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ABSTRACT
As location-based social network (LBSN) services become increas-
ingly popular, trip recommendation that recommends a sequence of
points of interest (POIs) to visit for a user emerges as one of many
important applications of LBSNs. Personalized trip recommenda-
tion tailors to users’ specific tastes by learning from past check-in
behaviors of users and their peers. Finding the optimal trip that
maximizes user’s experiences for a given time budget constraint is
an NP hard problem and previous solutions do not consider two
practical and important constraints. One constraint is POI avail-
ability where a POI may be only available during a certain time
window. Another constraint is uncertain traveling time where the
traveling time between two POIs is uncertain. This work presents
efficient solutions to personalized trip recommendation by incorpo-
rating these constraints to prune the search space. We evaluated the
efficiency and effectiveness of our solutions on real life LBSN data
sets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; I.2.8 [Problem Solv-
ing, Control Methods, and Search]: Scheduling
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Trip plan; location-based social network; recommender systems

1. INTRODUCTION
With the emerging development of location-based social net-

work (LBSN) services such as Yelp and Foursquare, users are able
to “check in” at a certain point of interest (POI), such as restau-
rant/museum/park, via their mobile devices. A user may rate and
make comments after visiting a POI and other users may consider
those ratings and comments to select the POIs for their visits at a
later time. The availability of such rating data and LBSN services
open up an array of new research problems in both academia and
industry, such as user behavior analysis, movement pattern study
[5, 15], and various real-world applications [6, 32, 34]. Among
them, POI recommendation and trip recommendation [14, 28] are
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hot topics and require a location sensitive solution. For example,
recommending a highest rated Chinese restaurant in Beijing to a
user who is currently visiting New York City will fail, even if the
user loves Chinese food. Recommending a nearby Chinese restau-
rant with a reasonable rating score makes more sense in this case.

In this paper, we focus on the personalized trip recommendation
problem. In this problem, a user travels to a new region (e.g., on a
business trip to a new city) and wants to visit several POIs within a
limited amount of time. The goal is to recommend a trip route vis-
iting several POIs according to not only the temporal-spatial con-
straints (more details shortly), but also the user specific preferences
on POIs.

1.1 Motivation
The trip recommendation is not trivial because of the following

challenges:
• (Personalization) First, while a user has its own interests, ex-

plicitly soliciting this information does not work in large scale ap-
plications because the user often does not know what POIs are
available and where they are. Modeling user preferences by learn-
ing from historical rating and check-in behaviors of users and their
peers to predict the user’s preferences on unvisited POIs would be
a preferred solution.
• (Sequence of POIs) Second, the traditional POI recommenda-

tion recommends individual POIs with highest scores, such POIs
may not form a feasible trip due to the spatial and time constraints.
• (POI availability and uncertain traveling time) Third, the tra-

ditional trip recommendation assumes that POIs are always avail-
able any time and the traveling time between two POIs are known
in advance, but in practice, a POI may be available only at certain
times (say, due to opening hours and closing hours) and traveling
time is uncertain due to traffic conditions at the time of travel. As
a result, whether a POI can be visited will depend on its available
time and predictability of the time traveling to the POI. If the time-
liness of finishing the trip is important to the user, a trip with a
more predictable traveling time would be preferred. For example,
the user may give up one more POI to visit in order to ensure a high
probability of visiting another more preferred POI or arriving at the
specified destination on time.
• (Large search space) Finally, the POI availability and uncer-

tain traveling time imply each order of visiting a set of POIs may
have a different consequence, thus, a brute-force search of all can-
didate trips is prohibitive. For example, with 150 POIs in total, the
number of trips that consist of 5 POIs can reach billions (i.e., 150!).
Most of these candidate trips do not follow the POI availability or
match user’s preferences, or cannot be finished within a given time
limited. A strategy that prunes such infeasible and non-optimal
trips based on user preferences, POI availability, traveling time un-
certainty is essential for scaling a solution to large applications.



Trip recommendation has been studied recently. [17] analyzed
the characteristics of travel packages and proposed a graphical model
to extract the topics conditioned on tourists, areas and travel sea-
sons for personalized travel package recommendation. [3] devel-
oped a Bayesian learning model to extract travel paths from photos
and conducted personalized travel recommendation according to
user-specific profiles. All these works, however, adopt probabilis-
tic models to generate a possible travel package or path but do not
consider the objective function to maximize the user’s happiness
under the trip and other constraints.

The recent work [9] formulated the trip recommendation as a
constrained objective function and presented a dynamic program-
ming solution. Their assumption is that POIs can be grouped into
several types or categories and the user knows the order of visiting
POI types and likes to visit POIs of each type exactly once in a pre-
determined order. The restriction of visiting each type exactly once
in a pre-determined order significantly reduces the search space.
For example, for 150 POIs falling into 5 types equally, the origi-
nal 150! possible routes are reduced to 305 if the order is fixed.
In real world applications, however, the user may not provide this
order either because she does not care about the order or because
she is concerned that such a fixed order may restrict her options. In
addition, their work does not consider the POI availability and the
uncertainty of traveling time.

A detailed review of related work is presented in Section 8.

1.2 Contributions
In this paper, we address the trip recommendation by taking into

account the following information and constraints: (1) the user’s
personalized preferences on POIs; (2) the user’s time budget that
constrains the total traveling and visiting time; (3) the time window
for the POI availability; (4) the uncertainty of traveling time be-
tween POIs. We formulate the above requirements in our TripRec
problem. The goal of the problem is to find an optimal trip that
maximizes user happiness under the constraint that all the POIs in
the trip can be visited and the trip can be completed within the user
time budget with a probability not less than a user specified thresh-
old. This problem is NP-hard as it is a special case of either the
Knapsack problem [11] or the Orienteering problem [25].

We solve this problem by using the information and constraints
in (1)-(4) to prune unpromising candidate trips. Our algorithm has
an offline step and an online step. In the offline step, we apply col-
laborative filtering adopted to items with features to estimate user’s
preferences on unvisited POIs based on available check-in data.
This step is performed only once as it applies to all users. In the on-
line step where the user’s time budget constraint and start/destination
locations are provided, we search for the optimal trip route under
the various constraints discussed above. We present two optimal
solutions that guarantee to find the optimal trip if it exists. One
is based on a state expansion approach and one is based on a pre-
fix based depth-first search strategy. We also present two heuristic
solutions that find “good trips” with a significantly better runtime
than the optimal solutions. We evaluated all solutions on two real
life LBSN data sets, Yelp and Foursquare, and demonstrated the
superiority over previous trip recommendation algorithms.

1.3 The Road Map
The rest of the paper is organized as follows: Section 2 defines

the problem. Section 3.1 presents the personalized rating estima-
tion for POIs, which corresponds to the offline step, and Section
3.2-3.3 presents our modeling of POI availability and uncertain
traveling time. These are the key factors that distinguish our model-
ing of trip recommendation from previous ones. Section 4 presents

the optimal solution based on the state expansion approach, and
the state relaxing strategy which scarifies optimality for efficiency.
Section 5 introduces the second optimal solution based on the pre-
fix based depth-first search strategy. We present an efficient heuris-
tic solution in Section 6. Section 7 presents experimental evalua-
tion of all solutions. Section 8 presents a review of related works.
Finally, we conclude the paper with a discussion on extension to
other scenarios of trip recommendation.

2. PRELIMINARY
This section describes our data model and the trip recommenda-

tion problem.

2.1 Data model
POI map: We assume that there are n POIs in a (virtual) com-

plete directed graph G = (V,E). V = {1, · · · , n} is a set of
POIs. Each POI i ∈ V is associated with the following informa-
tion: a touring time mi, indicating the typical or average staying
time for users, and opening hours [Oi, Ci], indicating that i opens
at time Oi and closes at time Ci. Each edge eij ∈ E represents the
route from i to j, where i, j ∈ V , and associates with a traveling
time tij following a distribution with probability density function
fij(·). We assume that these functions fij(·) are given and that
traveling times for different routes eij are independent.

Rating matrix: We consider a set of users where a user u may
rate a POI i after visiting i. A rating matrixR contains all observed
ratings rui. The rating matrix is usually extremely sparse with most
entries undefined since a user may only rate a few POIs. Besides,
a user u could leave comments on POI i when rating i, represented
by a bag of words Bui (If a user u does not rate a POI i, Bui = ∅).
The “content” of POI i is defined as Bi =

⋃
uBui. Based on the

matrix R and comments, we could estimate a user u’s rating for an
unvisited POI j, denoted as r∗uj .

A trip route: For a specified source location x and a destination
location y, and a departure time T0, where x and y are not neces-
sarily distinct, a trip route has the form x → · · · i · · · → y, that
starts from x at the time T0, visits each POI i listed in the route in
order, and ends at y. We assume that the probability density func-
tions fxi(·) and fiy(·) are known for any POI i, and we set r∗ux =
r∗uy = 0, mx = my = 0, Ox = Oy = T0, Cx = Cy = +∞.
Such settings ensure that visiting x and y does not cost time be-
cause they serve only as the departure and destination locations for
a trip. The score of a trip route P for a user u is defined by an ad-
ditive function F (P, u) =

∑
i∈P r

∗
ui. This function simply sums

up the estimated ratings r∗ui for all POIs in the route, which models
the happiness of u with respect to the route P .

Constraints on a trip route: POI availability constraint: a user
is considered to visit a POI i only if the user spends mi time at i
during the opening hours [Oi, Ci]. Therefore, if a user arrives at
i before Oi, she has to wait until the opening hour, and the user
should arrive at i no later than Ci−mi to gain the happiness score.
Time budget constraint: the whole trip is completed within a period
of time b, including traveling time and touring time at POIs. Com-
pletion probability constraint: the probability that a trip finishes at
the destination y by the time T0 + b is not less than a user specified
threshold θ ∈ [0, 1).

2.2 Problem definition

PROBLEM 1 (TRIPREC). Given a user u with the source x
and the destination y, a departure time T0, a time budget b, and
a threshold θ ∈ [0, 1), we want to find an optimal trip route P



that maximizes user happiness F (P, u) under the following con-
straints: (1) The route starts at location x and ends at location
y. (2) The route satisfies the POI availability constraint, the time
budget constraint and the completion probability constraint.

In the rest of the paper, we first model the user’s personalized
preferences and the trip constraints; then, we present several ap-
proaches to search the optimal trip route according to the estimated
preferences for TripRec.

3. MODELING PREFERENCES AND CON-
STRAINTS

In this section, we discuss our modeling of user preference and
trip constraints.

3.1 Estimating user preferences
Most existing POI recommendation methods either consider no

content information of POIs or treat content information as side in-
formation (more discussion in Section 8). We believe that content
information of POIs should play a more central role in user pref-
erence in that a user likes a POI because of certain features of the
POI. To this end, we adopt the feature-centric collaborative filter-
ing proposed in [33]. Unlike the traditional collaborative filtering
on POIs, this approach performs collaborative filtering on the fea-
tures of POIs and determines the rating on a POI using the predicted
ratings on the features of the POI.

First, we transform the original user-POI rating matrix R into
a user-feature matrix R′, where each row represents a user u and
each column represents a feature f in

⋃
iBi for POIs i. An entry

(u, f) in R′ stores the aggregated rating on the feature f over the
POIs i such that Bi contains f and i are rated by u:

guf = agg({rui|f ∈ Bui and rui is defined}) (1)

In this work, agg(X) returns the average of the values in X , but
other aggregation operations are possible. agg(X) is undefined if
X is empty.

Then, we apply matrix factorization [12] to R′ to extract the la-
tent user vectors pu for users u and the latent feature vectors qf for
features f . To predict the rating of user i on a POI i, we aggregate
the predicted ratings pTu qf over all the features f in Bi:

r∗ui = agg({pTu qf |f ∈ Bi}) (2)

We will use r∗ui as the estimated rating of a user u on a POI i.
Thus, if the user is estimated to rate highly most features of a POI,
the user is estimated to rate highly the POI. Note that the estimation
of user ratings is performed offline and only once.

3.2 Testing time constraints
The basic idea of trip planning is to extend the route P grad-

ually. Suppose that i is the last POI of P , which satisfies the
time budget and POI availability constraints, and πi is the start-
ing time of visiting i. We may extend the route by adding a new
POI j after visiting i. We use the Sat function to test if the
POI availability and the time budget constraints are satisfied af-
ter the extension. Sat(i, j, πi) returns true if πj + mj ≤ Cj and
πj + mj + tjy ≤ T0 + b, where πj = max{πi + mi + tij , Oj}
indicates the starting time of visiting j. This testing ensures that
the user can get the full service at the POI j and still reach the
destination y within the time budget.

3.3 Modeling uncertain traveling time
The above assumes that traveling time tij for a sub-route i → j

is deterministic. However, even the traveling time can be estimated

from historical data and external resources [20], the real traveling
time remains uncertain due to many uncertain factors that could
affect the traffic. To model this uncertainty, we shall treat the trav-
eling time tij as a random variable following a certain distribution
with probability density function fij(·). In this case, the best one
can guarantee is that the probability that a trip P can be finished
within a given time budget b is above some specified threshold θ.
This probability, called completion probability, is denoted by ψ(P)
so that ψ(P) ≥ θ.

We can modify the above constraint testing function Sat for un-
certain traveling time as follows. Let E[tij ] denote the expectation
of tij . Sat(i, j, πi) returns true if πj + mj ≤ Cj , πj + mj +
E[tjy] ≤ T0 + b, and ψ(P) ≥ θ, where πj = max{πi + mi +
E[tij ], Oj} indicates the expected starting time of visiting j.

Let us derive ψ(P) for a route P . Consider a sub-route i → j,
we assume that the probability density function fij(·) is known.
For simplicity, we also assume that tij are independent for different
pairs (i, j). Let χ denote the traveling time of the sub-route. The
probability of the traveling time less than t is given as follows:

P (χ < t) =

∫ t

0

fij(δ)dδ (3)

Suppose that we extend i→ j by a POI k, the probability of travel-
ing time of i→ j → k less than t is given by the multiple integral:

P (χ < t) =

∫∫
D

fij(δ)fjk(γ)dδdγ (4)

where the domain D = {(δ, γ) ∈ R2
>0 : 0 < δ + γ < t}

and R>0 means positive real number. In general, for any route
P : i→ j · · · j′ → k with c sub-routes, the probability of the total
traveling time χ less than t is estimated by

P (χ < t) =

∫∫
· · ·
∫
D

fij(δ1) · · · fj′k(δc)dδ1d · · · dδc (5)

where D = {(δ1, · · · , δc) ∈ Rc>0 : 0 < δ1 + · · · + δc < t}.
This probability can be computed given all the probability density
functions fij · · · fj′k.

THEOREM 1 (COMPLETION PROBABILITY BASED PRUNING).
Let χ be the total traveling time of a route P : i→ · · · → j and let
χ′ be the total traveling time of another route P ′ : i → · · · j → k
obtained by adding a new POI k. Assume that both routes start at
i at the same time. P (χ′ < t) ≤ P (χ < t).

PROOF. For simplicity, we consider a route i → j and the ex-
tension i → j → k, but the proof for the general case is sim-
ilar. Due to the independence of traveling time at different sub-
routes, P (χ′ < t) =

∫∫
D
fij(δ)fjk(γ)dδdγ, so P (χ′ < t) =∫ t

0
fij(δ)

∫ t−δ
0

fjk(γ)dγdδ ≤
∫ t
0
fij(δ) · 1dδ = P (χ < t).

In other words, the probability of finishing a route within the
time budget is never increased by extending the route with one
more POI at the end. This is because adding a POI at the end of a
route does not affect the traveling time between the previous POIs
of the route, but reduces the chance of completing the route within
the time budget due to the additional time of traveling to and visit-
ing the new POI. We shall use this property to prune the trips that
have their completion probability below the specified threshold θ.

Various studies and methods have been proposed to estimate
travel time distributions in the literature. See [31] for a compari-
son of these methods. Our method does not depend on the choices
of such distribution, provided that the probability P (χ < t) can be
computed for a routeP . For concreteness, we adopt the log-normal



distribution in [27]. The traveling time tz on the zth sub-route in
a route independently follows the log-normal distribution with pa-
rameter µz, σz , that is, tz ∼ LN (µz, σ

2
z). The expected travel-

ing time E[tz] is given by exp(µz + σ2
z/2). The total traveling

time χ of a route P made of multiple sub-routes is the sum of the
traveling time tz of each sub-route, i.e., χ =

∑
z tz . According

to [19], χ can be approximated by another log-normal distribution
LN (µχ, σ

2
χ) with the following parameters:

σ2
χ = log

(∑
e2µz+σ

2
z (eσ

2
z − 1)

(
∑
eµz+σ2

z/2)2
+ 1

)

µχ = log
(∑

eµz+σ
2
z/2
)
−
σ2
χ

2

(6)

With this distribution for the total traveling time χ, the probabil-
ity of completing a trip P is ψ(P) = P (χ < t), where t is the time
available for traveling, that is, t = b −

∑
mj . For the log-normal

distribution,

P (χ < t) =
1

2

[
1 + erf

(
ln t− µχ
σχ
√

2

)]
(7)

where erf(t) = 2√
π

∫ t
0
e−δ

2

dδ [27].

4. STATE EXPANSION
In this section, we present a state expansion algorithm that guar-

antees to find an optimal route if it exists. The idea is to consider
each partially generated route as a state associated with some end-
ing POI i, representing a feasible trip route x → · · · → i → y
that has i as the ending POI before reaching the specified destina-
tion y. Each state is labeled by s = (K,T,H, ρ, i), where K is
the set of POIs already visited, excluding x and y. T is the starting
time of visiting at i (i.e., πi), H is the overall happiness collected
(i.e., F (K,u)), ρ is the current route x → · · · → i (without the
sub-route i→ y) and i is the ending POI. These parameters are de-
noted as sK , sT , sH , sρ and si, respectively. Initially, there is only
one state s0 = (∅, T0, 0, x, x), representing the trip route x→ y.

At the κth iteration (κ > 0), the state expansion algorithm ex-
tends each state of size κ− 1 into a new state of size κ by adding a
new POI. Specifically, a state s = (K,T,H, ρ, i) is extended into
a new state s′ associated with POI j 6∈ sK ∪ {x, y} according to
the following rules:

s′H = sH + r∗uj
s′K = sK ∪ {j}
s′T = max{sT +mi + E[tij ], Oj}
s′ρ = sρ → j

(8)

A new state s′ is feasible if Sat(i, j, sT ) returns true. Intuitively,
this means that the partial route of the state can be extended to j
and then finished at the destination y within the time budget with
the completion probability no less than the threshold θ.

4.1 Dominance of states
It is possible that the same ending POI si could be reached by

different states s of the same POIs sK , corresponding to different
visiting orders. Not all such states need to be maintained because
some do not lead to the optimal solution.

We say that a state s dominates a state s′ if

(si = s′i) ∧ (sK = s′K) ∧ (sT ≤ s′T ) ∧ (ψ(s̄ρ) ≥ ψ(s̄′ρ)) (9)

where ·̄ forms the complete trip by adding y into the route, say
ρ̄ = ρ → y. Note that sK = s′K implies sH = s′H , i.e., s and
s′ give the same user happiness. Intuitively, s dominates s′ if all

of the following conditions hold: the two states s and s′ represent
two routes ρ→ y and ρ′ → y containing the same set of POIs, the
starting visit time of i in s is no later than that in s′, and the com-
pletion probability of s is no less than that of s′. We assume that
the procedure Check tests the dominance: Check(s, s′) returns
true if s dominates s′ (i.e., Eqn 9) and false otherwise.

LEMMA 1. If a state s dominates a state s′ and let se and s′e
denote the states obtained from extending s and s′ with a new POI
j at the end, respectively, then se dominates s′e.

PROOF. Suppose that s and s′ represent the routes ρ → y and
ρ′ → y. Then se and s′e represent the routes ρ → j → y and
ρ′ → j → y. It is easy to see that the first three conditions in
Eqn (9) remain true for se and s′e. To see the last condition, since
s dominates s′, both ρ and ρ′ have the same ending POI i. If we
regard i as the new source of the following identical trip i→ j → y
for both se and s′e, the completion probability of this trip in se is
no less than that in s′e because it starts earlier in se. Combined with
the previous trip ρ and ρ′, this condition still holds.

By repeatedly applying Lemma 1, we have the next theorem.

THEOREM 2 (DOMINANCE BASED PRUNING). Assume that
a state s dominates a state s′. If s′ can be extended into an optimal
trip by a sequence of POIs, so is s by the same sequence of POIs.

From the above theorem, it suffices to consider only non-dominated
states. We will use this property to remove all dominated states
without affecting optimality.

4.2 Algorithm
Algorithm 1 summarizes the state expansion for TripRec. Start-

ing at the initial state S = {s0}, the algorithm extends the current
set of states, S, by adding one new POI at the end of a route in
S. If the states in S have the size κ, the new states in S′ have
the size κ + 1. The two for loops extend each state in S with an
unvisited POI and only feasible states are kept. Meanwhile, Line
9-10 conducts the dominance test and removes dominated states.
Line 12-13 records the optimal route with the maximal user hap-
piness. The time complexity of Algorithm 1 is O(n22n), which
is exponential but much faster than the brute-force search O(n!).
However, due to the time budget and POI availability constraints,
each trip typically consists of only a small fraction of all POIs. If
the maximum number of POIs in a trip is τ , where τ � n, 2n is
replaced with C(n, τ) in the above complexity.

4.3 State relaxing
The above dominance based pruning applies only to two states

that have exactly the same set of POIs, i.e., sK = s′K . If we are
willing to sacrifice optimality for efficiency, it is possible to have
a more aggressive pruning by replacing the condition sK = s′K
with |sK | = |s′K | (i.e., visiting the same number of POIs) and
sH ≥ s′H (i.e., s representing a more preferred route than s′). So
the dominance test condition in Eqn (9) is relaxed into

(si = s′i)∧(|sK | = |s′K |)∧(sT ≤ s′T )∧(sH ≥ s′H)∧(ψ(s̄ρ) ≥ ψ(s̄′ρ))
(10)

Intuitively, with this relaxed dominance relationship, the route for
s takes less time and generates a higher happiness than the route
for s′, while reaching the same ending POI i. In other words, the
route represented by s gives the user more happiness and more re-
maining time than the route represented by s′, thus, is preferred.
We call the pruning based on this relaxed dominance relationship
state relaxing. State relaxing applies to all states ending at the same



Algorithm 1: State expansion
input : POI map G, user u’s specific preferences r∗ui for each

POI i, departure time T0, time budget b
output: optimal TripRec trip route, P

1 s0 ← (∅, T0, 0, x, x), s∗ ← s0;
2 S ← {s0}, S′ ← ∅;
3 while S 6= ∅ do
4 for s ∈ S do
5 for j ∈ V \ sK do
6 if Sat(i, j, sT) then // i ≡ si
7 s′T ← max{sT +mi + E[tij ], Oj} ;
8 s′ ← (sK ∪ {j}, s′T , sH + r∗uj , sρ → j, j);
9 if ∃s′′ ∈ S′ : Check(s′, s′′)=true then

10 remove s′′ from S′;

11 add s′ to S′;
12 if s′H > s∗H then
13 s∗ ← s′;

14 S ← S′, S′ ← ∅;
15 return s∗ρ → y as P

POI through visiting the same number of POIs which significantly
reduces the size of the set of states S in Algorithm 1 as each ending
POI may only be associated with a few states. So the time com-
plexity is decreased from O(n22n) to O(cn2) for some constant
c.

However, due to the POI availability constraint, state relaxing
loses the optimality in some cases. For example, suppose A →
D → C dominates A → B → C according to Eqn (10) (we omit
the source x and destination y for simplicity), so the former is kept
and the latter is eliminated. Now suppose that B only opens in the
morning and D opens until midnight. Then the route A → D →
C → B may be infeasible due to the late visit to B while the route
A→ B → C → D could be the optimal solution, but it cannot be
generated because A→ B → C was pruned. Section 7 will study
experimentally the trade-off between efficiency and user happiness
for the state relaxing strategy.

5. PREFIX BASED DEPTH-FIRST SEARCH
If the states of size κ are represented by the nodes at level κ in

a tree structure (with the root at level 0), Algorithm 1 generates
the states in a breadth-first manner in that the states at level κ are
generated before any state at level κ+1 is generated. For loose time
budget and POI availability constraints, this approach may have to
keep many “open” states in memory (i.e., all states of the same
size), which imposes a bottleneck on the memory requirement.

5.1 Prefix based depth-first enumeration tree
To address this limitation, we present a prefix based depth-first

enumeration of states in which a tree structure representing the
states is searched in the depth-first manner so that only the cur-
rent branch at any level is searched at any time. First, for the given
user u, we order all POIs i by the estimated rating r∗ui. This or-
der together with our tree enumeration strategy below ensures that
POIs with larger ratings are considered before those with smaller
ratings in the construction of a route. For presentation, we consider
V = {A,B,C,D,E} of five POIs, excluding the source x and
destination y, and we assume that these POIs are ordered in the

0Ø

16E

24DE

23ABCE

22BCE

20CE

13ACD

15ABCD

14BCD

12CD

8D

17AE

19ABE

18BE

25ADE

27ABDE

26BDE

29ACDE

31ABCDE

30BCDE

28CDE11ABD

9AD 10BD

21ACE

4C1A 2B

5AC 6BC

7ABC

3AB

Figure 1: Prefix based depth-first enumeration tree

descending order of estimated ratings for u. The prefix of a POI i
refers to the set of POIs that precede i in this order.

Figure 1 shows the tree structure for enumerating all the subsets
of V with POIs arranged in the above order. The nodes in the tree
are generated from left to right in a specific depth-first order, as in-
dicated by the numbers aside the nodes. Each node is labeled by
a set of visited POIs arranged in the above order, and the root is
labeled by the empty set ∅. Intuitively, a node with the labelK rep-
resents all the non-dominated feasible routes that visit exactly all
the POIs in K. These routes are divided into |K| groups according
to each ending POI in K. To grow the tree, for a node v with a la-
bel ending at a POI i, a child node is generated by appending some
POI j that precedes i in the above order to the front of the label of
v. For example, Node 7 with the labelABC is generated as a child
node of Node 6 with label BC by appending A to the front of BC.

Subset first property. An important property of the above depth-
first enumeration is that a labelK is always enumerated before any
of its supersets. For example, the proper subsets of ABC are enu-
merated at Nodes 0-6 and ABC is enumerated at Node 7. This
property ensures that, when computing the feasible routes at the
node for a label K with the ending POI i, the feasible sub-routes
visiting all the POIs in K \ i have already been computed at the
node with the label K \ i, so we can retrieve the stored informa-
tion for such feasible sub-routes to construct the feasible routes at
the node for K, by checking the time budget and POI availability
constraints and pruning dominated states.

For example, Node 15 with the label ABCD is a child node
of Node 14 with the label BCD. There are 4! possible routes at
Node 15, but many can be pruned since they either violate the time
budget and POI availability constraints, which can be tested by the
procedure Sat, or are dominated by other routes, which can be
tested by the procedure Check. The feasible routes at Node 15
can be divided into 4 groups corresponding to the ending POIs A,
B, C, and D, respectively. The group for the ending POI A can be
constructed by retrieving the feasible sub-routes from the already
computed Node 14 and appending A to the end by checking the
constraints. With the dominance pruning discussed in Section 4
(i.e., Eqn 9), only the non-dominated routes will be kept for this
group. The groups for the ending POIsB, C,D can be constructed
similarly, by retrieving the feasible sub-routes from the nodes with
the labels ACD,ABD,ABC, i.e., Node 13, Node 11, Node 7.
Note that these nodes were already computed because their labels
are subsets of ABCD.

The next theorem lays the foundation for our prefix based depth-
first enumeration algorithm for computing the optimal route.

THEOREM 3. (1) Every non-dominated feasible route stored at
a node with the label K and ending POI i must have a prefix that
is a non-dominated feasible route stored at the node with the label



Algorithm 2: PrefixDFS(U , K)

1 for j ∈ U in order do
2 U− ← prefix of j in U ;
3 K+ ←K ∪ {j};
4 if |K+| = 1 then
5 if Sat(x, j, T0) = true then
6 Ω[K+]H ← r∗uj ;
7 add (j, x→ j,max{E[txj ] + T0, Oj}) to

Ω[K+]L;
8 PrefixDFS(U−,K+);

9 else
10 for k ∈ K+ do
11 K− ←K+ \ k;
12 if Ω[K−] is not empty then
13 find l = (i, ρ, T ) in Ω[K−]L such that

Sat(i, k, T ) = true and ρ→ k is
non-dominated;

14 if l is found then
15 T ′ ← max{T +mi + E[tik], Ok}
16 if Ω[K−]H + r∗uk > H then
17 update P andH;

18 Ω[K+]H ← Ω[K−]H + r∗uk;
19 add (k, ρ→ k, T ′) to Ω[K+]L;

20 if Ω[K+] is not empty then
21 PrefixDFS(U−,K+);

K \ i. (2) The node with the label K \ i is enumerated prior to the
node with the label K.

PROOF. (1) Consider a non-dominated feasible route at a node
with the label K, written as ρ′ = ρ → i, where ρ is the prefix
containing the POIs in K \ i. From Theorem 1, ρ must satisfy all
the constraints, and from Theorem 2, it suffices to consider only
non-dominated feasible route ρ at the node with the label K \ i.
This proves Part (1). Part (2) follows from our discussion on the
prefix based depth-first enumeration.

5.2 Implementation
Based on the above discussions, we design a hash map Ω to store

the computed results for each node in the tree, whose key is the
label K of the corresponding node, and whose value, Ω[K], con-
tains the information about the non-dominated feasible routes for
the node. Ω[K] has two components, H and L. H is the total hap-
piness for the POIs inK. L is a list (l1, l2, · · · ), where each entry l
in L has the form (i, ρ, T ) and represents a non-dominated feasible
route ρ for the node. i ∈ K is the ending POI of ρ and T is the
starting time of visiting i. Essentially, Ω[K] is a compact represen-
tation of all the states that have the same POI set K in Section 4.
Let Ω[K]H and Ω[K]L denote the H and L components of Ω[K].

We implement the above prefix depth-first search in Algorithm
2 as a recursive procedure PrefixDFS(U,K) with a set U of
ordered POIs and a node label K as the parameters. Intuitively,
PrefixDFS(U,K) enumerates the subtree at the node with the
label K and U is the set of POIs available for extending the la-
bel K within the subtree. The inputs to the algorithm are the POI
map G, the departure time T0, the time budget b and user-specific
preferences r∗ui. The output is the optimal route and its happiness,

stored in the global variables P and H. The main algorithm is the
call PrefixDFS(V, ∅) with the set of POIs V in the POI map G.

The algorithm extends the label K by each available POI j in
U , creating the child node with the label K+ = K ∪ {j} and
U− being the prefix of j in U . If K is empty, Line 4-8 adds the
route x → j → y to the hash entry for K+ and recursively calls
PrefixDFS(U−,K+). If K is not empty, Line 10-19 adds all
non-dominated feasible routes having the POI set K+ to the hash
entry for K+. In particular, for each k ∈ K+, Line 13 searches
for the non-dominated feasible route for the POI set K+ and end-
ing at k. This route consists of a non-dominated feasible route l =
(i, ρ, T ) for the POI setK− = K+ \k and the ending POI k (The-
orem 3) such that it satisfies all the constraints, i.e., Sat(i, k, T ) =
true, and the the route ρ→ k is non-dominated (by the conditions
in Eqn (9)). From Theorem 3, all non-dominated feasible routes for
K− are stored at the nodeK− and were computed already. If there
exists such an l, (k, ρ → k, T ′) for the extended route ρ → k is
added to Ω[K+]L. After considering every k ∈ K+, if Ω[K+] is
not empty, the algorithm calls PrefixDFS(U−, K+) recursively.

Note that the algorithm does not actually materialize the entire
enumeration tree; instead, it enumerates the nodes in the tree in the
depth-first order. The result at each node is stored in the hash map.

6. HEURISTIC APPROXIMATION
In this section, we propose a simple heuristic algorithm that is

essentially linear in the total number of POIs while maintaining the
quality of the route. The idea is intuitive: starting with the initial
trip route x→ y, we insert one POI at a time between two adjacent
POIs in the current trip route so that (i) the insertion preserves the
satisfaction of all the constraints and (ii) some score of the route is
maximized (to be discussed shortly). For example, inserting a POI
A into x→ y gives the route x→ A→ y, then inserting a POI B
before A gives x → B → A → y, and so on. To avoid the local
optimum, we generate some small number of routes (say 2-3) by
applying this method to the set of remaining POIs not contained in
the previously generated routes, and we choose the best route from
all the routes generated. The time complexity of this algorithm is
O(cn), where n is the number of POI and c is a constant, because
each insertion considers at most n unvisited POIs. Note that the
length of a route is usually small due to the time budget and POI
availability constraints.

A remaining issue is to check whether inserting a POI k between
two adjacent POIs i and j (i.e., the sub-route i → j already exists
in the trip) preserves the satisfaction of the time budget constraint,
the POI availability constraint and the completion probability con-
straint. We focus on the POI availability constraint because it is
easy to check the other two constraints. We assume λij = 1, that
is, a visit to POI i is followed by a visit to POI j. Before the in-
sertion of k, the arrival time at POI j, denoted by aj , is computed
by

aj = πi +mi + E[tij ] (11)

where πi is the starting time of visiting at POI i. The wait time at
POI j, wj , is computed by

wj = max{0, Oj − aj} (12)

The maximum allowed delay time at i to preserve the satisfaction
of constraints, denoted by vi, is computed by

vi = min{Ci − πi −mi, wj + vj} (13)

whereCi−πi−mi is the maximum allowed delay time to keep the
visit to i available (before it closes), and wj + vj is the maximum
allowed delay time to keep the visit to j available.



For example, if πi = 10am,Ci = 2pm,mi = 1h, the maxi-
mum allowed delay time for i itself is 3h, i.e., the user can at most
delay to arrive at 1pm. However, a delay at i may affect the visit
to the next POI j. If wj + vj = 2h, that is, the visit to j can be
delayed at most 2h, then the maximum allowed delay time at i is
vi = min{3h, 2h} = 2h.

The insertion of k between i and j is possible only if the new
route satisfies the probability constraint according to Eqn (7) and
the extra time caused by the insertion does not exceed the maxi-
mum allowed delay time at j, i.e., wj + vj . The extra time εk for
inserting POI k is given by

εk = E[tik] + wk +mk + E[tkj ]− E[tij ] (14)

If εk ≤ wj+vj , k can be inserted between i and j and the insertion
transforms i→ j into i→ k → j, thus, λik = λkj = 1, λij = 0.

To determine the score of the insertion of k, we calculate the
ratio γk as follows:

γk = (r∗uk)2/εk (15)

This ratio measures the gain of happiness per unit of extra time of
visiting k. The square of r∗uk places more emphasis on the rating.
Since a smaller εk has less effect on the feasibility of the whole
route, the POI k with a larger ratio γk is preferred. We try every
adjacent (i, j) in the current route to find the best γk.

After each insertion, the arrival time, wait time, and maximum
allowed delay time of all affected POIs in the route should be up-
dated according to Eqn (11-13). For example, if k is inserted to
form a new route x → i1 → i2 · · · → k → j1 → j2 · · · → y,
the arrival time, the wait time and the maximum allowed delay time
of any POIs after k (j1, j2, · · · ) should be updated, and the maxi-
mum allowed delay time of any POIs before k (i1, i2, · · · ) should
be updated. Moreover, the updates must follow the orders imposed
by the dependency in Eqn (11-13). For example, Eqn (13) requires
first updating a later POI before updating an early POI in a route.

7. EXPERIMENTS
This section presents the empirical evaluation of the proposed

methods.

7.1 Experimental setup
We adopt the Yelp1 and Foursquare2 data sets in our experiments.

Both data sets were previously used for recommendation evaluation
in [10]. The Yelp data set contains 45,981 users, 229,906 ratings
of 1-5 scales, 11,537 POIs, plus text reviews on POIs. We prepro-
cessed the reviews by removing stop words and infrequent words
occurring in < 100 reviews, and using the remaining 8,519 key-
words as the features. The feature set or content of a POI, Bi,
consists of all keywords contained in the reviews about the POI.
The Foursquare data set contains 20,784 users, 153,477 binary 0/1
ratings, 7,711 POIs, and user published tweets when checking-in at
a POI. We obtained 1,377 features after preprocessing the tweets.

For each POI i, the touring time mi is set to 1 hour, and the
opening hours were generated from a Gaussian distribution, (Ci −
Oi) ∼ N (µ, δ) with the mean µ = 5 hours and the standard error
δ = 1. The open time Oi was generated using a uniform distribu-
tion, Oi ∼ U(8, 12). We set the departure time T0 to 8am. The
expected traveling time E[tij ] for a pair of POIs (i, j) is estimated
using Google Maps3 with the driving mode. All the experiments
were run on a PC with 2.53 GHz Quad-Core CPU and 12G mem-
ory.
1http://www.yelp.com/dataset_challenge/
2https://foursquare.com/
3https://www.google.com/maps

7.2 Rating accuracy of individual POIs
First, we evaluate the first step of our approach, that is, the ac-

curacy of estimated ratings of POIs produced by the feature-centric
collaborative filtering. For both data sets, we keep 90% rating data
for training to conduct matrix factorization and use the remaining
10% rating data for testing the accuracy of estimated ratings. As in
the literature [22], we use the standard RMSE (root mean squared
error) and MAE (mean absolute error) as the accuracy metrics for
POI recommendation. The smaller these values are, the better the
result is.

Many POI recommendation approaches are based on topic mod-
eling, for example, STM [10] and LCA [29] predict the probabil-
ity of visiting a POI, for which the error specific metrics such as
RMSE/MAE are incomputable because probabilities are not com-
parable with ratings. For this reason, we evaluate the following
methods.

Probabilistic matrix factorization (denoted PMF): This is the
classic matrix factorization on the user-item rating utility matrix
[21] where POIs are treated as items. In PMF, matrix factorization
is generalized as a probabilistic model where a latent user vector
pu ∼ N (0, α−1

p ID), a latent item vector qi ∼ N (0, α−1
q ID). The

predicted user u’s rating on item i is given by r∗ui = pTu qi. We
adopt the default settings in [21] and set D = 10, the dimensional-
ity of user and item latent factors.

Collaborative topic regression (denoted CTR): This is the ma-
trix factorization with topic modeling applied to the content of items
described in [26]. For our data sets, items are POIs and content of
user reviews on POIs. LDA is employed on POI i’s content to
learn the latent topic vector θi, which is incorporated into the PMF
framework to confine the search of latent item vectors by setting
qi ∼ N (θi, α

−1
q ID). We adopt the default settings in [26] and set

D = 10.
Feature centric collaborative filtering (denoted FCF): This is

the proposed algorithm in Section 3.1. All the parameter settings
are the same as in PMF.

Table 1 shows the results of accuracy of the above three methods.
FCF achieves the best performance and has a clear improvement in
terms of RMSE/MAE on both data sets. So we believe that the
estimated rating by FCF is closer to the true rating. In the rest of
the experiments, we study the performance of trip recommendation
with the estimated rating r∗ui being generated by FCF.

Table 1: RMSE and MAE. Lower values are better.

Yelp Foursquare
Method RMSE MAE RMSE MAE

PMF 1.3169 1.0491 0.6197 0.5160
CTR 1.2850 1.0277 0.6000 0.5018
FCF 1.2152 0.9720 0.5154 0.4402

improve over PMF 7.7% 7.3% 16.8% 14.7%
improve over CTR 5.4% 5.4% 14.1% 12.2%

7.3 The fixed traveling time model
In this section, we evaluate the trip route P found by TripRec

under the fixed traveling time model where the traveling time tij
for a pair of POIs i and j is fixed, because all the baselines consider
fixed traveling time. In this deterministic setting, a feasible route
always satisfies the completion probability constraint. The model
for uncertain traveling time will be considered in Section 7.4.

We focus on three major cities for trip planning, Phoenix (PX)
in Yelp, New York city (NY) and Los Angeles (LA) in Foursquare,
and choose Central City, Central Park, and Hollywood as both the

http://www.yelp.com/dataset_challenge/
https://foursquare.com/
https://www.google.com/maps


source and the destination in these cities respectively. For each city,
we randomly pick up 100 users from the testing data, and for each
user, we select the top n = 150 unvisited POIs, ranked by their
estimated ratings, for trip recommendation. This n is a suggested
number in [1]. Even with this restriction, the number of trips that
consist of 5 POIs can reach billions, which is certainly infeasible
for a brute-force search. We compare the following methods in
terms of user happiness F (P, u) and runtime. All the methods
adopt the personalized estimated ratings for each POI, learnt by
FCF as input.

Greedy algorithm (denoted Greedy): This is the greedy algo-
rithm from the operation research literature [24], which iteratively
picks up a POI j with the highest ratio of r∗j /tij , where i is the
location selected at the last step. Note that we have added the POI
availability constraint, which is not considered by [24].

Dynamic programming (denoted DP): This is the dynamic pro-
gramming approach proposed in [9]. We adapt to the order con-
straint by setting a “global” type to each POI and fix the visiting
order that is from “global” type to “global” type. However, the
dynamic programming by filling up a 2-dimensional array [9] still
cannot deal with the POI availability constraint.

Heuristic approximation (denoted HA): This is the heuristic
algorithm proposed in Section 6. HA is designed for fast approxi-
mation and does not guarantee the optimality of solution.

State expansion (denoted SE): This is Algorithm 1 proposed in
Section 4. Let SE-SR denote SE with state relaxing. SE guarantees
the optimality of solution, but SE-SR does not.

Prefix based depth-first search (denoted PDFS): This is Algo-
rithm 2 in Section 5 that uses the prefix based depth-first enumera-
tion of POIs. PDFS guarantees the optimality of solution.

7.3.1 User happiness
Figure 2 (left column) presents the user happiness score of the

trips found by all methods, with y-axis being the happiness score
averaged over all testing users and x-axis being the time budget b
of a trip (hours). Note that SE and PDFS generate exactly the trips
of the same happiness score due to their optimality.

Overall, the number of POIs in the recommended route varies
from 3 to 7 depending on the setting of the time budget b. As the
time budget increases, the happiness of users generally increases.
PDFS/SE is the best performer since they guarantee the global op-
timum. Interestingly, SE-SR yields a nearly optimal solution as the
happiness is only slightly (< 1%) lower than that of the optimal
PDFS/SE.

HA performs in the third place and there is an obvious gap be-
tween HA and the best two. This is because HA only maintains
one route during search, which makes it easy to fall into a local op-
timum. We will further explain this in the case study below. Greedy
performs about 10% worse than HA, as its search strategy is rather
simple. DP performs poorly on on all the testing cities, because it
cannot deal with the POI availability constraint. In fact, only par-
tial happiness is gained for such routes that some of the POIs are
already closed when the user arrives, thus, leading to the low hap-
piness scores for many users. Meanwhile, DP cannot guarantee a
better result for a larger time budget.

7.3.2 Runtime
Figure 2 (right column) presents the average runtime per user,

with y-axis being the runtime (seconds) and x-axis being the time
budget of a trip b (hours). HA and Greedy have a fast and sta-
ble runtime because both HA and Greedy only maintain one route,
but this feature also overlooks other possible combinations of POIs,
thus hardly finding optimal solutions. SE suffers the out of memory
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Figure 2: The fixed traveling time model: (left) happiness of trip
routes found (y-axis) vs time budget (x-axis); (right) average run-
time (y-axis) vs time budget (x-axis).

problem when the time budget is over 7 hours because there are too
many “open” states in each iteration, which exhausts the memory
when the time budget is large. PDFS avoids this problem by the
prefix based depth-first enumeration. Although it takes the longest
time at b = 5h, PDFS finds the optimal solution without having
the steep increase of runtime encountered by SE. SE-SR takes sub-
stantially less time than SE by trading optimality for efficiency.

7.3.3 Case study
For a randomly selected user with b = 8h, Figure 3 shows the

trip routes designed by PDFS and HA, on the local map of LA,
where Location 1 is the source and the destination. The visit fol-
lows the increasing order 1→ 2→ · · · → 1. PDFS and HA share
many POIs in their recommended trip routes (e.g., POIs 2, 3, 6, 7
for PDFS) due to that both methods adopted the personalized pref-
erences. However, HA maintains only one route and easily falls
into a local optimum. For example, while POIs 1 and 3 are spa-
tially far away from POIs 2 and 6 in Figure 3(b), HA visits these
POIs in the order 1→ 2→ 3→ 6→ 1, in which every sub-route
is between two POIs that are far away, thus, too much time is spent
on traveling. In contrast, PDFS designs the route in a circle, which
reduces the number of sub-routes with long traveling time and al-
lows the user to visit one more POI than HA within the same time
budget.

In summary, PDFS finds the optimal solution with less runtime
than SE; SE-SR is a very good trade-off for efficiency at a slightly
lower happiness than the optimal solution; HA is very efficient but
sometime has a significantly lower happiness. Overall, PDFS and
SE-SR are two best performers considering both quality and effi-
ciency.



(a) PDFS (5.72) (b) HA (4.89)

Figure 3: Case study of recommended trip routes for LA. The num-
ber in bracket is the happiness of the trip.

7.4 The uncertain traveling time model
In this section, we study the effect of the uncertain traveling time

on SE-SR and PDFS. For the traveling time distribution of tij for
a sub-route i → j, we adopt the log-normal distribution tij ∼
LN (µij , σ

2
ij) in Section 3.3. Note thatE[tij ] = exp(µij+σ

2
ij/2).

σij is generated from a uniform distribution to introduce the uncer-
tainty, i.e., σij ∼ U(0.5, 2).

Figure 4 (left column) presents the happiness scores of SE-SR
and PDFS with various threshold θ on completion probability. A
color represents a method and a pattern represents a threshold θ on
completion probability. Compared to the case for the fixed traveling
time in Section 7.3, the happiness of both methods become lower
given the same time budget. For example, there is about 20%-40%
reduction of happiness from the fixed time cases at θ = 0.9 and
b = 5h. This is because the route designed in the previous section,
although having a higher happiness, may violate the completion
probability constraint due to the variance of traveling time, and a
more strict constraint (i.e., higher threshold) results in less happi-
ness. In practice, if the user prefers a more reliability of a trip, a
route with higher completion probability but a bit less happiness is
acceptable.

The uncertain traveling time model also accelerates the runtime
of both methods, as shown in Figure 4 (right column). As the com-
pletion probability threshold θ increases, there are fewer feasible
routes and both methods prune the routes with the probability be-
low the threshold earlier. A cross examination with Figure 2 indi-
cates that at θ = 0.7, the runtime of these methods with modeling
uncertain traveling time is close to that with the fixed traveling time
model. However, it is almost an order of magnitude less in runtime
at θ = 0.9.

8. RELATED WORK

8.1 POI recommendation
Most location-based recommendation falls into this category, which

scores each POI individually and recommends top-k POIs to a user.
Some examples in this category include [4], [13], which consider
no content information, [10], [16], and [29], which consider con-
tent as side information. The key difference between trip recom-
mendation and POI recommendation is that POI recommendation
considers neither the order of visiting POIs nor the time budget of
users and the POI availability constraint. Recommending a visiting
order of several POIs to maximize user satisfaction under such time
constraints is the main focus of trip recommendation.

8.2 Travel package recommendation
Travel package or itinerary recommendation focuses on a tour of

POIs instead of isolated POIs, which is similar to trip recommen-
dation. [14, 30] applied spatio-temporal streams such as tagged
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Figure 4: The uncertain traveling time model: (left) happiness of
trip routes found (y-axis) by SE-SR and PDFS vs time budget b
(x-axis); (right) average runtime (y-axis) vs time budget b (x-axis).

photo streams or GPS trajectories to seek for a feasible path by
topic modeling or Markov models. [8, 17] developed several prob-
abilistic models to generate possible packages by considering cost,
season, area, etc. [1] used user feedback to improve results on in-
teractive tour recommendation. None of these works focus on the
objective to maximize user’s happiness.

[7, 9, 18] maximized user’s happiness in travel recommendation.
[9] assumes a fixed order on the types of POIs visited, which is
not suitable in the presence of constraints such as opening hours
of POIs. The greedy algorithm proposed in [7] cannot guarantee
the global optimality. [18] adopted memory-based collaborative
filtering to estimate user specific preferences, which are dynamical
with time. All these works do not consider the POI availability and
probability constraints. The first two works do not consider user
specific preferences, thus, generate the same itinerary to all users.

8.3 Operation research and scheduling
The orienteering problem (OP) [25] studied in operation research

and theoretical computer science is related to our problem. In OP, a
set of vertices is given, each with a score. The goal is to determine
a path, limited in length, that visits some vertices and maximizes
the sum of the collected scores. However, there are some important
differences between trip recommendation and OP. First, OP does
not consider personalized user preferences so only a global trip is
planned. Second, OP has no touring time for each location, which
is an important factor affecting the number of POIs visited. Finally,
we consider the uncertain traveling time between POIs through the
completion probability constraint, which is absent in OP. While
most works on OP focus on heuristic approaches [23, 24] to es-
timate the global optimum of OP, we present an optimal solution to
trip recommendation through a prefix based depth-first search strat-



egy with a focus on efficiency through incremental reconstruction
and dominance based pruning of routes.

Other works on real life scheduling problem are related to our
modeling of the uncertain traveling time. For example, [2] con-
sidered multiple types of transport within a single trip and adopted
Monte-Carlo simulation to estimate the probability of catching the
trip in non-deterministic transport networks. [27] introduced a Bayesian
model to estimate the distribution of ambulance traveling time on
the road in a city.

9. CONCLUSION AND EXTENSION
We formulated the personalized trip recommendation problem,

which is NP-hard, to retrieve a sequence of POIs that maximizes
user’s satisfaction according to user’s historic activities with vari-
ous constraints including user’s time budget, POI availability and
uncertain traveling time. We presented both optimal solutions and
heuristic solutions to this problem. Our evaluation on real life data
sets suggested that PDFS is the most efficient algorithm for optimal
solutions and SE-SR improves efficiency at a slightly lower quality
than optimal solutions.

Several variations are possible in the presented trip recommen-
dation model. One variation is to factor the touring time of a POI
in the happiness score, that is, it is more important for a POI with
a longer staying time to be preferred by the user than a POI with a
shorter staying time. We can also factor the completion probability
of a trip in the score, in addition to a threshold on the probability.
Another variation is adding a financial budget constraint of a user,
in addition to the time budget, assuming a cost for traveling and
a cost for visiting a POI. If the type of a POI is given and if the
diversity of POIs is a desirable goal, we can enforce the specific
types of POIs in a trip, or a minimum number of different types in
a trip, on a feasible state to prune the search space. These varia-
tions or extensions require only a minor modification to our current
algorithms.
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