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16 Load Data Cleansing 
and Bus Load 
Coincidence Factors*

Wenyuan Li, Ke Wang, and Wijarn Wangdee

16.1  INTRODUCTION

Load curve data refer to power consumptions recorded by meters at certain time 
intervals at buses of individual substations. Load curve data are one of the most 
important datasets collected and retained by utilities. The analysis of load curve data 
would greatly improve day-to-day operations, system analysis in smart grids, system 
visualization, system performance reliability, energy saving, and accuracy in system 
planning [1–4].

*	This work is partly supported by a collaborative research and development grant from the Natural 
Sciences and Engineering Research Council of Canada.
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376 Smart Grids

The load forecast generally provides annual peak values for the whole system, each 
region, and individual substations. Loads at substations (buses) never reach their peaks 
at the same point in time. This phenomenon is called noncoincidence. A system analy-
sis, such as a power flow study, is often conducted at the system peak, or a regional 
peak, or a percentage level of the annual system peak, which may be a seasonal peak. 
It is a difficult task to accurately determine the load at each bus that corresponds to the 
annual system or regional peak or the percentage level of the peak load. Because hourly 
load curve data at all individual buses are generally not available, the majority of utili-
ties have used a so-called worst-case approach by ignoring the noncoincidence among 
bus loads, such that the annual peaks of all bus loads are assumed to appear at the same 
time as the annual system peak in power flow studies. Such an assumption leads to 
overestimation of loading levels on the transmission network, which in turn most likely 
results in overinvestment in system planning or overacting in system operation. For a 
system with its annual peak in winter, the system summer peak is usually assumed to 
be a percentage (such as 60%–80%) of the system winter peak, and the same percentage 
for the system is applied to all buses. In other words, the bus loads corresponding to the 
system summer peak are obtained by proportionally scaling down the bus loads at the 
system winter peak. If a system has its annual peak in summer, a similar approach is 
used to calculate the bus loads at the system winter peak. This proportional approach to 
power flows at a seasonal system peak may lead to underestimation of loading levels on 
some network branches and overestimation of loading levels on others. An underesti-
mation of loading levels on branches results in a system risk in planning and operation. 
Some utilities may consider the coincidence among several regional loads if they have 
collected chronological regional load curve data. However, this is not sufficient, as the 
coincidence among substations has not been captured.

In recent years, many utilities have implemented smart metering projects. Smart 
meters accurately record time-varying loads at end users or on feeders at intervals of 
seconds or minutes. This enables chronological load curve data to be automatically 
acquired at all buses (substations). With load curve data for system or region and at 
all buses, the bus load coincidence factors (BLCFs) at all bus loads can be easily 
estimated to accurately calculate bus loads corresponding to any reference point in 
the system or regional load curve. The concept of BLCFs will be explained in detail 
in Section 16.3.

Even for smart meters, however, invalid load data in the process of information 
collection and transfer are still unavoidable. Missing or corrupted data can be caused 
by various factors, including meter problems, communication failures, equipment 
outages, lost data, and unknown factors. Also, unexpected interruption or shutdown 
of power due to strikes, unscheduled maintenance, and temporary closure of produc-
tion lines can produce significant, irregular deviations from the usual load pattern, 
resulting in the related load data records being unrepresentative of actual usage pat-
terns. Poor quality of load curve data due to invalid information can cause errors in 
data analysis for capturing the coincidence relationship among bus loads. It is impor-
tant to identify and repair any invalid data. Currently, most utilities handle invalid 
data manually in an ad hoc manner. In practice, this approach does not work, par-
ticularly for a considerable amount of time-varying information from smart meters, 
as it is impossible to handle a huge data pool using a manual process.
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377Load Data Cleansing and Bus Load Coincidence Factors

This chapter addresses two issues: (1) cleansing of load curve data; and (2) calcu-
lation of BLCFs. Load curve data cleansing is the prerequisite for calculating accu-
rate BLCFs, while the BLCF is an application of chronological cleansed load curve 
data. Cleansed load curve data also have many other applications in data analytics 
of smart grids. Accurate BLCFs are the essential input data for system analyses of 
smart grids, including power flow studies, stability assessment, network loss calcula-
tion, and system reliability evaluation. An actual example is given to demonstrate the 
application of BLCFs in system power flow studies.

16.2  LOAD CURVE DATA CLEANSING

We can calculate accurate BLCFs by using cleansed load curves. This section dis-
cusses the basic concepts and method for cleansing outliers in load curves.

16.2.1  Basic Concepts

We call invalid data in a load curve “outliers,” including missing, corrupted, and unrepre-
sentative data due to various different causes. A load curve is a time series with the y-axis 
representing power consumption and the x-axis representing time. Theoretically, outlier 
detection in a time series has been a topic in data mining [5,6] and statistics [7]. Outliers 
can be classified into two categories: y-outliers and x-outliers. y-Outliers refer to invalid 
y-axis values compared with the behaviors in a local neighborhood [8]. Figure 16.1 shows 
two examples of y-outliers, one being a localized spike and the other being a localized 
dip. Load curve data exhibit some loose form of periodicity (e.g., daily, weekly, monthly, 
seasonal, and yearly). The term loose means that the actual data values can be differ-
ent, but the trend of the data repeats itself regularly at some interval. x-Outliers refer to 
abnormal or unrepresentative data that may occur as a deviation from such periodici-
ties [9]. x-Outliers are caused by random events such as a malfunction of data metering 
or transfer systems, outages, unexpected full or partial shutdown of production lines, 
unscheduled strikes, temporary weather changes, and so on. Such events are unlikely to 
occur again in other periods, and thus are not representative of regular patterns of load 
curves. Figure 16.2 shows a load curve with weekly periodicity (high weekdays and low 
weekends), in which part of the data in the first week is an x outlier to this periodicity, 
although the values in this part of the data are still within the range of the normal pattern.
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FIGURE 16.1  Examples of y-outliers in a load curve.

D
ow

nl
oa

de
d 

by
 [

Si
m

on
 F

ra
se

r 
U

ni
ve

rs
ity

],
 [

K
e 

W
an

g]
 a

t 2
0:

24
 0

5 
Ju

ne
 2

01
4 



378 Smart Grids

16.2.2  Method for Cleansing Outliers

The method for cleansing outliers includes the following steps: (1) load curve data 
are represented using a smoothing curve, which captures the general trend of the 
data; (2) a confidence interval on the smoothing curve is built to identify localized 
y-outliers; (3) the smoothing curve is modeled by a sequence of valleys and peaks, 
called ∪ shapes and ∩ shapes, which are the potential places where x-outliers could 
occur; (4) x-outliers are identified as the valleys, peaks, or both that do not repeat; 
and (5) the detected outliers are approximately repaired [8,9,10].

16.2.2.1  Kernel Function Representation of Load Curve
The first step in detecting outliers is to model the intrinsic patterns of load curve 
data by a smoothing curve. This step can be performed by standard smoothing tech-
niques. Given a time series of load curve data, T = {(ti, yi)} (i = 1, …, n) where yi is the 
load value at the time point ti, the regression relationship of the data can be modeled 
by a continuous function [10]:

	 y m t i ni i i= ( ) + =( )ε 1,..., 	 (16.1)

This function is composed of the regression function m and the observation error 
εi. The estimated load value in the regression function at time t is modeled in a form 
of nonparametric regression by

	

�m t
n

w t yi i
i

n

( ) = ( )
=
∑1

1 	
(16.2)

where wi(t) (i = 1, …, n) denotes a sequence of weights. Equation 16.2 is called the 
smoothing curve, in which wi(t) is the weight of the point (ti, yi) at time t in the esti-
mation of the smoothing value. The estimation is neighborhood based in the sense 
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FIGURE 16.2  Examples of x-outliers in a load curve.
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379Load Data Cleansing and Bus Load Coincidence Factors

that the further ti is from t, the less weight is given to the point (ti, yi). In the kernel 
smoothing, wi(t) is given by

	
w t

Kern t t
f ti
h i

h
( ) = −( )

( )
�

	
(16.3)

where

	
Kern t

h
Kern t

hh ( ) = 





1

	
(16.4)

is the kernel with the scale factor h. By using the Rosenblatt–Parzen kernel density 
estimator [11] of the density of t

	

�
f t n Kern t th h i

i

n

( ) = −( )−

=
∑1

1 	
(16.5)

the Nadaraya–Watson estimator [11] for Equation 16.2 is obtained as follows:
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=

∑
∑
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(16.6)

The shape of the kernel weights is determined by the function Kern, whereas 
the size of weights is parameterized by h, which is called bandwidth and referred 
to below as smoothing parameter. A larger h corresponds to a smoother curve. The 
kernel function Kern can be chosen to be the normal probability density function 
[11], that is,

	
Kern t t( ) = −1

2
1 2 2

π
e ( / )

	
(16.7)

16.2.2.2  Confidence Interval for Identifying y-Outliers
With a smoothing curve expressed by kernel functions, a localized y-axis outlier 
can be easily identified by building a confidence interval for normal load data on 
the smoothing curve. An observation within the confidence interval is considered 
normal and an observation outside the confidence interval is considered invalid data. 
The error term ɛi in Equation 16.1 is assumed to be normally and independently dis-
tributed with the mean of zero and constant variance σ2. Under this assumption, the 
confidence interval of a load data point can be computed by its estimated value plus 
or minus a multiple of the error. The estimated error si(est) is given by [12]
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s s yi i iest MSE( ) = + ( )2 ˆ

	
(16.8)

where MSE is the error mean square:
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−
−( )

=
∑1 2

1n d
y yi i

i

n

ˆ
	

(16.9)

and s yi i
2( )^  is the sampling variance of load at time point ti and is given by

	 s yi i
2 ˆ( ) = ×WWT MSE 	 (16.10)

where W is called the hat matrix and is calculated by [13]
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(16.11)

where Wi(tj) corresponds to the weight of observation at time ti for estimating the load 
value at time tj. Note that d in Equation 16.9 is the number of degrees of freedom 
of the fitted load curve data and can be computed by the trace of the hat matrix W.

For a given significance level α, the confidence interval at time ti is estimated by

	
ˆ , ˆ/ /y z s y z si i i i− × ( ) + × ( ) − −1 2 1 2α αest est 	 (16.12)

where z1–α/2 is the 100(1 – α/2) percentile of the standard normal distribution. For 
example, if the 0.05 significance level (α = 0.05) is chosen, the corresponding z1–α/2 
is 1.96. This means that a normal observation would fall in the confidence interval 
given by Equation 16.12 with a probability of 95%, or, equivalently, that the prob-
ability that a data point located outside the interval is invalid is 95%.

16.2.2.3  Candidates for x-Outliers
An x outlier has an unusual trend against the periodicity. With the trend of the load 
curve being modeled by the smoothing curve, an x outlier tends to occur at a “valley” 
or a “peak” of the smoothing curve, where the smoothing curve has local minimal or 
maximal values. To formally define the location of such valleys and peaks, we first 
introduce some terminologies.

The slope at time ti for a smoothing curve {( , )}t mi i i
n^
=1 is defined by Δmi/Δti, where 

∆m m mi i i= − −ˆ ˆ 1 , Δti = ti − ti–1, for 2 ≤ i ≤ n. A time t in an interval is called a steep 
time point if the absolute value of the slope at time t is the maximum in the interval. 
In other words, at a steep time point, the load increases or decreases at the maxi-
mum rate in the interval. Note that there could be more than one steep time point 
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381Load Data Cleansing and Bus Load Coincidence Factors

in an interval. An interval [a, b] is maximal-decreasing if the slope at every time 
point in [a, b] is ≤0 and any interval containing [a, b] has at least one point with a 
positive slope. For two time points c and cʹ in a maximal-decreasing interval [a, b], 
[c, b] is convex-decreasing if c is the rightmost steep time point in [a, b], and [a, cʹ] 
is concave-decreasing if cʹ is the leftmost steep time point in [a, b]. In Figure 16.3, 
the numbers on the smoothing curve are the slopes of the smoothing curve, and the 
horizontal axis is time; [t1, t5] is a maximal-decreasing interval; and t3 and t4 are two 
steep time points in [t1, t5]. Since t4 is the rightmost steep time point in [t1, t5], [t4, t5] 
is a convex-decreasing interval, but [t3, t5] is not, while [t1, t3] is a concave-decreasing 
interval.

Similarly, we can define maximal-increasing intervals, concave-increasing inter-
vals, and convex-increasing intervals. In Figure 16.3, [t6, t10] is a maximal-increasing 
interval, t8 and t9 are steep time points, [t6, t8] is a convex-increasing interval because 
t8 is the leftmost steep time point in [t6, t10], and [t9, t10] is a concave-increasing 
interval.

The following definitions formalize the notions of valleys and peaks.
Definition of ∪ shape: For a smoothing curve, a ∪ shape is a subcurve 

T t mp p p i
j

∪ == {( , )}^  such that, for some k with i ≤ k ≤ j, [i, k] is a convex-decreasing 
interval and [k + 1, j] is a convex-increasing interval.

Definition of ∩ shape: For a smoothing curve, a ∩ shape is a subcurve 
T t mp p p i

j
∩ == {( , )}^  such that, for some k with i ≤ k ≤ j, [i, k] is a concave-increasing 

interval and [k + 1, j] is a concave-decreasing interval.
In Figure 16.3, the curve [t4, t8] is a ∪ shape formed by a convex-decreasing inter-

val [t4, t5] and a convex-increasing interval [t6, t8]. The curve [t9, t12] is a ∩ shape 
formed by a concave-increasing interval [t9, t10] and a concave-decreasing interval 
[t11, t12]. Notice that the adjacent ∪ shape and ∩ shape overlap at one point at most. 
Let us see the adjacent ∪ shape [t4, t8] and ∩ shape [t9, t12] in Figure 16.3. The ∪ shape 
[t4, t8] must end at the leftmost steep time point t8 and the ∩ shape [t9, t12] must start 
at the rightmost steep time point t9. Intuitively, ∪ shapes and ∩ shapes capture the 
regions on the smoothing curve where the raw load curve has large drops and large 
rises. Such regions are the potential places where x-outliers may occur. Therefore, ∪ 
shapes and ∩ shapes are candidate regions for outliers. All candidate regions can be 
found by computing ∪ shapes and ∩ shapes following their definitions.

0.1
2–2

3–3

–3 3

1 –1–1m̂

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t

–0.1–0.1

FIGURE 16.3  Explanation of the terminologies in smoothing curve [t1, t12].
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382 Smart Grids

16.2.2.4  Identifying x-Outliers
Candidate regions with ∪ shapes and ∩ shapes are extracted based on local neigh-
borhood information (i.e., valleys and peaks). Whether a candidate region contains a 
real outlier depends on whether the data in the region deviates from the periodicity. 
A candidate is not a real outlier if similar load data occur regularly in other periods 
according to the periodicity. The similarity should take into account background 
noise and time shifting of periodicity.

To identify all outliers, we consider every candidate region r found in the previous 
step. Let C* denote the portion of the raw load curve data contained in r. We want to 
emphasize that C* contains raw data in the load curve, not the data in the smoothing 
curve. If the data in C* occur approximately in the corresponding regions in differ-
ent periods, C* is not a real outlier but a part of the periodicity. To differentiate this, 
we extract all the subload curves C1, C2, …, Ck, where each Ci is the portion of the 
raw load curve in the corresponding region of C* in the ith period. If C* is “similar” 
to the majority of C1, C2, …, Ck, C* is considered normal; otherwise, C* is consid-
ered a real outlier.

The remaining question is how to measure the similarity between two subcurves 
C* and Ci with the same length. There are two considerations in choosing the simi-
larity measure. First, the similarity measure should be less sensitive to background 
noise. For example, the two load curves in Figure 16.4 should be considered simi-
lar despite some variability at the first peak due to background noise. Second, the 
similarity measure should be less sensitive to time shifting and stretching commonly 
observed in load curve data. For example, load curves TA and TB in Figure 16.5 
should be considered similar despite minor time shifting and stretching.

The Euclidean distance that is commonly used is not suitable for our purpose 
because it is sensitive to time shifting and stretching. If the Euclidean distance were 
used, the two curves TA and TB in Figure 16.5 would be recognized as dissimilar. 
The dynamic time warping distance for two sequences [14] is not suitable either, 
since it would pair up all points of two sequences in comparison, making it impos-
sible to skip noisy points.

What we need is a similarity measure that will examine a small neighborhood in 
search of matching points and skip noisy points. For this purpose, the longest com-
mon subsequence (LCSS) [15] concept can be adopted. LCSS is a coarse-grained 
similarity measure in the sense that it measures similarity in terms of “trends” 

t

y

FIGURE 16.4  Two similar load curves with noise.
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383Load Data Cleansing and Bus Load Coincidence Factors

instead of exact points. Below, we describe how LCSS is extended to measure the 
similarity of load curves.

Given two subload curves A = 〈a1, a2, …, am〉 and B = 〈b1, b2, …, bn〉, which cor-
respond to C* and Ci, we want to find the LCSS common to both A and B. The idea 
is as follows. To allow time shifting and stretching, ai and bj that are within some 
time proximity are examined for matching. If these load points are similar, they are 
considered as a match and are kept. Dissimilar values in one or both load curves are 
dropped. Mathematically, given an integer δ and a real value ɛ, the cumulative simi-
larity Si,j(A, B) or Si,j is defined as follows:

	

S
i j

S a b i j
S S

i j i j i j

i j i j

, ,

, ,

,

max ,
=

= ∨ =
+ − ≤ ∧ − ≤

(
− −

− −

0 0 0
1 1 1

1 1

if
if ε δ

))








 otherwise

	 (16.13)

In Equation 16.13, the first if statement does the initialization for the shortest pre-
fix. The second if statement builds the similarity recursively: if |ai − bj| ≤ ɛ and if ai 
and bj are close enough in time, that is, |i − j| ≤ δ, ai and bj are matched and the simi-
larity is incremented. Note that ɛ represents a tolerance of noise in load value and δ 
represents a tolerance of time shifting and stretching.

Let |A| and |B| be the length of A and B, respectively. The LCSS similarity of A 
and B is given by

	
γ δ ε, , ,

min ,
,A B

S
A B
A B( ) = ( ) 	

(16.14)

where S|A|,|B| is the length of the common subsequence to both A and B, which is 
cumulatively computed by Equation 16.13. For a user-specified threshold θ, we say 
that A and B are similar if

	 γ δ ε θ, , ,A B( ) ≥ 	 (16.15)

y

t

TA

TB

FIGURE 16.5  Two similar load curves with time shifting and stretching.
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384 Smart Grids

16.2.3 R epairing Outliers

Detected outliers should be repaired before the load curve can be used for calculat-
ing BLCFs or other applications. Suppose that we want to repair an outlier C*. Some 
valid data must be selected to replace the load data of C*. The replacement data can 
be derived from the normal data in the corresponding time interval in other periods 
with an adjustment for the increasing or decreasing long-term trends over time. This 
is expressed as the following multiplicative model [16]:

	 Y t T t R ti i i( ) = ( )× ( ) 	 (16.16)

where Y(ti) represents the value that will replace the abnormal value at a time ti 
belonging to an outlier, T(ti) represents the load value in the long-term trend, and 
R(ti) represents the periodic index, that is, how much the load curve deviates from 
the long-term trend at time ti.

It is possible to estimate T(ti) by the smoothing curve defined in Equation 16.2 
with an appropriate smoothness level (bandwidth). However, in the presence of outli-
ers, the smoothing curve may contain invalid data around the outliers to be replaced. 
To address this problem, all outliers in the load curve are replaced, first, by the aver-
age of the data at the corresponding time in the previous and following periods. If 
load points at these times are also outliers themselves, the corresponding data from 
earlier and later periods will be examined until normal data are obtained. After 
filling in such average values for all outliers, a new smoothing curve is regenerated 
using Equation 16.2 and is used to estimate T(ti).

The periodic index R(ti) for a time ti belonging to an outlier is estimated by the 
average of the periodic indexes at the corresponding time of its previous and follow-
ing periods, that is,

	
R t R t l R t li i i( ) = −( ) + +( )( )1

2 	
(16.17)

where l is the length of the periodicity. If the data at the previous and next periods 
are outliers, earlier and later periods are examined until normal data are obtained. 
Note that, for a time ti not belonging to an outlier, the periodic index at ti is computed 
by its definition:

	
R t y

T ti
i

i
( ) = ( ) 	

(16.18)

where yi is the load at time ti. After T(ti) and R(ti) for an outlier are obtained, 
Equation 16.16 is used to produce the replacement value Y(ti).

16.2.4 S election of Parameters

The method described above uses several parameters: the smoothing parameter h (see 
Equation 16.4), the load stretching threshold ɛ and the time stretching threshold δ (see 
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385Load Data Cleansing and Bus Load Coincidence Factors

Equation 16.13), and the LCSS similarity threshold θ (see Equation 16.15). How should 
the values of these parameters be set? One approach is to use some statistically “opti-
mal” setting, such as the optimal smoothing parameter [17]. In applications where the 
user has background knowledge, the user often desires to have control over a small 
number of settings. A practical approach is to provide a mechanism that helps the user 
to identify a proper setting of parameters in such a case. We use the smoothing param-
eter h as an example below, and a similar approach can be applied to other parameters.

A larger h produces a smoother smoothing curve, and thus models the load data in 
less detail. In practice, we do not have to make a choice in advance. A software tool 
with a user-friendly interface has been developed, which allows the user to slide a 
bar for the smoothing parameter and displays the smoothing curve and the identified 
outliers to the user interactively. Based on visual inspection of the raw data, smooth-
ing curve, and identified outliers, the user can either accept the results or slide the 
bar again for a different choice of h and get a display of the new smoothing curve and 
outliers based on the new choice of h. This is analogous to sliding the bar at the lower 
right of the Word window for setting the font size of a document. With such sliding 
bars, a user often quickly converges to what he or she considers to be the best setting.

As an experiment, the method was applied to an actual industrial load curve in 
the system of BC Hydro, Canada. This load curve includes hourly MW loads for the 
6 years from October 2004 to October 2010, with 24 × 365 × 6 = 52,560 observed 
records. Figure 16.6 shows the raw load records, the smoothing curve (by the bold 
line) obtained using a specific smoothing parameter h [8], and the x-outliers (marked 
by each rectangle) detected by the proposed method. It can be seen that the smooth-
ing curve models the load curve properly and there is no false-positive or false-
negative error in detecting the x-outliers.

16.3  BUS LOAD COINCIDENCE FACTORS

Once outliers in historical load curves are cleansed, calculating BLCFs using load 
curve data is straightforward. This section illustrates the basic concept and procedure 
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FIGURE 16.6  An actual load curve, the smoothing curve, and identified x-outliers.
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386 Smart Grids

of calculating BLCF, and Section 16.4 will present an example to demonstrate the 
application of BLCF to power system analysis.

16.3.1  Basic Concept of BLCF

Once load curves at all considered buses are cleansed, it is straightforward to cal-
culate the BLCFs. The BLCF is an important concept in power system analyses, 
particularly in power flow studies [4]. The load forecast generally provides annual 
peak values for the whole system, each region, and individual substations. As men-
tioned in Section 16.1, loads at substations never reach their peaks at the same point 
in time. To perform a power flow study at the annual system or regional peak, or at a 
percentage level of the annual peak, which may be a seasonal peak or valley, we must 
calculate bus loads corresponding to the peak or the level of the peak. The BLCFs at 
the buses are used for this purpose.

The concept of BLCF is illustrated using Figure 16.7. For simplicity, only two 
substation load curves are considered. The total load curve, which is the sum of the 
two substation load curves, can be viewed as the system (or regional) load curve. 
Points A, E, and D are the peaks of the system and two substation load curves, 
respectively. Apparently, they do not occur at the same time. Points C and B repre-
sent the load points of the two substations corresponding to the system (or regional) 
peak. The BLCFs of the two substations are defined as

	
BLCF1 = L

L
C

E 	
(16.19)

	
BLCF2 = L

L
B

D 	
(16.20)

where LC and LE are the loads at Points C and E in the load curve 1 for Substation 1, 
and LB and LD are the loads at Points B and D in the load curve 2 for Substation 2.
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FIGURE 16.7  Concept of BLCF.
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387Load Data Cleansing and Bus Load Coincidence Factors

Obviously, cleansed load curve data are important to accurately calculate BLCF. 
For instance, if the load around Point B, C, D, or E is corrupted, we will get a dis-
torted BLCF value. Even if the load at Point B or C is valid data, a reduced LD or LE 
will overestimate the BLCF value and an elevated LD or LE will underestimate the 
BLCF value.

Using the example shown in Figure 16.7, we defined the BLCF corresponding 
to the system peak. For a given load point in a system or regional load curve, the 
corresponding time point on the x-axis is called the reference point. In this sense, 
BLCFs can be calculated for any different reference points on a system or regional 
load curve (such as the annual peak, winter or summer peak, winter or summer val-
ley). BLCFs can be also calculated for different load categories (such as industrial, 
residential, or commercial customers or their combinations) using a similar con-
cept. Apparently, BLCFs vary dynamically from year to year, as the load curve data 
change every year. BLCFs should be estimated using multiple years of load data and 
updated each year. There are uncertainties around load data points. The system or 
regional peak is different in value and moves around in different years, and various 
periodicities in a load curve may be shifted. To tackle the uncertainties, instead of 
using the load value at each single point (such as A, B, C, D, or E), the average of a 
certain number of loads around each point should be used.

Once the BLCFs are estimated, the bus loads corresponding to any reference 
point on a system or regional load curve can be calculated using the BLCF values for 
that reference point and the forecasted peaks of substation loads.

16.3.2 P rocedure for Calculating BLCF

In the procedure described below, the annual system peak in a 1-year period is used 
as a reference point to indicate how to estimate the BLCF values and calculate bus 
loads corresponding to the reference point. The procedure for estimating the BLCFs 
corresponding to other reference points (a percentage level of the annual system peak 
or the maximum/minimum load value in a specified period, such as winter or sum-
mer) in a system or region is similar.

The procedure includes the following steps [18]:

	 1.	The invalid data for yearly load curves at all considered substations are 
cleansed using the method given in Section 16.2, including identification 
and repairing of invalid data.

	 2.	All the yearly substation load curves are summed up to obtain the yearly 
system load curve. The maximum hourly load value (peak) in the yearly 
system load curve is determined and is assumed to be X MW. The corre-
sponding time point on the x-axis is called the reference point.

	 3.	N hourly load points on the system load curve that are closest to the X MW 
in the load values are determined, where N (such as 24 or 48) is a proper 
number for handling the uncertainty of the system peak. In the case where 
the annual system peak is selected as the reference point, the N hourly 
load values include the system peak, itself being X MW, with others being 
smaller than or equal to X MW. In other cases in which a nonannual system 
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388 Smart Grids

peak is selected as the reference point, some of the N selected hourly load 
values may be larger than X MW but others may be smaller than X MW.

	 4.	M annual largest hourly load values on the yearly load curve of each indi-
vidual substation are determined, where M is a proper number for handling 
the uncertainty of the substation load peak and may or may not be equal to 
N, depending on a judgment on the degree of uncertainty of the substation 
load peak. Let Lki(P) denote the MW load at the kth point of the M hourly 
load points in the ith substation load curve.

	 5.	We locate the N points on each yearly substation load curve that correspond 
to the same time points as the N load points on the yearly system load curve, 
which have been determined in Step 3. Let Lji denote the MW load at the jth 
point of the N selected hourly load points in the ith substation load curve. 
The BLCF corresponding to the selected reference point for the ith substa-
tion is estimated by

	

BLCF  i
ji

ki
k

k M
j

N

N
L

L P M
=

( )



=

=
= ∑∑1

1
1

	

(16.21)

	 6.	There are always some differences in the yearly load curves of a substation 
in different years. In many cases, the differences may be relatively small, as 
load customers supplied by the substation usually maintain their electricity 
consumption behaviors. In other cases, the differences may be relatively large 
because the electricity consumption behaviors of some customers change over 
the years. To deal with the possible changes, it is better to repeat Steps 1–5 for 
more than 1 year’s load curve data. On the other hand, we should not use too 
many years’ data, since cumulative changes may be so significant that data 
from previous years are no longer representative of the most recent pattern. 
We suggest considering a time frame of the past 3 years for obtaining three 
BLCF values for each substation. There are three possibilities, as follows:

	 a.	 Only 1 year’s load curve data are available. In this case, the BLCF for 
this year is used.

	 b.	 Two years’ load curve data are available. In this case, the difference 
between the two BLCF values is calculated as a percentage with respect 
to the larger value.

	 i.	 If the difference is smaller than or equal to a threshold (such as 
5%–10%), the average of the two BLCF values is used as the final 
BLCF.

	 ii.	 If the difference is larger than the threshold, the BLCF from the 
most recent year’s load curve is used as the final BLCF.

	 c.	 Three years’ load curve data are available. In this case, the differences 
between each pair of the three BLCF values are calculated as a percent-
age with respect to the largest value.

	 i.	 If all the three differences are smaller than the threshold, the aver-
age of the three BLCF values is used as the final BLCF.
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389Load Data Cleansing and Bus Load Coincidence Factors

	 ii.	 If two of the three differences are smaller than the threshold, the 
average of the larger two BLCF values is used as the final BLCF.

	 iii.	 If only one of the three differences is smaller than the threshold, the 
average of the two BLCF values corresponding to this difference is 
used as the final BLCF.

	 iv.	 If all the three differences are larger than the threshold, the BLCF 
from the most recent year’s load curve is used as the final BLCF.

	 7.	The MW load of each substation corresponding to the selected reference 
point (such as the annual system peak, or a percentage level of the annual 
system peak, or the maximum or minimum load value in a selected period) 
can be calculated using the BLCF value of each substation and the forecast 
peak load for each substation in the considered year, by

	 L L Fi i iMW BLCF( ) = ( )× 	 (16.22)

where Li(MW) is the MW load at the ith substation (bus) corresponding to the refer-
ence point and Li(F) is the forecasted peak load for the ith substation.

It should be pointed out that the word “system” in the above description can refer 
to a whole system, a region or area, a subregion or subarea, or a substation group.

16.4  APPLICATION OF BLCF TO SYSTEM ANALYSIS

A real-life case is used in this section to demonstrate the application of BLCF to 
system analysis.

16.4.1 S tudied System and Load Curve Data

Figure 16.8 shows a transmission network supplying power to a subarea of BC Hydro in 
Canada. The subarea includes three substations named YVR, SEA, and RIM. The power 
is supplied from the upstream substation KI2 through two 60 kV transmission circuits 
named 60L43 and 60L44. Each circuit includes three sections marked by A, B, and C. 
Sections A and B are overhead lines and Section C is an underground cable. The MVA 
ratings of the three sections of each circuit in winter and summer are listed in Table 16.1.

The cleansed hourly load curves at the three substations in 2006/2007 are shown in 
Figure 16.9. By summing up the loads of the three substations at every hour, the total load 
curve of the subarea is created, as shown in Figure 16.10, where the summer and winter 
peak periods are framed by the two dashed line rectangles. This subarea has its annual 
peak in winter, which appears on November 29, at 5:00 pm, for this particular year.

The maximum loading levels on the two circuits (60L43 and 60L44) occur at the 
same time point as the subarea peak. The power flows at the maximum loading levels 
on November 29, 2006 at 5:00 p.m. are displayed in Figure 16.11. It can be seen that 
the actual maximum loading levels in the normal state are as follows:

	 In the normal state, 60L43 loading = 56.5/156 = 36.2%
	 In the normal state, 60L44 loading = 48.2/156 = 30.9%
	 In N−1 contingency states, the maximum loading level can be calculated by 

contingency analysis. It is 105.9/156 = 67.9%.
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390 Smart Grids

16.4.2  Bus Load Coincidence Factors at the Three Substations

The BLCFs are calculated using the method in Section 16.3 and the historical load 
curve data at the three substations. The BLCF values obtained using the subarea win-
ter peak (which is the annual peak in this example) and summer peak as the reference 
points are given in Tables 16.2 and 16.3, together with the forecast annual (winter) 
peak loads in 2017/2018 and the calculated coincidence bus loads in 2017/2018. It is 
important to appreciate that a coincident load for the subarea summer peak as a ref-
erence point should be, and is still, calculated using the forecasted annual peak (i.e., 
the winter peak in this case) multiplied by its summer BLCF, since a BLCF is always 
defined as a load at the reference point divided by its annual peak. To make a com-
parison, the winter and summer peak loads of the three substations in 2006/2007 are 

KI2

RIM

SEAYVR

60L43A

60L43C

60L43B 60L44B

KI2

RIM

SEA

60L44C 

60L44A

FIGURE 16.8  The subarea power supply network.

TABLE 16.1
Rating of the Two Circuits

Circuit Section
Winter Rating 
(MVA) (10°C)

Summer Rating 
(MVA) (30°C)

60L43A and 60L44A 156 121

60L43B and 60L44B 100   78

60L43C and 60L44C 68.5   63
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391Load Data Cleansing and Bus Load Coincidence Factors

also given in the two tables. Note that the load at the RIM substation includes two 
components: distribution and industrial customers. The industrial customer at RIM 
will not be in service until 2017/2018, and therefore its historical load curve data are 
not available for calculating the BLCF. In this case, the BLCF can be assumed to be 
1.0. Such an assumption creates a relatively high loading level, which can lead to a 
more secure decision in system operation and planning. A small part of the distribu-
tion load at RIM will be transferred to another substation by 2017/2018.
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FIGURE 16.9  The cleansed hourly load curves at the three substations.
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392 Smart Grids

It can be observed that the total load in the subarea is increased from 105.8 MW in 
2006/2007 to 123 MW in 2017/2018. This is translated into an average annual growth 
rate of 1.5% (1.56 MW/year). The difference between the forecasted (noncoinciden-
tal) total load and the coincidental total load is 123−119 = 4.0 MW. This is equivalent 
to the load increase percentage in about 2 years. In other words, if the coincidental 
loads are used for a planning purpose, this may lead to approximately 2 years’ delay 
of the system reinforcement required by the load growth in this subarea. This obser-
vation can be verified by the power flow studies given in the next subsection.
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FIGURE 16.10  The load curve of the subarea.
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393Load Data Cleansing and Bus Load Coincidence Factors

16.4.3 P ower Flow Analysis Using the Bus Load Coincidence Factors

The power flow studies for the subarea network are performed using the noncoincidental 
and coincidental substation loads in 2017/2018. The following four cases are considered:

Case 1: Noncoincidental winter peak loads, which refer to the forecasted 
annual peaks at the given three substations.

Case 2: Noncoincidental summer peak loads. For utilities having the annual 
peak in winter, although load forecast departments at the utilities may also 

TABLE 16.2
BLCFs and Coincidence Loads for the Winter Peak at the Three Substations

Substation

Actual Winter 
Peak Load in 
2006/2007 

(MVA)

Forecast Annual 
Peak in 

2017/2018 
(MVA) Winter BLCF

Coincidental 
Load in 

2017/2018 
(MVA)

RIM—distribution 
load

83.0 78.2 0.9882 77.3

RIM—industrial 
load

—a 7.0 N/A (1.0000) 7.0

SEA 13.0 23.3 0.9361 21.8

YVR 9.8 14.5 0.8863 12.9

Total 105.8 123.0 — 119.0

a	 —, The industrial customer is not yet in service and the load profile is therefore not available.

TABLE 16.3
BLCFs and Coincidence Loads for the Summer Peak at the Three 
Substations

Substation

Actual 
Summer Peak 

Load in 
2006/2007 

(MVA)

Forecast 
Annual Peak 

in 
2017/2018 

(MVA)
Summer 

BLCF

Coincidental 
Load in 

2017/2018 
(MVA)

RIM—distribution 
load

65.4 78.2 0.8331 65.1

RIM—industrial 
load

—a 7.0 N/A (1.0000) 7.0

SEA 12.6 23.3 0.9359 21.8

YVR 11.6 14.5 0.8344 12.1

Total 89.6 123.0 — 106.0

a	 —, �The industrial customer is not yet in service and the load profile is therefore not 
available.
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394 Smart Grids

provide the forecasted summer peak for the whole system (or areas) in addi-
tion to the forecasted winter peaks for the whole system (areas) and all 
substations, they generally do not provide the forecasted summer peaks 
for individual substations. In the existing practice of utilities, a common 
approach is to calculate substation loads at the system summer peak point 
by proportionally scaling down from the annual substation peaks using the 
same ratio of the system (area) winter peak with regard to the system (area) 
summer peak. In this case, the noncoincidental summer peak loads are 
obtained using this approach.

Case 3: Coincident winter peak loads. In this case, the substation loads are 
calculated using their BLCFs corresponding to the winter (annual) subarea 
peak.

Case 4: Coincident summer peak loads. In this case, the substation loads are 
calculated using their BLCFs corresponding to the summer subarea peak.

The loading levels in the four cases are summarized in Table 16.4. The power 
flows for the four cases in the normal states (no component outage) are shown 
in Figures 16.12 through 16.15, respectively. The following observations can be 
made:

•	 The difference in the maximum loading level for N−1 contingency states 
between noncoincidental and coincidental winter peak cases is 2.7% 
(78.7%−76%). This is equivalent to a loading level increase in about 
2 years, as the annual average loading level increase is approximately 
(118.6−105.9)/11/105.9 = 1.1%. In other words, using the coincidental loads 
in the power flow analysis can delay the upgrade of the two circuits by 
approximately 2 years. This loading level analysis is consistent with the 
direct comparison between the forecasted and coincidental total loads, 
although their percentages are slightly different.

TABLE 16.4
Loading Levels in the Four Cases

Noncoincidence Loads Coincidence Loads (Using BLCF)

Case 1:
Winter (Annual) 

Peak 
Case 2:

Summer Peak

Case 3:
Winter (Annual) 

Peak
Case 4:

Summer Peak

60L43 loading 
(normal 
state)

66.5/156 = 42.6% 53.8/121 = 44.5% 63.8/156 = 40.9% 57.0/121 = 47.1%

60L44 loading 
(normal 
state)

54.2/156 = 34.7% 43.9/121 = 36.3% 52.9/156 = 33.9% 46.8/121 = 38.7%

Maximum 
loading 
(N−1 states)

122.7/156 = 78.7% 98.2/121 = 81.2% 118.6/156 = 76.0% 105.1/121 = 86.9%
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FIGURE 16.12  The power flows in Case 1 (using the noncoincidental winter peak loads in 
2017/2018).
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FIGURE 16.14  The power flows in Case 3 (using the coincidental winter peak loads in 
2017/2018).
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FIGURE 16.15  The power flows in Case 4 (using the coincidental summer peak loads in 
2017/2018).
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•	 It is noticed that the difference between noncoincidence and coincidence 
loads for the winter peak is not significant in this particular example. 
However, such a difference may be quite large in other system cases.

•	 It should be emphasized that the noncoincidental summer peak using a tra-
ditional load-scaling method could result in an overoptimistic case because 
the circuit loadings based on the coincidental summer peak case are higher. 
This observation is opposite to that in the winter peak. As a result, the future 
system reinforcement in this subarea is driven by summer constraints, and 
therefore a coincidental summer peak case should be developed and used 
to capture this concern.

•	 By comparing the results in Cases 3 and 4, it is observed that the percent-
age loading level in the summer peak is higher than that in the winter peak 
in this subarea. This implies that the subarea is mainly constrained by the 
summer rating. This phenomenon can be intuitively judged from the high 
BLCFs in the summer peak and the high ratio of the summer peak to the 
winter peak (106/119 = 89.1%) (see Tables 16.2 and 16.3).

16.5  CONCLUSIONS

Load curve data at substations play an important role in data analytics of smart grids. 
Implementation of smart meters makes it possible to record time-varying loads at end 
users or on feeders at intervals of seconds or minutes and to acquire chronological 
load curve data at all substations. Unfortunately, invalid load data cannot be avoided 
in the data collection and transfer process, even for smart meters. Therefore, load 
curve data cleansing is an essential task. This chapter presents a method for load 
curve data cleansing based on techniques used in data mining and statistics. The 
method not only effectively identifies both y-outliers and x-outliers but it also repairs 
the outliers.

Cleansed load curve data are extremely useful information for system analyses 
and visualization in day-to-day operations and long-term planning. One straightfor-
ward application is the calculation of BLCFs at substations. The BLCFs produce an 
accurate coincidental bus load model in power flow studies. The use of noncoinci-
dental loads in the system analysis may lead to overestimation or underestimation of 
loading levels in a transmission system and in turn result in overinvestment or system 
insecurity risk. This chapter proposes an approach and a procedure for estimating 
BLCFs in power grids. An actual utility subarea system is used to demonstrate the 
application and benefits of using BLCFs.
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