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Abstract—To understand how social networks evolve over
time, graphs representing the networks need to be published
periodically or on-demand. The identity of the participants
(nodes) must be anonymized to protect the privacy of the
individuals and their relationships (edges) to the other members
in the social network. We identify a new form of privacy attack,
which we name the degree-trail attack. This attack re-identifies
the nodes belonging to a target participant from a sequence
of published graphs by comparing the degree of the nodes in
the published graphs with the degree evolution of a target. The
power of this attack is that the adversary can actively influence
the degree of the target individual by interacting with the
social network. We show that the adversary can succeed with
a high probability even if published graphs are anonymized by
strongest known privacy preserving techniques in the literature.
Moreover, this success does not depend on the distinctiveness of
the target nodes nor require the adversary to behave differently
from a normal participant. One of our contributions is a formal
method to assess the privacy risk of this type of attacks and
empirically study the severity on real social network data.

Keywords-social network; privacy; anonymity; data publish-
ing;

I. INTRODUCTION

Social networks are naturally represented by graphs:
nodes correspond to participants within the network and
edges (links) coincide with relationships between them.
Participants of a social network typically want their sensitive
information, including their relationships to the other indi-
viduals in the network, to remain private from the general
public — but data miners and researchers want to analyze
the raw data to discover interesting characteristics about
particular social networks. Backstrom et al. showed that even
if all of the identifying attributes of the participants were
removed from the nodes, it was still possible for an adversary
to re-identify the node of a participant by exploiting auxiliary
information such as the degree of nodes [1]. A compromise
is often reached between the data publishers and the data
miners, resulting in both parties agreeing to some method
that will be used to anonymize a snapshot of the live network
data prior to its publication.

Motivation. The majority of privacy techniques for social
network data focus on a single snapshot but one publication
is not useful for mining evolving trends and patterns of social
networks, such as how the popularity of individuals changes

or how a disease spreads over time. To support such analysis,
newer versions of social network data must be released
periodically or on-demand. While multiple publications are
extensively studied for relational data [5][14][13], those
techniques only consider the participants’ structured infor-
mation (i.e., their identifiers, quasi-identifiers and sensitive
attributes) and assumes that such information is immutable
over time. In the case of social networks, the relationships
between participants are typically in flux. Consequently,
those techniques cannot be safely applied to evolving social
networks.

In this paper, we identify a new class of privacy attack
arising from publishing a sequence of graph data for evolv-
ing social networks. At any time i, an anonymized version
G∗

i of the raw graph Gi is published, where G∗
i is pro-

duced by some graph anonymization method (e.g., degree k-
anonymization [10], link perturbation [9], or k-isomorphism
[6]). Prior to each publication, the adversary can actively
influence the degree of a node in Gi by interacting with the
social network. Such interactions may include simple friend
requests in Facebook, posts on a message board, bids on
Ebay, or email correspondences between different users. At
time i, the adversary has access to G∗

0, · · · , G∗
i and tries to

identify the candidate nodes for some targeted individual t
by looking for those nodes that match with his knowledge
about the degree of t in G0, · · · , Gi. The attack is successful
if a small number of nodes match.

At first glance, the above attack sounds straightforward
and elementary — given what is known about the pri-
vacy risks regarding multiple publications of relational data
[5][14][13]. For example, with relational data, an adversary
could use quasi-identifiers to identify the anonymity groups
g1 and g2 for a targeted individual t in two different
publications, and if the only common disease between g1

and g2 is HIV, then it is easy to infer that t has HIV. The
key assumption here is the quasi-identifiers and sensitive
attributes of an individual do not change over time. However,
in the case of social networks we assume that only the
graph is published and edges between nodes dynamically
grow. Even if the adversary knows the exact degree of t in
any Gi, every published graph G∗

i has been anonymized.
For example, degree k-anonymization [10] ensures that at



least k nodes share the same degree, and link perturbation
[9] randomly adds and deletes links between nodes. These
operations alter the neighborhood structure of a node to
make it difficult for the adversary to apply his knowledge.
The adversary is further deterred by the power law of degree
distribution where many nodes share similar degrees. Under
these conditions re-identifying the node of a target individual
is not straightforward.

Contributions. While the eventual goal is to invent meth-
ods for thwarting privacy attacks, this paper tries to answer
several basic questions that are of broader importance: (1)
how does the adversary re-identify the node of an individual
from a sequence of anonymized graphs; (2) how to quantify
the privacy risk of such re-identification; and (3) how severe
and widespread are such attacks on real social networks. Our
contributions are summarized as follows:

1) We identify a new type of privacy attack, which
we named a degree-trail attack. We demonstrate that
even if each published graph is anonymized by strong
privacy preserving techniques, an adversary with lit-
tle background knowledge can re-identify the node
belonging to a known target individual by utilizing
a sequence of published social network graphs. The
adversary does not have to behave differently from a
normal participant and the target node’s degree can be
similar to the degree of the other nodes in the graph.

2) We propose a new privacy technique, stable link
randomization, which is based on link perturbation [9]
but is better suited for multiple publications.

3) We present two alternative models to quantify the
privacy risk of our degree-trail attack, assuming that
the published graphs are anonymized by the stable link
randomization.

4) We study the severity of the identified attack on real
life social network data.

In the rest of the paper, Section II presents examples of
degree-trail attacks; Section III formally defines the class
of degree-trail attacks; Section IV presents two models of
privacy risk of degree-trail attacks; Section V considers a
more general class of degree-trail attacks that exploits the
insertion time of nodes; Section VI presents an evaluation on
the severity of the new attack using real life social network
data. Section VII reviews related work and concludes the
paper. A solution to preventing the identified attacks is very
interesting but is beyond the scope of this paper.

II. EXAMPLES OF PRIVACY ATTACKS

At each publication time i, there is a live graph Gi

and the published graph G∗
i . Gi evolves into Gi+1 after

participants add or delete nodes or edges. A fixed and unique
pseudonym called a node ID is associated with the node
for each individual in every Gi and G∗

i , as assumed in
[17][6]. A node ID is not related to the actual identity of
the individual, but serves to track the nodes belonging to

the same individual over multiple publications. This node
ID serves three purposes: (1) It simplifies our discussion
of the attack; (2) it is used to extract evolving trends in
social network data, and (3) it results in a stronger privacy
model by assuming that the adversary can locate the nodes
representing the same individual in multiple publications.

At time i, prior to the publication of G∗
i , any partici-

pant (including an adversary) can create new nodes and
add/delete links to other nodes in Gi. An adversary has
access to G∗

0, G
∗
1, · · · , G∗

i published up to time i. The adver-
sary knows that some targeted individual is a participant of
Gj and knows the degree of her target in Gj , for j ≤ i. The
adversary’s goal is to identify the node in G∗

i that belongs
to her target. Below, we illustrate how the adversary may
achieve this goal even if all published graphs G∗

j , j ≤ i,
are anonymized by strong privacy preserving techniques. We
consider two such techniques: link perturbation [8][15] and
k-isomorphism [6].

Link perturbation. To protect the link information be-
tween two participants, Hay et al. outlined an algorithm
for preventing link disclosure by introducing random noise
to a graph [8]. This algorithm, link perturbation, produces
G∗

i by randomly deleting m existing edges and randomly
inserting m new edges to Gi. m is calculated using a fixed
perturbation rate m/|E|, where |E| is the number of existing
edges in Gi. The perturbation rate is publicly known. [4]
shows that link perturbation may achieve meaningful levels
of identity obfuscation while still preserving characteristics
of the original graph.

Consider the graphs G0 and G∗
0 in Figure 1. A circle

represents a node and the letter inscribed within each node
is its node ID. We label the target node by t but this
label is not visible to the adversary; in fact, the adversary
seeks to identify t. With the background knowledge on the
target’s degree 2 in G0 and the perturbation rate of 10%, the
adversary infers at some confidence level that the target’s
observed degree in G∗

0 is expected to fall into the interval
[1, 3]. By inspecting G∗

0, every node has an observed degree
in this interval; therefore, every node in G∗

0 is a candidate
for t.

At time 1, the dashed circles in G1 represent newly
inserted nodes. To distance t’s degree from other nodes, the
adversary decides to increase her target’s degree from 2 to 5
in G1, by creating new connections to the target individual.
Assuming that t gains 1 degree elsewhere, the adversary
only needs to embed two more nodes, f and g, into G1 and
attach them to her target. Given the known perturbation rate,
the adversary considers any node in G∗

1 with an observed
degree in the interval [4, 6] to be a candidate for t. Upon
inspecting G∗

1, the adversary would conclude that t and b
are the candidates for her target t.

Prior to the next publication G∗
2, the adversary deletes

both of her embedded nodes f and g from G2, so t is left
with a degree of 3 and the interval [2, 4] for the observed
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Figure 1. Attacks on randomized graphs

degree of t. Once obtaining G∗
2, the adversary discovers that

{a, t, d, e} have an observed degree in the interval [2, 4]. At
this point, the adversary intersects this set with the previous
candidate set {t, b}. Since the result contains only a single
node, t, the adversary correctly identifies t as her target.

Remark 1. (1) The adversary cannot simply identify her
embedded nodes as those having new node IDs because
other participants are also creating new nodes. (2) Although
the adversary can embed a more identifiable subgraph, doing
so will increase her chance of being detected, thus, being
rejected. To avoid that, a better strategy for the adversary
is to use embedding that is similar to the normal growth of
any node; thus, each single publication may return a large
set of candidates. In this case, the success of the attack relies
on observing several publications. (3) The only knowledge
used by the adversary is the degree of the target node and the
link perturbation algorithm used (including the perturbation
rate).

k-isomorphism. k-isomorphism [6] produces G∗
i by

transforming Gi into k isomorphic disconnected subgraphs,
g1, · · · , gk, through a minimum number of edge insertions
and edge deletions. Consequently, for each edge (u, v) in any
of these subgraphs, there will be k − 1 “isomorphic links”,
one in each of the other k − 1 subgraphs. This duplication
creates uncertainty to associate links with target individuals.
k-isomorphism implies k-automorphism [17], which implies
degree k-anonymity [10].

k-isomorphism guards against adversaries with arbitrary
neighborhood knowledge but is defenseless against back-
ground knowledge beyond that. Suppose that the node
information I(v) for each node v (such as Gender, Job,
and Location) is published. To prevent re-identification of
nodes using I(v), the authors of [6] suggest detaching I(v)
from the node v by randomly partitioning the node set V
into groups of size k and publishing {I(v1), . . . , I(vk)} for
each group {v1, · · · , vk}, therefore, breaking the linkage
of the node information to each individual. Unfortunately,
such grouping can defeat the purpose of k-isomorphism. For

example, if the target individual is “male”, any group {v1,
· · · , vk} where {I(v1), . . . , I(vk)} contains no “males” can
be excluded. This refinement creates a difference amongst
the k-isomorphic subgraphs, thus, compromising the privacy
provided by k-isomorphism.

In the case of multiple publications, the authors of [6]
noted that the adversary could break k-isomorphism because
the target node may belong to a different “k-isomorphic set”
in different publications. To address this issue, they proposed
to label all the k-isomorphic nodes with the compound ID
formed by the set of node IDs of these nodes. For example,
if u1, u2, u3 are 3-isomorphic nodes from the 3-isomorphic
subgraphs g1, g2, g3, all of these nodes will be labeled by the
compound ID u{1,2,3}. Unfortunately, the use of compound
IDs makes it impossible to track the nodes belonging to the
same individual, which is essential for extracting evolving
patterns of social networks.

III. DEGREE-TRAIL ATTACKS

In this section we formalize the class of attacks on
a sequence of publications of social network graphs. We
consider undirected, simple graphs. At time i, Gi denotes the
raw graph and G∗

i denotes the published graph. Each node
in Gi belongs to a participant and a link between two nodes
represents a certain interaction between the two owning
participants. d(v) denotes the degree of a node v in Gi and
d∗(v) denotes the degree of a node v in G∗

i . Gi evolves into
Gi+1 as a result of adding and/or deleting nodes and edges.
A fixed and unique node ID is associated with the node
for each individual in every Gi and G∗

i . In section III-A,
we present a technique called stable link randomization,
which is better suited for multiple publications; then, in
section III-B, we formalize our notion of a degree-trail
attack, assuming that a published graph G∗

i is produced by
stable link randomization.

A. Stable Link Randomization

Link perturbation [8] produces G∗
i from Gi by randomly

inserting m edges and deleting m edges. For a single



publication, this ensures that an adversary cannot know with
absolute certainty the degree of any node in Gi based on its
degree in G∗

i . However, because the randomization of the
same link is independent in each publication, whenever a
link between the same pair of nodes is observed in several
consecutive publications, there is a high probability that
this edge actually exists in the raw graph. Additionally, if
each Gi is randomized independently, the structural property
(such as observed degree of a node) of G∗

i may be signifi-
cantly different from that of G∗

i+1 even if Gi+1 is identical
to Gi. This instability makes extraction of evolving patterns
impossible. Finally, randomly inserting or deleting the same
fixed number of m edges is not suitable for an evolving
social network graph where the number of nodes and edges
grows over time.

To address these issues, we propose stable link random-
ization for randomizing multiple versions of a graph. First,
we fix the edge deletion rate ρ and edge insertion rate %,
instead of fixing the number of edges to be inserted and
to be deleted. Therefore, an edge will be deleted with the
probability ρ and kept with the probability 1−ρ; a non-edge
(i.e., an edge that does not exist in the graph) will be inserted
with the probability % and not inserted with the probability
1−%. Importantly, these probabilities remain constant as the
graph grows or shrinks.

The key idea of stable link randomization is reusing
the randomized edges from prior publications and only
performing randomization on new edges/non-edges. The
reuse of randomized edges ensures that each edge will be
randomized only once. Specifically, for each edge/non-edge
e in Gi, let e∗ denote its randomized decision in G∗

i . If e
also occurs in Gi+1, we reuse e∗ in G∗

i+1. This is possible
because the deletion rate ρ and insertion rate % are same in
both G∗

i and G∗
i+1 and because the random trail of a link

depends only on ρ, %, and the link, not on any other links
in the graph.

Let us describe this method in detail. We assume that
Gi+1 is obtained from Gi by a sequence of user-initiated
basic operations: edge insertion is denoted by +(u, v) and
edge deletion is denoted by −(u, v), where u and v are
existing nodes in Gi, and node insertion is denoted by +u,
where u is a new node. Deleting a node can be done by
first deleting each of the edges adjacent to the node and
then deleting the isolated node. For simplicity, we assume
that isolated nodes are never deleted. After processing each
basic operation on Gi, there is a corresponding G∗

i . Upon
the request of the (i+1)-th publication, the most recent G∗

i

is published as G∗
i+1. Below, we consider how to produce

G∗
i after applying a single basic operation to Gi.
Processing +(u, v): First, we insert the new edge (u, v)

into Gi and G∗
i . Then, we need to perform a random deletion

of the new edge (u, v) from G∗
i . Specifically, we toss a

coin with ρ head probability and 1 − ρ tail probability. If
it lands heads, we delete (u, v) from G∗

i ; if it lands tails,

we keep (u, v) in G∗
i . Let us denote this operation on G∗

i

by +(u, v)∗. Importantly, the new G∗
i inherits all edges

from the old G∗
i . Note that (u, v) may already exist in G∗

i

prior to performing +(u, v)∗ if it has been inserted by the
randomization algorithm in a previous publication. In this
case, +(u, v)∗ always overrides the current status of (u, v)
in G∗

i .
Processing −(u, v): First, we delete (u, v) from Gi. Since

deleting (u, v) from Gi is equivalent to adding a new non-
edge (u, v) into Gi, in G∗

i we need to perform a random
insertion of (u, v) to account for the random insertion of
this new non-edge. Specifically, we insert an edge (u, v) into
G∗

i with % probability and delete it with 1 − % probability.
Let −(u, v)∗ denote this operation on G∗

i . Again, −(u, v)∗

always overrides the current status of (u, v) in G∗
i .

Processing +u: First, we insert the new node u into
Gi and G∗

i . This means that every vertex v 6= u in Gi

gains a new non-edge (v, u). Therefore, we need to insert
some number of edges over these new non-edges into G∗

i

following the insertion rate %. Let +u∗ denote the set of new
edges (u, v) that are randomly selected with the insertion
rate %. We insert all the edges in +u∗ into G∗

i .
Remark 2. Besides the privacy reason mentioned above,

stable link perturbation has two other benefits due to its
inheritance of randomization from the previous published
graph. (1) It is more efficient than a fresh randomization of
all edges in Gi, especially for large and dynamic graphs. (2)
It provides the stability on the randomized graph G∗

i in that
G∗

i and G∗
i+1 look similar if Gi and Gi+1 look similar. This

stability is crucial for data miners because a small change in
the underlying graph should have little effect in the resulting
publication.

B. Formalization of Degree-Trail Attacks

At time i, the adversary has access to all the graphs
G∗

0, · · · , G∗
i published so far, generated by the stable link

randomization method described above. The adversary also
knows the edge deletion rate ρ and the edge insertion rate
% used by the stable link perturbation. In addition, the
adversary knows that some target individual is a participant
at all times j, for 0 ≤ j ≤ i. The adversary’s goal is to
re-identify the node t in G∗

i that belongs to his targeted
individual. To achieve this goal, the adversary actively
attaches subgraphs to and/or removes subgraphs from the
target node by creating connections to and/or removing
connections from the target individual in the social network
application. To avoid being caught or rejected, the adversary
is limited to using “simple” subgraphs that are similar to
what would be created by a normal participant. We consider
the adversary who can create a small number of nodes and
attach them to the target node or remove such nodes. This
operation is called embedding. Without loss of generality,
we assume that embedding operations are performed on Gj ,
j > 0, i.e., after observing G∗

0.



We assume that an adversary has the background knowl-
edge about the target node t’s degree in Gi, denoted d(t).
Such an assumption was made in previous works on a single
publication of graphs [10][16][9][17][6]. Even armed with
this knowledge, the graph randomization process described
above may alter t’s degree in the anonymized graph G∗

i and
— even if it does not — there may be many nodes in G∗

i

with the same degree as t. So, the adversary must identify
the nodes v in G∗

i that are likely to be the node t, by taking
into account the known degree d(t), the observed degree of
v in G∗

i , denoted d∗(v), and the degree distortion due to
the randomization process. This is done by estimating the
probability that a node v with an observed degree d∗(v) in
G∗

i has the degree d(t) in Gi. If this probability is high
enough, v is considered as a candidate of t at time i. The
candidate set of t at time i, denoted Ci(t), is the set of all
candidates of t in G∗

i .
In a single publication G∗

i , Ci(t) may contain many can-
didates because many nodes in G∗

i have the same observed
degree as t. For example, in a k-degree anonymized graph
[10], if a node has some degree, at least k other nodes will
have that degree. However, the adversary’s power will be
boosted by altering the degree d(t) in a sequence of graphs
Gj , j ≤ i, and focusing on the nodes that are candidates
for all of these G∗

j . This is because by definition, the target
node t is expected to be a candidate in every Gj with a high
probability. Thus the power of the adversary is boosted by
refining the set of candidates to be those contained in the
intersection C0(t) ∩ · · · ∩ Ci(t).

Definition 1: A candidate of t up to time i is a node that
is a candidate at time j for all 0 ≤ j ≤ i. Thus the set of
candidates of t up to time i is computed by

C(i)(t) =
i⋂

j=0

Cj(t) (1)

|C(i)(t)| denotes the number of candidates in C(i)(t). �
Intuitively, C(i)(t) contains all the nodes that likely have

a “similar” degree to that of t in every graph Gj , j ≤ i,
as inferred from the observed degree of nodes in G∗

j , the
degree of t in Gj , and the randomization algorithm used for
generating G∗

j . To the adversary, all these nodes are possible
candidates of t; therefore, without further knowledge the
probability of identifying the target node is 1/|C(i)(t)|. The
adversary’s goal is to reduce the size |C(i)(t)| by altering
the degree of t in Gj by embedding nodes and attaching
them to t, j ≤ i. The exact nature of “similar” depends on
the model for defining the candidate set Cj(t). Below, we
consider this issue.

IV. TWO MODELS FOR CANDIDATES

We present two models for defining the candidate set
Ci(t). At time i, the adversary has access to G∗

i , the degree
d(t) of the target node t in Gi, and the edge deletion rate ρ

and edge insertion rate % used by the randomization process
to produce G∗

i . The randomization may (1) add zero or more
edges to t, (2) remove zero or more edges from t, or (3) add
or delete an edge between two non-target nodes. (3) does not
affect the degree of the target node so we will only consider
(1) and (2). Given these uncertainties, the adversary wants
to identify the nodes that likely have a degree similar to d(t)
in Gi with a high probability. We propose two alternative
models for quantifying this probability.

A. The Posterior Probability Model

The first model is based on the posterior probability that
a node v has the same degree as the target node t in Gi,
d(t), given the node’s observed degree d∗(v) in G∗

i . If this
probability is high enough, v is a candidate for t at time
i, i.e., v ∈ Ci(t). Without further knowledge, an adversary
locates such candidates based on two things: d(t) and d∗(v).
The best that the adversary can infer is the likelihood that a
node v in G∗

i has the same degree as the target node in Gi,
given the observed degree d∗(v). This posterior probability
and the notion of candidate sets based on it are defined
below.

Definition 2 (Candidate set): Let Pcand(d(t) | d∗(v)) de-
note the probability that a node v has the same degree as
the target in Gi, i.e., d(t), given its observed degree d∗(v).
Given a threshold λ, the candidate set of t at time i, Ci(t),
contains all nodes v in G∗

i such that Pcand(d(t) | d∗(v)) > λ.
�

Pcand(d(t) | d∗(v)) is also the probability that t has
gained d∗(v) − d(t) edges if d∗(v) ≥ d(t) or has lost
d(t) − d∗(v) edges if d∗(v) < d(t) due to the stable link
randomization. Therefore, this probability is closely related
to answering the following question: given ρ and %, how
probable is it that some number of edges, say r, could be
inserted into or deleted from the target node due to the
stable link randomization? We refer to those probabilities
as Pins(r) and Pdel(r), respectively. Insertions and deletions
could happen simultaneously but since they are chosen from
two different disjoint sets of edges, Pins(r) and Pdel(r) are
independent and can be considered separately.

Let us determine Pins(r) and Pdel(r). The number of
non-edges associated with the target node, n(t), in a graph
of N nodes is n(t) = N−d(t)−1. Each of these non-edges
have % probability to be inserted. Therefore the probability
that exactly r edges could be added to the target node t is
equal to:

Pins(r) =
(

n(t)
r

)
%r(1− %)n(t)−r (2)

Similarly, the probability of deleting exactly r of t’s edges
in G∗

i is:

Pdel(r) =
(

d(t)
r

)
ρr(1− ρ)d(t)−r (3)



To compute Pcand(d(t) | d∗(v)), consider two cases below.
Let ∆(v) = |d(t)− d∗(v)|.

Pcand(d(t) | d∗(v)) =
{

Pins(d(t) | d∗(v)) if d∗(v) ≥ d(t)
Pdel(d(t) | d∗(v)) otherwise

(4)
Pins(d(t) | d∗(v)) is the probability that the graph ran-
domization has increased the degree of t by ∆(v), and
Pdel(d(t) | d∗(v)) is the probability that the randomiza-
tion has decreased the degree of t by ∆(v). To calculate
Pins(d(t) | d∗(v)), we must consider all possible situations
that could have allowed the observed degree to increase by
∆(v): if the stable link randomization added ∆(v)+1 edges
to it, then it must have deleted 1 edge from it as well in order
for that node to have a degree of d∗(v); if it added ∆(v)+2
edges to it, then it must have deleted 2 edges from it, and so
on. Since stable link randomization will only delete existing
edges, no more than d(t) edges could ever be removed from
the target node. We have:

Pins(d(t) | d∗(v)) =
d(t)∑
r=0

[Pins(∆(v) + r)Pdel(r)]

=
d(t)∑
r=0

[Pins(d∗(v)− d(t) + r)Pdel(r)]

Pdel(d(t) | d∗(v) =
d∗(v))∑
r=0

[Pdel(∆(v) + r)Pins(r)]

=
d∗(v)∑
r=0

[Pdel(d(t)− d∗(v) + r)Pins(r)]

These computations only need d(t), d∗(v), ρ, and %,
which are all known to the adversary. Since d(t) and d∗(v)
are not very large, these probabilities can be computed
efficiently.

B. The Confidence Interval Model

The second model for defining Ci(t) is based on some
confidence interval for the observed degree of t. Given the
edge deletion rate ρ and the edge insertion rate % of the graph
randomization, and the known degree d(t) of the target node
t, we can derive the expected value of the observed degree of
t and some confidence interval covering the expected value.
One complication is that edge deletions and edge insertions
follow different parameters, i.e., ρ and %. Below, we model
the effect of these operations by a sequence of Poisson trials.

Let D1, · · · , Dd(t) denote the deletion variables for the
d(t) existing edges adjacent to t. Di = 0 represents that the
i-th edge adjacent to t is deleted and Di = 1 represents that
the i-th existing edge adjacent to t is kept. Following our
randomization algorithm, Pr[Di = 1] = 1−ρ and Pr[Di =
0] = ρ. Let I1, · · · , Iq denote the insertion variables for the
q = |V | − d(t) − 1 non-edges of t. Ii = 0 represents that
the i-th non-edge of t is not inserted and Ii = 1 represents

that the i-th non-edge of t is inserted. Pr[Ii = 1] = % and
Pr[Ii = 0] = 1−%. The observed degree of t in G∗

i is equal
to S =

∑
i Di +

∑
i Ii. Since Di and Ii are variables for

independent Poisson trials, the expected value of S, E(S),
is equal to the sum of the expected values of its component
variables:

E(S) = d(t) ∗ (1− ρ) + q ∗ % (5)

According to Chernoff bound [7], for a relative error
bound δ > 0, we have

Pr[|S − E(S)| ≥ δE(S)] ≤ 2exp[−E(S)δ2/4] (6)

Let
θ = 1− 2exp[−E(S)δ2/4] (7)

δ =

√
−4

ln (1−θ)
2

E(S)
(8)

The above Chernoff bound is rewritten into

Pr[|S − E(S)| ≤ δE(S)] ≥ θ (9)

Intuitively, Equation (9) says that if Gi is randomized many
times, in at least θ percent of the cases the observed degree
of t will fall into the interval [E(S)−δE(S), E(S)+δE(S)].
δ is the relative error, θ is the confidence level, and [E(S)−
δE(S), E(S)+ δE(S)] is the confidence interval. Note that
δ and θ are not independent, in fact, they are related by
Equations (7) and (8).

Definition 3 (Candidate set): For a given confidence
level θ in (0, 1), Ci(t) contains all nodes in G∗

i whose
observed degree falls into the interval [E(S) − δE(S),
E(S)+δE(S)], where E(S) is the mean of observed degree
of t defined by Equation (5) and δ is defined by Equation
(8). �

For a given confidence level θ, the adversary can compute
the confidence interval because d(t), ρ and % are known. The
next corollary follows from the above discussion.

Corollary 4.1: Given a confidence level θ in (0, 1), the
probability, over all randomized graphs G∗

i , that Ci(t) con-
tains the target node t is at least θ, where θ is defined in
Equation (7). �

From Equation (7), a larger error bound δ increases the
probability that Ci(t) contains the target node t, but also
leads to a larger Ci(t), which reduces the power of attacks.
The adversary has to balance the two.

V. TIME-REFINED ATTACKS

The basic attack in Section IV ignores what the adversary
can learn about the insertion time of the nodes the target
must be adjacent to. In this section, we examine how the
insertion time of nodes can be used for attack.

At time i, the adversary influences the degree of the target
node t by inserting new nodes and attaching them to t
as well as attaching existing nodes to t. Every new node



inserted into Gi is assigned a new node ID. Consequently,
any nodes in G∗

i having a node ID that was not observed in
any previous publications can be marked as being inserted
at time i. For this reason, the insertion time of every node is
always known to the adversary. The next example illustrates
how the adversary can use this knowledge to refine the basic
degree-trail attack. For simplicity, we temporarily ignore
randomization in the following example.

G1

S0

H1

Basic Attack Refined Attack

S1

b

a

c
b

a

c

Figure 2. Basic vs. Refined Attack

In Figure 2, suppose that the adversary knows that the
target node t has degree 4 in G1, two of which come from
two nodes embedded by him. With the notion of degree,
both a and b are probable candidates of t and the adversary
cannot differentiate between them. In the graph H1, nodes
are partitioned according to their insertion time, where Si

contains the nodes with insertion time i, i = 0, 1.
Since the adversary embedded two nodes to the target

node in G1, the target node must be adjacent to at least
two nodes in S1. This knowledge immediately allows the
adversary to eliminate b as an option as it is not adjacent to
any node in S1, leaving the adversary to conclude that a is
the target node. So the next question is how could the adver-
sary uses this observation in light of graph randomization?
To answer this, we must first refine the notion of degree by
insertion time.

Definition 4: Consider Gi. For 0 ≤ j ≤ i, let Vj be the
set of nodes inserted at time j, called j-nodes, and let Sj

be the set of j-nodes in Vj that remain in Gi. The j-degree
of a node v in Gi refers to the number of edges adjacent to
the nodes in Sj . dj(v) denotes the j-degree of v in Gi and
d∗j (v) denotes the observed j-degree of v in G∗

i . �
At time i, for 0 ≤ j ≤ i the adversary can influence

dj(t) by either inserting a new edge between t and a j-node
or deleting an existing edge between t and a j-node. We
assume that the adversary knows the j-degree of the target
node t, dj(t), which is a more elaborated form of the degree
knowledge considered in the previous section. Below, we
extend the notion of candidates to the case for time-refined
attacks.

Definition 5: Given G∗
i , for 1 ≤ j ≤ i, we define a

bipartite graph H∗
j (C(i−1)(t), Sj , E

∗
j ), where E∗

j contains
the edges in G∗

i between the nodes in C(i−1)(t) and the
nodes in Sj . �

H∗
j is the subgraph of G∗

i involving only the edges
between the candidates in C(i−1)(t) and the nodes that

were inserted at time j. Assuming that C(i−1)(t) has been
computed at time i − 1, the adversary can construct H∗

j

because Sj is available. With H∗
j , the adversary can tell

the observed j-degree of each candidate in C(i−1)(t). If a
candidate v in C(i−1)(t) satisfies the adversary’s expectation
on the observed j-degree of t in G∗

i , for all 0 ≤ j ≤ i, v is
a candidate in C(i)(t). Based on this idea, we consider the
two models separately.

In the posterior probability model, Pcand(dj(t) | d∗j (v))
measures the probability that a node v has the j-degree dj(t)
in Gi, given the observed j-degree d∗j (v) in G∗

i . Since this
probability depends only on d∗j (v) and dj(t), Pcand(dj(t) |
d∗j (v)) can be computed by applying the method described
in Section IV-A to the subgraph H∗

j .
Definition 6 (The posterior probability model): For a

given bound λ, the candidate set for t up to time i,
C(i)(t), is the set of the nodes v in C(i−1)(t) such that
Pcand(dj(t) | d∗j (v)) > λ for 0 ≤ j ≤ i. �

In the confidence interval model, the expected observed
j-degree of t in G∗

i , denoted Ej(S), is computed by

Ej(S) = dj(t) ∗ (1− ρ) + qj ∗ % (10)

where qj is the number of non-edges from t to j-nodes in
Gi: qj = |Sj |−dj(t)−1 if j = 0 (recall that t has insertion
time 0) and qj = |Sj | − dj(t) if j > 0.

Definition 7 (The confidence interval model): The candi-
date set of t up to time i, C(i)(t), is the set of the nodes v
in C(i−1)(t) such that, for 0 ≤ j ≤ i, d∗j (v) falls into the
interval [Ej(S) − δEj(S), Ej(S) + δEj(S)], where Ej(S)
is given by Equation (10). �

VI. EXPERIMENT

In this section we study the extent to which degree-trail
attacks succeed on real social network graphs that were
anonymized using stable link randomization (Section III-A).

A. Methodologies

We considered two real life data sets, whose degree
frequency are shown in Figure 3. Dataset 1 is the e-mail
network of University Rovirai Virgili (URV) with 1,132
nodes and 5,450 edges [12]. Dataset 2 is the Newman’s
scientific collaboration network [11] with 16,264 nodes and
47,594 edges. We started with these graphs as G0. First,
we selected a node at random from G0 as the target node
t. Then, we generated each subsequent graph Gi from
Gi−1(V,E) to simulate the growth of nodes and edges. This
simulation uses three growth parameters c, s and u. Initially,
let Gi be Gi−1. We augment Gi in three steps:

1) randomly select a subset S of nodes of size c|V | from
Gi and add the target node t to S if it is not there.

2) add s|V | new nodes to both Gi and S.
3) randomly add u|N(S)| new edges between the nodes

in S to Gi, where |N(S)| is the number of non-edges
between nodes in S.



0 15 30 45 60 75
0

40

80

120

160
Dataset1

Degree [1,71]

F
re

q
u

e
n c

y

(a) Dataset 1

0 20 40 60 80 100
0

500
1000
1500
2000
2500
3000

Dataset2

Degree [1,107]

F
re

q
u

e
n c

y

(b) Dataset 2

Figure 3. Degree Distribution

Intuitively, S models a subset of nodes that are dynamic
in the growth of their edges. S contains some existing nodes,
some new nodes, and always contains the target node t. By
randomly adding new edges between the nodes in S, the
embedding to t is no different from the growth of other
nodes in S. This ensures that the adversary does not behave
differently from other nodes in S. The parameter c controls
the “focus” on t, and the parameters s and u control the
growth in the number of nodes and the number of edges. A
small c and a large s or u will increase the probability that
t will gain new edges in Gi. Unless otherwise specified, we
fix c at 10%, s at 1%, and u at 1%.

G∗
i is produced from Gi using the stable link random-

ization — with the following stipulation: since G0 is the
first graph in the sequence of raw graphs, the creation of
G∗

0 is identical to the traditional link perturbation [9] on
G0 except for the fact we fix the edge deletion rate ρ and
edge insertion rate %. Based on Hay et al.’s findings on link
perturbation [8], we fix ρ at 10%. % is calculated based
on the notion of deleting m existing edges from G0 and
inserting m new edges into G0. In other words, % is set
at ρ|E(G0)|/|N(G0)|, i.e., ≈ 0.859% and ≈ 0.036% for
Datasets 1 and 2 respectively, where |E(G0)| and |N(G0)|
denote the number of edges and the number of non-edges
in G0.

For a given privacy degree k, an attack converges at time
i if C(i)(t) contains at least one but no more than k − 1
candidates. An attack succeeds at time i if it converges
at time i and C(i)(t) actually contains the target node t.
Unless otherwise specified, we fix k at 5. Note that the
adversary knows when an attack converges but cannot tell
whether an attack succeeded as he cannot verify whether
t actually belongs to C(i)(t). The notion of “success” is
only for our own evaluation. To reduce the bias of results,
we generated 10,000 distinct graph sequences G0, · · · , Gi

(and the corresponding published sequence G∗
0, · · · , G∗

i )
for each data set. t was randomly chosen from G0 and
fixed throughout a particular graph sequence. The success
rate is defined as the percentage of the cases in which an
attack succeeds, and the convergence rate is defined as the
percentage of the cases in which an attack converges. Below,
we examine success rate and convergence rate separately.
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Figure 5. Expected # of publications for first success (M ) vs. λ

B. Success Rate

In the posterior probability model in Section IV-A, we
use the condition Pcand(d(t) | d∗(v)) > λ to tell if a node
v is a candidate in Ci(t). We asked ourselves the following
questions: (1) how does λ affect the success rate of the
attack, and (2) how many publications would be required
on average for an attack to succeed for a given λ? To
answer these questions, we ran two experiments to assess
the success rate wrt λ for the basic degree-trail attack and
the time-refined attack. Figure 4 reports the success rate
and Figure 5 reports the minimum number of publications
required for a success.

As λ decreases, the success rate increases, assuming an
unlimited number of publications. A smaller λ affects the
success rate in two ways: (1) with a smaller λ it is less
likely that the target node t will be wrongly discarded from
Ci(t). (2) with a smaller λ, Ci(t) tends to be larger and an
adversary would require more publications for an attack to
succeed, as shown in Figure 5. Initially, we were concerned
that setting λ too low would result in each Ci(t) being
too large to converge quickly on a small set of nodes.
However, even when we set λ at 0.000001, we discovered
that C(0)(t) only contained ≈ 61% and ≈ 78% of the nodes
from Dataset 1 and Dataset 2 respectively. The percentage
of nodes in each subsequent C(i)(t) dropped sharply with
each publication. These results suggest that a “conservative”
approach of using a small threshold λ but examining more
publications presents a more effective attack.

Surprisingly, while the success rate of the posterior prob-
ability model was fairly high in Dataset 1, the success rate
in Dataset 2 was far less promising. Upon investigation, it



appears that many nodes in Dataset 2 share a similar low
degree (Figure 3(b)), consequently, it is harder to converge
to a small candidate set that contains the target node.

Interestingly, the basic degree-trail attack has a similar
success rate compared to the time-refined attack — a finding
that did not match our expectation that the refined attack was
more powerful. A closer look reveals that the refined attack
model suffered a larger estimation error. Specifically, this
attack refines the degree of a node into j-degrees according
to the insertion time j of adjacent nodes and estimates the
posterior probability based on j-degree. With each j-degree
being small, such estimation deteriorates in accuracy. This
is similar to tossing a coin only a few times, which does not
give an accurate estimation of head/tail probability.

C. Convergence Rate

The remaining experiments focused on the number of
publications required for convergence of attacks and the
differences between the posterior probability model (PP) and
the confidence interval model (CI). The probability threshold
λ for PP is set to 0.000001 and the confidence level θ for
CI is set to 95%.

Figure 6 shows that as the edge growth rate u increases,
the average number of publications (M ) required for con-
vergence decreases. The reason for this was because as the
amount of activity increased within the subset S prior to
each publication, it became more likely for the target and
non-target nodes to diverge in terms of degree similarity.
This implies that the more active a social network is, the
more likely an adversary will be able to locate her target
without being detected. The number of publication required
for convergence is much smaller for the larger Dataset 2
because the accuracy of both PP and IC improves as the
number of random trials performed increases.

Figure 7 shows the number of publications (M ) required
for convergence vs different settings of privacy degree k.
M did not vary considerably for values of k between 3
and 10 for each individual attack. This is not surprising
since many of the publication sequences converged when
the candidate set reduced from ≥ 10 nodes in G∗

i−1 to < 3
nodes in the final publication G∗

i . On the smaller Dataset
1, the refined attack requires more publications to converge
than the basic attack because the larger estimation error of
head/tail probability of each j-degree affects more a small
graph. This result further suggests that the refined attack
is not suitable for small graphs. Figure 8 illustrates the
convergence rate within a certain number of publications
(M ). For example, a point (6, 25%) means that in 25% of
cases the attack is able to converge in ≤ 6 publications.

These empirical studies suggest two main findings: First, a
degree-trail attack succeeds frequently on real social network
graphs that have been anonymized by powerful link random-
ization techniques. Second, an adversary may not require
many publications in order to successfully attack a target
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Figure 6. Average M vs. u (k = 5)

within a large active social network. These findings highlight
the vulnerability of privacy breaches when publishing social
network graph data. We feel that our results show that there
is a need for more research in this area.

VII. RELATED WORK AND CONCLUSION

Backstrom et al. were the first to propose an active attack
on social networks [1]. The primary disadvantage of their
attack was that no isomorphic subgraphs could exist within
the live graph. Furthermore, their attack did not consider
published data that was anonymized beyond the removal
of identifying and quasi-identifying attributes and did not
consider multiple publications. Passive attacks have been
extensively studied in the literature where the adversary
attacks an already published network [2][8][10][16][17] for
identity disclosure, and [6][8] for link disclosure. All those
works consider a single snapshot of a static social network.

There is little work on preventing privacy attacks in the
context of publishing dynamic social network data. One such
work is [3] where the authors propose to reduce the privacy
loss by predicting the growth of links and factoring such
growth in a group-based anonymization approach. They hide
the mapping between a node and the corresponding entity
called label by partitioning the set of nodes into groups of
size k and assigning the label list for the group to each
node in the group. However, the published graph is still
vulnerable to an adversary with the auxiliary information
on neighborhood structure (such as degree). In addition,
with all nodes in a group being associated with the same
label list, the correspondence between the nodes in different
publications is lost, rendering mining sequential patterns
impossible.

Our work considered an adversary armed with auxiliary
information about the degree of the target and the ability to
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Figure 8. Convergence Rate within M publications (u = 1%; k = 5)

actively influence such degrees and coordinate the attacks
over multiple publications. The contribution of this work
is a preliminary investigation on several basic questions
of broader importance: what does it mean to compromise
privacy, what background information does the adversary
need, what behaviors of the adversary are required, where
does the power of the attack come from, and how widespread
are such attacks on real life data. We hope these findings are
useful for future work in this area.
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