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Abstract

Early classification on time series data has been found highly
useful in a few important applications, such as medical
and health informatics, industry production management,
safety and security management. While some classifiers have
been proposed to achieve good earliness in classification,
the interpretability of early classification remains largely an
open problem. Without interpretable features, application
domain experts such as medical doctors may be reluctant
to adopt early classification. In this paper, we tackle
the problem of extracting interpretable features on time
series for early classification. Specifically, we advocate local
shapelets as features, which are segments of time series
remaining in the same space of the input data and thus are
highly interpretable. We extract local shapelets distinctly
manifesting a target class locally and early so that they are
effective for early classification. Our experimental results on
seven benchmark real data sets clearly show that the local
shapelets extracted by our methods are highly interpretable
and can achieve effective early classification.

1 Introduction

Early classification on temporal data makes prediction
as early as possible provided that the prediction quality
satisfies expectation. In other words, early classifica-
tion tries to optimize earliness under a requirement on
minimum accuracy, instead of optimizing accuracy in
general classification methods. Early classification on
time series data has been found highly useful in some
time-sensitive applications. For example, a retrospec-
tive study of the clinical data of infants admitted to a
neonatal intensive care unit [5] found that the infants,
who were diagnosed with sepsis disease, had abnormal
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heartbeat time series patterns 24 hours preceding the
diagnosis. Monitoring the heartbeat time series data
and classifying the time series data as early as possible
may lead to early diagnosis and effective therapy. As an-
other example, Bernaille et al. [2] showed that by only
observing the first five packages of a TCP connection,
the application associated with the traffic flow can be
classified accurately. The applications of online traffic
can be identified without waiting for the TCP flow to
end. Early classification of time series data can also find
applications in, for example, anomaly detection, intru-
sion detection, health informatics, and process control.

Constructing classifiers capable of early prediction
is far from trivial. It is important to note that we are
not interested in classic time series prediction (see [12]
and the references therein), which predicts the value of
the time series at some lead time in the future. Most of
the existing classification methods on time series data
extract features from full-length time series, and do not
opt for earliness of prediction. In those traditional time
series classification methods, the optimization goal is
often to maximize classification accuracy.

We proposed the ECTS method for early classi-
fication on time series [15], which is based on near-
est neighbor classification. The central idea is to ex-
plore the stability of the nearest neighbor relationship
in the full space and in the subspaces formed by pre-
fixes of the training examples. Although ECTS has
made good progress, it only provides classification re-
sults without extracting and summarizing patterns from
training data. The classification results may not be sat-
isfactorily interpretable and thus end users may not be
able to gain deep insights from and be convinced by the
classification results.

Interpretability is critical for many applications of
classification, such as medical and health informatics,
industry production management, safety and security
management. Without interpretable features, applica-
tion domain experts such as medical doctors may often
be reluctant to adopt a classification approach. For ex-
ample, predicting a patient belonging to the positive
class by simply linking the patient to several existing
patients may not be sufficiently convincing and useful,



since disease patterns can be highly complicated and
the patient time series data may cover a long time pe-
riod. Instead, a medical doctor strongly prefers an early
classification statement referring to several highly inter-
pretable features, such as a short segment of the pa-
tient’s time series carrying a distinct feature shared by
a significant subgroup of patients having the disease.
Such a statement may help the doctor to link to some
specific disease patterns. Moreover, classification is of-
ten employed as a data exploration step, where summa-
rization of the data in a target class using interpretable
distinct features becomes the central task.

To the best of our knowledge, the problem of
extracting interpretable features for early classification
on time series data largely remains untouched, which is
the topic of this paper. To tackle the problem, we need
to answer several essential questions. First, what kinds
of feature can be easily understood? Second, what are
the proper criteria for interpretable features for early
classification? Last, how can we extract features that
are effective for early classification?

In this paper, we make concrete progress in answer-
ing the above questions. Specifically, we introduce local
shapelets as features, which are essentially segments of
time series. Since local shapelets are consistent with
training time series, they are highly interpretable. We
extract local shapelets distinctly manifesting the target
class locally and early so that they are effective for early
classification. Our experimental results on seven bench-
mark real data sets using a simple rule-based classifier
clearly show that the features extracted by our methods
are highly interpretable and can achieve effective early
classification.

The rest of the paper is organized as follows. We
review the related work in Section 2. We define local
shapelets in Section 3. We describe the feature extrac-
tion step and the feature selection step in Sections 4
and 5, respectively. We report our experimental results
in Section 6. Section 7 concludes the paper.

2 Related Work

Diez et al. [4] were the first who mentioned the term
of early classification for time series. However, their
method did not optimize earliness in classification. In-
stead, they referred early classification as classifying
partial examples which are prefixes of complete time
series. They simply ignored the predicates on unavail-
able suffixes and only used the linear combination of the
available predicates for classification.

Anibal et al. [3] applied a case based reasoning
method to classify time series to monitor system failures
in a simulated dynamic system. A KNN classifier was
used to classify uncompleted time series using various

distances, such as Euclidean distance, DTW (Dynamic
time warping) and Manhattan distance. The simulation
results showed that by using case based reasoning,
the most important increase of classification accuracy
occurs on the prefixes through 30-50% of the full length.
The study demonstrated the opportunities for early
classification, though it still did not optimize earliness
systematically.

Recently, we tackled the problem of early classifica-
tion on time series by exploring the earliness of classi-
fication [15]. However, as mentioned in Section 1, our
previous study did not extract any explicit features.

Our other previous work [13] explored a feature
based method for early classification on symbolic se-
quences. However, to apply that method on time series,
one has to first discretize time series, which is a non-
trivial task. Our extensive empirical study [13] showed
that the method does not work well on time series data.

Classification on time series and temporal sequence
data has been investigated extensively due to its fruit-
ful applications. Please refer to a recent survey on the
topic [14] and the references therein. The existing work
on time series and sequence classification mainly focuses
on optimizing classification quality, and does not con-
sider optimizing earliness. This is the critical differ-
ence between this study and those methods. However,
it is natural to ask what we can learn from those fea-
ture based classification methods for time series and
sequences. We examine a recent and representative
method [16] to address this issue.

Ye et al. [16] proposed the notion of shapelets as
features for time series classification. Shapelets are
subsequences of time series manifesting a class as much
as possible. Technically, a shapelet is a pair (s,J),
where s is a time series subsequence, and ¢ is a distance
threshold. A time series subsequence s’ is considered
matching a shapelet (s, d) if dist(s,s’) < 6.

Ye et al. [16] adopted Euclidean distance as the
measure, and matching is defined on time series sub-
sequences of the same length. The distance threshold ¢
is learned by maximizing the information gain. Among
all the possible features as such, a shapelet is the one
separating the two classes with the best information
gain. In other words, maximizing information gain is
the criterion used in both learning distance thresholds
for shapelet candidates and choosing the shapelets. Ide-
ally, a perfect shapelet of a class is the one representing
all time series in the class but does not cover any time
series in other classes. For multiple class classification,
the shapelet selection process is integrated with the con-
struction of a decision tree. Features with higher infor-
mation gain will be put in the upper part of the tree.

As shown in [16], shapelets provide an effective ap-
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Figure 1: Locally distinctive feature for early classifica-
tion.

proach for time series classification with good inter-
pretability. However, we cannot directly apply shapelets
for early classification. The shapelet method, though
capturing local features of time series, focused on learn-
ing globally distinctive features with the maximal infor-
mation gain. For early time series classification, some
locally distinctive features, which do not have the opti-
mal information gain, may be important. Here, a locally
distinctive feature is one representing a subset of time
series in one class nicely and exclusively.

ExampLE 1. Consider Figure 1, where there are two
classes of time series. Feature A is shared by a subset of
time series in the diamond class and does not appear in
the star class at all. Feature B covers all time series in
the diamond class but not any in the star class. Feature
B is the shapelet of this data set, since it covers more
instances in the diamond class, and thus has a higher
information gain than feature A. We consider feature A
as a local feature comparing to feature B. Interestingly,
for early classification, feature A is highly useful, since
it represents half of the cases in the diamond class and
precedes feature B. n

The above example clearly shows that, in order to
select locally distinctive feature for early classification,
we need new strategies in feature extraction other
than those in general classification methods maximizing
global classification quality.

3 Local Shapelets

DEFINITION 1. (PRELIMINARIES) A time seriest is a
sequence of readings. For the sake of simplicity, in this
paper we assume that each reading is a real number. The
length of the time series t is the number of readings in
t, denoted by len(t). The i-th reading (1 < i < len(t))
of t is denoted by t[i].

A time series s is a subsequence of another time
series t, denoted by s C t, if len(s) < len(t) and there
exists a positive integer ig (1 < ig < len(t)) such that
tlio + j] = s[j] for (0 < j < len(s)).

Let T be a training set of time series where each
time series t € T carries a class label ¢ € C, and C
1s the set of classes. A time series t € T is called a
training example. For a time seriest € T, we denote
by C(t) the class label of t. For a class ¢ € C, let T,
be the set of time series in T that carry label ¢, that is,
T.={teT|C(t) =c}. L]

What kinds of features are highly interpretable to
end users and highly useful for early classification?
While there are many possible choices, in this paper,
we argue that subsequences of time series are a natural
and preferable choice due to at least two reasons.

First, subsequences of time series stay in the same
data space of the input data. Subsequences of time series
do not require any transformation in feature extraction,
and thus are intuitive for end users. Subsequences can
capture the characteristics and phenomena that can be
easily linked to end users’ original applications.

Second, subsequences can capture the local simi-
larity among time series effectively. A major task in
early classification is to capture the trends manifesting
subtypes in the target class. Subsequences as features
can provide the insights on what and when time series
are similar, which are highly preferable for high inter-
pretability.

We cannot expect that, in general, many time series
have segments matching a subsequence feature exactly.
Instead, if a subsequence feature and a segment of a
time series are similar enough, we can regard that the
time series matches the feature. The similar idea was
explored in shapelets [16]. We define local shapelets.

DEFINITION 2. (LOCAL SHAPELETS AND MATCHES)
A local shapelet is a triple f = (s,0,¢), where s is
a time time series, ¢ is a distance threshold, and
c € C is a class. We write a local shapelet f = (s,7,¢)
if the distance threshold is not determined yet. For a
local shapelet f, we call class ¢ the target class, and
the other classes the non-target classes.

A local shapelet f = (s,d,c) matches a time
series t if there is a subsequence s’ T t such that
dist(s',s) < &, where dist(-,-) is a similarity measure



in question. In this paper, we use Euclidean distance
for the sake of simplicity. Consequently, we require
len(s) = len(s’). However, our method can be applied
to any other similarity measures (not necessarily a
metric). To keep our discussion simple, in the rest of
the paper, we use the terms “similarity” and “distance”
interchangeably. n

Now, the problem becomes how we can extract local
shapelets for early classification. In the rest of the
paper, we propose an approach called EDSC (for Early
Distinctive Shapelet Classification). The framework
consists of two steps.

Feature extraction In the first step, we extract local
shapelets that are effective in classification. Specif-
ically, we consider all subsequences up to a cer-
tain length of the time series in the training set as
local shapelets. For each local shapelet, we learn
a robust distance threshold. By doing so, we ob-
tain a (possibly large) set of distinctive features for
time series classification. The feature extraction
step will be discussed in Section 4.

Feature selection In the second step, we select a
small subset of local shapelets by the criteria of
earliness and popularity. This step ensures that
the features selected opt for early classification, and
opt out of overfitting. We use a simple rule-based
classifier to select features. The feature selection
step will be discussed in Section 5.

Although we borrow the idea in shapelets [16] in
the notion of local shapelets, as will be made clear in
Section 4, the feature extraction and selection methods
in this paper are drastically different from [16].

4 Feature Extraction

The first step in EDSC extracts features from the
training data set. It takes two parameters: minL and
mazL. Then, it extracts all subsequences of length
between minL and mazL from every training example
as the local shapelets. For each shapelet, we need to
learn a distance threshold. This is the major task in
feature extraction, and the topic of this section.

A local shaplet f = (s,0,¢) is considered distinctive
if all time series matching f have a high probability to
belong to class c¢. In this section, we study how to learn
local shapelets effective for classification.

As mentioned before, the shapelet method [16]
learned the distance threshold by maximizing the in-
formation gain. For early classification, we prefer some
local features which are distinctive and early. Therefore,
we need to develop a new feature extraction method to
harvest distinctive local shapelets.

4.1 Best Match Distances A time series may have
multiple segments that are similar to a local shapelet,
that is, their distance to the local shapelet are under
the distance threshold. How well does a local shapelet
match a time series? It can be measured by the best
match distance (BMD).

DEFINITION 3. (BEST MATCH DISTANCE) For a local
shapelet f = (s,?,¢) and a time series t such that
len(s) < len(t), the best match distance (BMD for
short) between f and t is

min
s'Ct,len(s")=len(s

BMD(f,t) = ){Dist(& )}

For a local shaplet f, we can consider the distribu-
tion of the BMDs of the time series in the target class
and the non-target classes. If most of the time series
close to f in BMD belong to the target class, then f
is distinctive for the target class. We will further argue
for the use of BMDs in Section 4.4.

We can calculate the BMD between a local shapelet
f and every time series in the training data set. These
BMDs can be used to approximate the distribution of
BMDs between f and the time series to be classified.

DEFINITION 4. (BMD-LIST) For a local shapelet f =
(s,7,¢) and a training data set T of N time series, the
best match distance list (BMD-list for short) of f
1s the list of the BMDs between f and the time series in
T, sorted in ascending order, denoted by

Vf = <dl1 (C(til ))7 di2 (C(th))v SR diN (C(tlz\r)»

where t;; € T, d;; = BMD(s,t;,), and d;; < dl—j, for
j<ij.

Moreover, the target BMD-list (non-target
BMD-list, respectively), denoted by V. (Viz), is the
BMD-list of f on T, (T —T¢). n

For a local shapelet f = (s,4,¢), a time series ¢; in
the training set matches f if and only if BM D(s,t;) < 4.
How can we find an effective distance threshold for a
local shapelet according to its BMD-list?

For a local shapelet f = (s,6,¢) and a BMD-list
Vi = (d1,da,...,dn), the precision of f is

di di = INC 9=
Precision(f) = o ||{<d.dA<<(;})|| =

To make a local shapelet as distinctive as possible, a
naive method is to choose a distance threshold maxi-
mizing Precision(f). However, this may lead to very
small distance thresholds for local shapelets and thus



over fit the training data. If we take a subsequence of
a training example as a local shapelet, trivially, setting
0 = 0 always achieves a 100% precision.

Alternatively, we can set a precision threshold, e.g.,
90%, and choose a distance threshold that can achieve
a precision above the precision threshold. If there are
multiple distance thresholds that meet the requirement,
we can pick the largest one, since it enables the local
shapelet to cover more training data.

EXAMPLE 2. (THE NAIVE METHOD) Consider a train-
ing data set T with 11 time series in the target class c,
and 9 in the other class ¢. Suppose the BMD-list of a
local shapelet f is Vi = (0(c), 0.89(c), 2.54(c), 3.11(c),
3.26(c), 4.28(c), 9.70(c), 15.29(¢), 15.99(c), 16.96(c),
18.28(c), 18.57(¢), 19.02(¢), 19.25(¢), 19.36(¢),
20.09(¢), 21.21(c), 22.56(¢), 25.84(c)).

Suppose the precision threshold is 90%. We can set
a distance threshold satisfying the precision threshold
and mazimizing the number of time series covered. Any
distance threshold in the range [18.28,18.57) can achieve
a precision of 19 = 91.67%.

However, one serious concern is that the distance
threshold chosen as such lays in a dense region of
the non-target class (¢). Such a distance threshold is
unlikely robust in classifying unseen time series. In this
naive method, we only count the training examples in
different classes but do mot consider the distribution of
the BMDs of the target/non-target classes. [

In the rest of this section, we will propose two
methods to learn robust distance thresholds for local
shaplets. The first approach uses density estimation
and the second approach uses Chebyshev’s inequality.

4.2 KDE: Learning Distance Thresholds Using
Kernel Density Estimation The central idea of the
KDE method is to apply kernel density estimation [8]
on the BMD-list to estimate the probability density
functions of the target class and the non-target classes,
and then set the distance threshold § so that at every
point in the range of [0,d] the probability density
of belonging to the target class passes a probability
threshold.

Given a random sample {z1,23,...,xx} drawn
from a probability density distribution f(X), the kernel
density of f(X = z) can be estimated by

r — T;

. 1 Y
(4.1) f(X:$):mZK( h ),
i=1

where K is a kernel function and h is a smoothing
factor [8]. In this paper, we adopt the Gaussian kernel
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Figure 2: Learning distance threshold by KDE.

which has been popularly used.
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To select an appropriate bandwidth, we use a widely
adopted approach [11] to estimate the bandwidth by

(4.2) K(

(4.3) hoptimal = 1.060N_%,

where o is the standard deviation of the sample.
Suppose we have m classes. Let C(x) € {1,...,m}
for any sample x. By estimating the density distribution
fj (x) for each class j (1 < j < m), we can calculate the
probability that a sample x belongs to class j by

pifi(x)

4.4 _pifi®
4 > ey Prfr()

Pr(C(z)=jX=2)=

where py, is the class prior [8].

To learn a robust distance threshold for a local
shapelet (s,?,¢), we propose to use kernel density
estimation to utilize the distribution of the BMDs. We
call this the KDFE method, which runs as follows.

For a local shapelet f = (s,7,¢), we estimate the
kernel density for the target BMD-list V. and the non-
target BMD-list Vg, respectively. Then, we estimate
the class probabilities of any time series given its best
match distance to s by Equation 4.4. Given the class
probabilities, we learn the distance threshold for f.

Let us exemplify the KDE method.

EXAMPLE 3. (KDE) Consider the same training set
and local shapelet f as in Example 2. Figure 2 plots
the distribution of the BMDs between f and the training
examples. Moreover, the dotted curve is the estimated



density function fc(x) for the target class and the dashed
curve s the estimated kernel density fa(x) for the non-
target class. The solid curve is the estimated probability
density of time series belonging to the target class.

We can choose the distance threshold according to
the estimated probability of time series belonging to the
target class. In the figure, the solid vertical lines are
several distance thresholds learned using different prob-
ability thresholds. A distance threshold corresponding
to a high probability threshold captures a region domi-
nated by the target class, while a distance threshold cor-
responding to a low probability threshold moves into a
region where the two classes are mized. [ ]

Formally, we define the KDE feature extraction.

DEFINITION 5. (KDE EXTRACTION)  Given a local
shapelet f = (s,7,¢) and its BMD-list Vy, the KDE
method learns a distance threshold & for f such that
for any time series x that BMD(f,xz) <, P(C(x) =
c|X = x) > B, where B is a user defined probability
threshold, and P(C(x) = ¢|X = x) is obtained by kernel
density estimation using V. ]

The kernel density estimation takes time O(N?),
where N is the number of time series in the training
data set. In our implementation, if the learned distance
threshold 6 = 0, this local shapelet is discarded.

4.3 CHE: Learning Distance Thresholds Using
Chebyshev’s Ineqaulity Let X be a random variable
with a finite mean p and a finite variance o2. Then, for
any positive number k > 0, the one tail Chebyshev’s
inequality states [1]

1

PrlX —pl 2 ko) < 5=

To learn a distance threshold for a local shapelet
f=(s,7,¢), we can treat the BMDs of the time series
in the non-target class in V; as a sample of a random
variable and compute its mean and variance. Then, we
can compute the range where the non-target class has
a very low probability to appear using Equation 4.5.

(4.5)

DEFINITION 6. (CHE EXTRACTION) Given a local
shapelet f = (s,?,¢) and its BMD-list V¢, the CHE
method learns a distance threshold § for f such that

d = max{Mean(Vyz) — k x Var(Vyz),0}
where k > 0 is a user specified parameter. ]

The user specified parameter k£ in the CHE method
ensures that, if the training data set is a consistent
sample of the data to be classified, the probability of
a non-target time series matching f is no more than
1/(k* +1).
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Figure 3: Learning distance threshold by CHE.

EXAMPLE 4. (CHE) Consider again the same training
set and local shapelet f as in Example 2. Figure 8
shows the distance thresholds learned by CHE with k =
2,3,4,5, respectively. For example, when k = 3, the
probability of a non-target class time series matching f
is mo more than 1/(3% + 1) = 10%. (]

Estimating probability P(¢|¢) using Chebyshev’s
inequality is to prevent the distance threshold learned
from laying in the dense region of the non-target classes.
For a time series t matching feature f = (s,d,c¢), by
Bayesian theorem [9], the probability that ¢ is in the
target class c is,

B P(t|c)P(c)
Plel) = 5amP@ + PUaP@)

(4.6)

The distance threshold learned by the CHE method only
considers the distribution of the BMDs of the time series
in the non-target class. Therefore, it only ensures that
P(t|¢) in Equation 4.6 is small but does not guarantee
that P(c|t) is high. This problem will be handled in the
feature selection step.

To compute the threshold, we only need to compute
the mean and the variance of the BMD-list V¢ z. The
time complexity is O(N), where N is the number of
training examples. This is more efficient than the KDE
method.

4.4 'Why Should We Use BMDs? When we derive
the distance threshold for a local shapelet f = (s, 7, ¢),
we use the BMDs between f and the time series in the
training data set. Why do we use the BMDs?
Alternatively, let us consider the worst match dis-
tance (WMD for short) between a local shapelet f =



(s,0,c¢) and a time series ¢, that is,

WMD(f,t) = Dist(s,s")}.
(f:t) S,Q,legg;}?:len(s){ ist(s,s")}
Local shapelet f is considered matching ¢ if

WMD(f,t) < ¢, that is, every subsequence of ¢ of
length len(s) has a distance to s of no more than ¢.
We can also try to learn the distance threshold for f
given a training data set.

However, WMDs cannot lead to any early classi-
fication. Before examining the whole time series, we
cannot determine the corresponding WMD value, and
consequently cannot determine whether the time series
matches a local shapelet.

Using BMDs,to classify a time series ¢ online in
the classification step, once we find a match between
t and a local shapelet f = (s, 0, c) of distance no greater
than the distance threshold §, we can classify ¢ based on
this feature. Although the match may not be the best
match between ¢ and f since we may not finish reading
t yet, the condition BMD(f,t) < ¢ is established.
The prediction is safe. This property facilitates early
prediction.

5 Feature Selection

A good feature for early classification should have three
properties: frequent, distinctive and early [13]. In
Section 4, we discuss how to make each local shapelet
as distinctive as possible. In this section, we discuss
how to select a set of local shapelets that are early and
frequent.

5.1 Feature Selection

Given a local shapelet f = (s,0,¢), we need to
measure the utility of f in earliness, frequency, and
distinctiveness.

DEFINITION 7. (UTILITY) For a time series t and a
local shapelet [ = (s,d,c), let the earliest match
length (EML for short)
EML(f,t) = i dist(t[i—l1 1,1 <.
(f7 ) len(s)Iélilglen(t) ' ( [Z en(8)+ ’ZLS) -

EML measures the earliness of f in classifying t. If
BMD(f,t) >3, EML(f,t) = co.

The weighted recall of f on a training data set T
18

(5.7) W Recall(f) = Hll“al\ 2

teT

1
/EML(f,t)’

where « is a parameter to control the importance of
earliness. When « increases, the earliness weights less

comparing to the support. Fspecially,when o = oo, the
weighted recall converges to the classical recall.
The utility of f s

2 x Precision(f) x W Recall(f)

(5.8) Utility(f) = Precision(f) + W Recall(f)

This utility function extends the well known F-
measure by taking the earliness of a feature into con-
sideration. This utility measure carries the same spirit
as the utility measure proposed in [13].

The set of local shapelets extracted in the first step
of EDSC may be large. Moreover, it may contain many
redundant local shapelets. A group of similar time
series subsequences belonging to the same class may
capture the similar features and thus are redundant.
This situation is very similar to the feature selection
problem in the associative classification methods [7].

As indicated by many existing studies on associative
classification, learning an optimum set of features for
classification is very expensive and cannot be scalable.
Thus, we adopt a greedy approach.

A local shapelet f is said to cover a training
example t if f matches t and the classes in f and ¢ are
identical. We maintain the set of training examples that
are covered by some local shapelets selected as features
during the feature selection process.

The feature selection step in EDSC works as follows.
We rank all local shapelets in utility, and take the
one of the highest utility, denoted by fi, as a feature.
All training examples covered by f; are marked. We
consider the remaining local shapelets that can cover
at least some training examples that are not marked
as “covered” yet, and iteratively select the one of the
highest utility. The iteration continues until either a
required number of features are extracted or at least a
certain percentage of training examples are covered.

The selected local shapelets can be used for early
classification immediately. When we scan a time series
only, we try to match the time series with the selected
local shapelets. Once a match is found, a prediction is
made.

5.2 Cost Analysis In the feature learning step, we
consider all the subsequences of length between minlL
and maxL as the local shapelets. For each local
shapelet, we learn the distance threshold. Suppose we
have N time series in the training data set and the
average length is L. The total number of length &
subsequences is (L — k + 1)N. For a length k local
shapelet, the cost of computing its BMD-list against the
training data set in a straightforward way is O(kN (L —
k+1)). To compute the BMD-lists of all length k local
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Figure 4: Sharing in computing BMDs .

shapelets, the cost is O(k(L — k + 1)2N?). For all the
local shapelet between length minL to maxL, the time
cost of computing the BMD-lists is O( /"> k(L —
k+1)2N?) = O(N2L%).

Given a BMD-list, to learn the distance threshold,
we need either O(N) for the CHE method or O(N?) for
the KDE method. For all the local shapelets between
length minL to maxL, the time cost to learn the
distance thresholds is O(X 7 (L — k + 1)N?) =
O(NZ2L?) for the CHE method and O(N®L?) for the
KDE method.

For the feature selection step, the complexity is
bounded by sorting all the local shapelets extracted,
which is O(L?Nlog(NL)).

The major computational cost of EDSC comes from
two aspects. First, we consider a large number of local
shapelets. Second, similar to [16], a computational
bottleneck is computing the BMD-lists.

5.3 A Speed-up Technique When computing the
BMD-lists, we can share the computation among differ-
ent local shapelets.

Given a time series ¢, for the subsequences of ¢ start-
ing from the same position, we can use them as a group
to compute their BMD-lists in a batch. In Figure 4,
we illustrate the idea of sharing computation by storing
additional information of the matching distances.

Suppose we have a time series t; of length L, and
we use its subsequence s and s’ as two local shapelets.
The length of s is 4 and the length of s’ is 5. s and &’
start from the same position in ¢;. Let s be a prefix
of s and len(s’) = len(s) + 1. When we compute
the BMD of s against another length L time series s,
we need to compute the Euclidean distance between s
and every sliding window in ¢o of length |s|, and the
time complexity is O(L|s|). We store all the squared

Euclidean distances between s and each sliding window
in to in a vector D. When we compute the BMD
between s’ and t2, we only need cost O(L) instead of
O(L * |s'|) by reusing D. This is because, to obtain the
Euclidean distance between s’ and a length 5 sliding
window of ¢, we only need to update the distance
between the last time point of s’ and the last time point
in a sliding window.

By using the above method, it is easy to see that we
can compute the BMD-lists for all local shapelets from
length 1 to L in time complexity O(N2L?) instead of
O(N?L%) in the straightforward implementation.

Please note that the speedup method described here
can handle time series without normalization only. It is
an open challenging problem to speedup local shapelet
finding for time series with normalization. We leave this
for future work.

6 Experimental Results

We evaluate our methods on seven data sets from the
UCR time series archive [6]. For comparisons, we
conducted the experiments on the same data sets as
in [15]. All the experimental results are obtained by
using a PC computer with an AMD 2.2GHz CPU and
3GB main memory. The algorithms were implemented
in C++ using Microsoft Visual Studio 2005.

6.1 Results Overview The results of the seven data
sets are listed respectively in Table 1 (ECG), Table 2
(Gun Point), Table 3 (CBF), Table 4 (Synthetic Con-
trol), Table 5 (Wafer), Table 6 (OliveOil), and Table 7
(Two Patterns). For each data set, we also include the
information about the size, dimensionality, and number
of classes of the training data set and testing data set.

We compare four methods on each data set, namely,
EDSC-CHE (EDSC with the CHE method), EDSC-
KDE (EDSC with the KDE method), 1INN-Full (Full
length INN with Euclidean distance) and ECTS (Early
classifier for time series proposed in [15]). For EDSC-
CHE and EDSC-KDE, we use a default rule which is
the majority class. Without using the default rule,
EDSC-CHE and EDSC-KDE may not cover all the
time series to be classified. In the Tables 1-7, we
also report the accuracy and coverage rate of the
EDSC method without using the default rules, and they
are referred as EDSC-CHE-NDefault and EDSC-KDE-
NDefault, respectively.

All the results are obtained using the same param-
eter settings. For EDSC-CHE, we set MinLen = 5,
MaxLen = %7 and k = 3, where L is the full length of
the time series. For EDSC-KDE, we set MinLen = 5,
MaxLen = %, and p = 95%. We observe that the re-
sults are insensitive to the parameter « in the weighted



ECG: 2 classes; 100 training inst.; 100 testing inst.; L=96
EDSC-CHE: MinLen = 5; MaxLen = L/2;k =3
EDSC-KDE: MinLen = 5; MaxLen = L/2;p = 95%

Accu. Cover. | Ave.Len. | fFs.
EDSC-CHE-NDefault | 86.67% | 90% 16.87/96 | 32
EDSC-CHE 82% 100% 24.78/96 32
EDSC-KDE-NDefault | 90.70% | 86% 20.34/96 | 29
EDSC-KDE 88% 100% 30.93/96 | 29
1INN-FUIll 88% 100% 96/96 NA
ECTS 89% 100% 57.71/96 | NA

Table 1: Results of ECG data set

Gun-Point: 2 classes; 50 training inst.; 150 testing inst.; L=150

EDSC-CHE: MinLen = 5; MaxLen = L/2;k =3
EDSC-KDE: MinLen = 5; MaxLen = L/2;p = 95%

Accu. Cover. Ave.Len. #Es.
EDSC-CHE-NDefault | 97.18% | 94.67% | 64.75/150 | 8
EDSC-CHE 94.67% | 100% 69.3/150 8
EDSC-KDE-NDefault | 95.74% | 94% 64.80/150 | 9
EDSC-KDE 94% 100% 69.97/150 | 9
Shapelets [16] 93.3% 100% 150/150 1
INN-FUl 91.33% | 100% 150/150 NA
ECTS 86.67% | 100% 70.39/150 | NA

Table 2: Results of Gun-Point data set

recall (Equation 5.7) when « is small. Limited by space,
we omit the details here, and by default set o = 3.

In Figure 5, we summarize the performance of
EDSC-CHE, EDSC-KDE, ECTS and full INN in terms
of classification accuracy and average prediction length.
EDSC-CHE and EDSC-KDE are always earlier than
ECTS, and sometimes significantly earlier, such as
on the ECG, CBF and Synthetic control data sets.
EDSC-CHE and EDSC-KDE have similar performance
in terms of earliness. For the classification accuracy,
generally, EDSC-KDE is more accurate than EDSC-
CHE. It is shown that the distance threshold learning
quality of EDSC-CHE is not as good as EDSC-KDE.

The above results on the benchmark data sets show
that EDSC-CHE and EDSC-KDE can achieve compet-
itive classification accuracies with great earliness.

6.2 Interpretability of Features In this section,
we exam the interpretability of the learned features
using data sets CBF and Gun-Point as examples.

The CBF data set has three classes, namely cylin-
der, bell, and funnel. In Figures 6.2(a), (c), and (e), we
plot the profiles of the three classes of the CBF data set
in the left column. Both EDSC-CHE and EDSC-KDE
extract 3 local shapelets on this data set, 1 feature for
each class. The features extracted by the two methods
are very similar. We only show the features from EDSC-

CBF: 3 classes; 30 training inst.; 900 testing inst.; L=128

EDSC-CHE: MinLen = 5; MaxLen = L/2;k =3
EDSC-KDE: MinLen = 5; MaxLen = L/2;p = 95%

Accu. Cover. Ave.Len. fFs.
EDSC-CHE-NDefault | 95.03% | 89.44% | 35.03/128 | 3
EDSC-CHE 87.89% | 100% 44.84/128 | 3
EDSC-KDE-NDefault | 94.94% | 87.78% | 35.12/128 | 3
EDSC-KDE 85.89% | 100% 46.47/128 | 3
INN-FUl 85.2% 100% 128/128 NA
ECTS 85.2% 100% 91.73/128 | NA

Table 3: Results of CBF data set

Syn.:6 classes; 300 training inst.; 300 testing inst.; L=60

EDSC-CHE: MinLen = 5; MaxLen = L/2;k =3
EDSC-KDE: MinLen = 5; MaxLen = L/2;p = 95%

Accu. Cover. Ave.Len. | fFs.
EDSC-CHE-NDefault | 94.49% | 90.67% | 30.62/60 | 38
EDSC-CHE 87.66% | 100% 33.36/60 | 38
EDSC-KDE-NDefault | 97.06% | 90.67% | 30.43/60 | 39
EDSC-KDE 90.33% | 100% 33.19/60 | 39
INN-FUl 88% 100% 60/60 NA
ECTS 89% 100% 53.98/60 | NA

Table 4: Results of Synthetic Control data set
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Figure 6: Selected features on the CBF Data Set

CHE here (Figures 6.2(b), (d), and (f)). We highlight
the feature in the time series which it comes from. The
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Wafer: 2 classes; 1000 training inst.; 6174 testing inst.; L=152 Two P.: 4 classes; 1000 training inst.; 4000 testing inst.; L=128
EDSC-CHE: MinLen = 5; MaxLen = L/2;k =3 EDSC-CHE: MinLen = 5; MaxLen = L/2;k =3
EDSC-KDE: MinLen = 5; MaxLen = L/2;p = 95% EDSC-KDE: MinLen = 5; MaxLen = L/2;p = 95%

Accu. Cover. Ave.Len. #Es. Accu. Cover. Ave.Len. fFs.
EDSC-CHE-NDefault | 98.82% | 99.51% | 41.39/152 | 62 EDSC-CHE-NDefault | 84.75% | 93.75% | 79.29/128 305
EDSC-CHE 98.49% | 100% 41.93/152 | 62 EDSC-CHE 80.6% 100% 82.33/128 305
EDSC-KDE-NDefault | 99.15% | 99.51% | 38.42/152 | 52 EDSC-KDE-NDefault | 94.94% | 93.33% | 83.62/128 279
EDSC-KDE 98.87% | 100% 38.97/152 | 52 EDSC-KDE 90% 100% 86.58/128 279
1INN-FUIl 99.55% | 100% 152/152 NA INN-FUl 91% 100% 128 NA
ECTS 99.08% | 100% 67.39/152 | NA ECTS 86.48% | 100% 111.10/128 | NA

Table 5: Results of Wafer data set

OliveOil: 4 classes; 30 training inst.; 30 testing inst.; L=570
EDSC-CHE: MinLen = 5; MaxzLen = L/2;k =3
EDSC-KDE: MinLen = 5; MaxLen = L/2;p = 95%

Accu. Cover | Ave.Len. fEs.
EDSC-CHE-NDefault | 85.16% | 90% 174.07/570 13
EDSC-CHE 76.67% | 100% 213.48/570 13
EDSC-KDE-NDefault | 95.45% | 73% 223.18/570 13
EDSC-KDE 73.33% | 100% 315.67/570 13
INN-FUIL 86.7% 100% 570/570 NA
ECTS 90% 100% 497.83 /570 | NA
Table 6: Results of OliveQil data set
three classes are quite similar at the beginning. The

features learned by EDSC-CHE represent the charac-
teristics of each class, and lay in the early phases of the
time series when the classes start to separate from each
other.

Let us take the Gun-Point data set as another
example, which contains two classes, the Gun-Draw
class and the Point class [10]. Figures 7(a) and (b),
the profiles of the Gun-Draw class (left) and the Point
class (right) are plotted, respectively. For the Gun-
Draw class, the actors “draw a replicate gun from a hip-
mounted holster, point it at a target for approximately

Table 7: Results of Two Patterns data set

one second, then return the gun to the holster” [10]. For
the Point class, “The actors have their hands by their
sides. They point with their index fingers to a target for
approximately one second, and then return their hands
to their sides” [10]. The Gun-Draw class is different
from the Point class by two actions, “draw a gun from
a holster”, and “return the gun to the holster” [10].

EDSC-CHE learns 4 features for each class. In
Figure 7(c) and (d), we plot the feature with the highest
utility score for each class, respectively. For the GUN-
Draw class, the feature captures the region of “draw a
gun from the holster”. It is the action to distinguish
the two classes and it is an earlier feature than “return
the gun to the holster”. For the Point class, the feature
happens to belong to an unexpected signal. By plotting
the best matches of the time series for this feature
(Figure 7(e)), we can see the feature represents the
later moment of the “lifting the arm”. The top features
learned by the EDSC-KDE method are quite similar to
the two features plotted, and thus are omitted here for
the sake of space.

The above two examples on CBF and Gun-Point
data sets demonstrate that the features learned by
our methods can capture the early characteristics of
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different classes.

6.3 Sensitivity of Parameters The previous re-
sults are all generated by setting £ = 3 in EDSC-CHE
and p = 95% in EDSC-KDE. In learning the distance
threshold, parameters k (in Definition 6) and p (in Defi-
nition 5) control the degree of distinctiveness of learned
features. In this subsection, we use the ECG data set as
an example to show the effects of the parameters. The
results on the ECG data with different values of p and
k are shown in Figures 8 and 9, respectively.

In EDSC-KDE, when we increase p, the features
we learned should be more distinctive and the accuracy
classified by the features is expected to increase. In Fig-
ure 8, the accuracy of EDSC-KDE-NDefault generally
increases from 80% to 91% in the range of p = 50% to
p = 95% and decreases after p = 99%. When we set
p = 100%, no feature satisfies this probability thresh-
old and the accuracy of EDSC-KDE-NDefault is 0. By
examining the selected features, we found that when
p = 99%, some features with very small recalls are se-
lected and lead to wrong classification due to overfit-
ting.

When p increases, the coverage rate of EDSC-
KDE-NDefault decreases, since the distance thresholds

learned tends to be smaller. There is a trade-off between
the accuracy and the coverage when p increases. By
using a default classification rule, EDSC-KDE reaches
the highest accuracy of 88% when p = 95% as the best
balance between accuracy and coverage. When p =
90%, the EDSC-KDE has a similar accuracy as 87%.
On the other data sets, we also observe that the best
results usually appear when setting 90% < p < 95%,
and the results are stable in this range.

Figure 9 plots the results on ECG data set using
EDSC-CHE with various values of k. When k increases,
the accuracy of EDSC-CHE-NDefault increases and the
coverage rate decreases. When k& = 2.5, EDSC-CHE
reaches the best accuracy as 85% due to a good balance
between the accuracy and coverage of EDSC-CHE-
NDefault . On the other data sets, we observe that the
best results usually happen when 2.5 < k < 3.5. The
average prediction length increases as k > 1 increases.

6.4 Efficiency Table 8 compares the training time
using the straightforward implementations of EDSC-
CHE and EDSC-KDE, as well as the implementations
using the techniques in Section 5.3 (EDSC-CHE(Impr.)
and EDSC-KDE(Impr.)). In the straightforward imple-
mentations, when computing BMD-lists we also incor-
porate the early stopping techniques proposed in [16].

EDSC-CHE is faster than EDSC-KDE. The tech-
nique discussed in Section 5.3 can significantly reduce
the training time.

7 Conclusions

To tackle the problem of extracting interpretable fea-
tures for early classification on time series, we develop
the notion of local shapelets and the EDSC method.
Our experimental results clearly show that the local
shapelets extracted by our methods are highly inter-
pretable and can achieve effective early classification.
As future work, we plan to improve the effectiveness
and efficiency of feature selection and early classifica-
tion, and explore other types of features.
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