that only confident rules of larger size
need to be examined for generating confident rules of smaller
size. This property yields a level-wise candidate generation
with a confidence-based pruning. The main topic of this
paper is to implement this pruning strategy in a disk-based
environment. We addressed several performance related is-
sues, namely, data partitioning and data blocking. Experi-
ments show that the new pruning method often yields a very
tight search space, in the sense that out of every three candi-
dates generated, two are actually confident. This translates
into a superior performance compared to existing methods.

7. REFERENCES

[1] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and
A. Swami. An interval classifier for database mining
applications. In VLDB, pages 560-573, Sept 1992.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
datasets. In SIGMOD, pages 207-216, May 1993.

[3] R. Agrawal and R. Srikant. Fast algorithm for mining
association rules. In VLDB, pages 487-499, Sept 1994.

[4] R. Bayardo, R. Agrawal, and D. Gunopulos.
Constraint-based rule mining in large, dense databases.
In ICDE, pages 188-197, Feb 1999.

[5] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. Ullman, and C. Yang. Finding
interesting associations without support pruning. In
ICDE, pages 489-499, Feb 2000.

[6] S. Fujiwara, J. D. Ullman, and R. Motwani. Dynamic
miss-counting algorithms: finding implication and
similarity rules with confidence pruning. In ICDE, Feb
2000.

[7] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: applications in vlsi
domain. In The 34th Design Automation Conference,
1998.

[8] K. Wang, S. Zhou, and Y. He. Growing decision trees
on support-less association rules. In KDD, pages
265-269, August 2000.

[9] K. Wang, S. Zhou, and S. Liew. Building hierarchical
classifiers using class proximity. In VLDB, pages
363-374, Sept 1999.

