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Abstract— Classification is a fundamental problem in data
analysis. Training a classifier requires accessing a large collection
of data. Releasing person-specific data, such as customer data or
patient records, may pose a threat to individual’s privacy. Even
after removing explicit identifying information such as Name
and SSN, it is still possible to link released records back to
their identities by matching some combination of non-identifying
attributes such as {Sex, Zip, Birthdate}. A useful approach
to combat such linking attacks, called k-anonymization [1], is
anonymizing the linking attributes so that at least k released
records match each value combination of the linking attributes.
Previous work attempted to find an optimal k-anonymization
that minimizes some data distortion metric. We argue that
minimizing the distortion to the training data is not relevant
to the classification goal that requires extracting the structure of
predication on the “future” data.

In this paper, we propose a k-anonymization solution for clas-
sification. Our goal is to find a k-anonymization, not necessarily
optimal in the sense of minimizing data distortion, that preserves
the classification structure. We conducted intensive experiments
to evaluate the impact of anonymization on the classification on
future data. Experiments on real life data show that the quality
of classification can be preserved even for highly restrictive
anonymity requirements.

Index Terms— Privacy protection, anonymity, security, in-
tegrity, data mining, classification, data sharing

I. INTRODUCTION

DATA sharing in today globally networked systems poses
a threat to individual privacy and organizational con-

fidentiality. An example in Samarati [2] shows that linking
medication records with a voter list can uniquely identify a
person’s name and her medical information. New privacy acts
and legislations are recently enforced in many countries. In
2001, Canada launched the Personal Information Protection
and Electronic Document Act [3] to protect a wide spectrum
of information, e.g., age, race, income, evaluations, and even
intentions to acquire goods or services. This information
spans a considerable portion of many databases. Government
agencies and companies have to revise their systems and
practices to fully comply with this act in three years.

Consider a table T about patient’s information on
Birthplace, Birthyear, Sex, and Diagnosis. If a descrip-
tion on {Birthplace,Birthyear, Sex} is so specific that not
many people match it, releasing the table may lead to linking
a unique record to an external record with explicit identity,
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thus identifying the medical condition and compromising
the privacy rights of the individual [2]. Suppose that the
attributes Birthplace, Birthyear, Sex, and Diagnosis must
be released (say, to some health research institute for research
purposes). One way to prevent such linking is masking the
detailed information of these attributes as follows:

1) If there is a taxonomical description for a categorical
attribute (e.g., Birthplace), we can generalize a specific
value description into a less specific but semantically
consistent description. For example, we can generalize
the cities San Francisco, San Diego, and Berkeley into
the corresponding state California.

2) If there is no taxonomical description for a categorical
attribute, we can suppress a value description to a “null
value” denoted ⊥. For example, we can suppress San
Francisco and San Diego to the null value ⊥ while
keeping Berkeley.

3) If the attribute is a continuous attribute (e.g., Birthyear),
we can discretize the range of the attribute into a
small number of intervals. For example, we can replace
specific Birthyear values from 1961 to 1965 with an
interval [1961-1966).

By applying such masking operations, the information on
{Birthplace,Birthyear, Sex} is made less specific and a
person tends to match more records. For example, a male born
in San Francisco in 1962 will match all records that have the
values 〈CA, [1961-1966), M〉; clearly not all matched records
correspond to the person. Thus the masking operation makes
it more difficult to tell whether an individual actually has the
diagnosis in the matched records.

Protecting privacy is one goal. Making the released data
useful to data analysis is another goal. In this paper, we
consider classification analysis [4]. The next example shows
that if masking is performed “carefully”, privacy can be
protected while preserving the usefulness for classification.

Example 1 (The running example): Consider the data in
Table I and taxonomy trees in Figure 1. The table has 34
records in total. Each row represents one or more records
with the Class column containing the class frequency of the
records represented, Y for “income >50K” and N for “income
≤50K”. For example, the third row represents 5 records having
Education = 11th, Sex = Male and Work Hrs = 35. The
value 2Y3N in the Class column conveys that 2 records have
the class Y and 3 records have the class N. Semantically, this
(compressed) table is equivalent to the table containing 34
rows with each row representing one record. There is only
one record for “female doctor” (the last row), which makes
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Fig. 1. Taxonomy trees and QIDs

the person represented uniquely distinguishable from others by
Sex and Education. To make “female doctor” less unique,
we can generalize Masters and Doctorate to Grad School.
As a result, “she” becomes less distinguishable by being
one of the four females with a graduate school degree. As
far as classification is concerned, no information is lost in
this generalization because Class does not depend on the
distinction of Masters and Doctorate.

In the classification problem, a classifier is built from the
training data and is used to classify the future data. It is
important that the classifier makes use of the structure that
will repeat in the future data, not the noises that occur only
in the training data. In Table I, 19 out of 22 persons having
Work Hrs ≥ 37 are in the class Y, and only 3 persons having
Work Hrs ≥ 37 are in the class N. It is not likely that this
difference is entirely due to sampling noises. In contrast, M
and F of Sex seem to be arbitrarily associated with both
classes, suggesting that sex cannot be used to predict his/her
class.

In this paper, we consider the following k-anonymization
for classification. The data provider wants to release a
person-specific table for modelling classification of a spec-
ified class attribute in the table. Two types of information
in the table are released. The first type is sensitive infor-
mation, such as Diagnosis. The second type is the quasi-
identifier [5] [1], which is a combination of attributes such
as {Birthplace,Birthyear, Sex}. The quasi-identifier does
not identify individuals but can be used to link to a person if
the combination is unique. The data provider wants to prevent
linking the released records to an individual through the quasi-
identifier. This privacy requirement is specified by the k-
anonymity [1]: if one record in the table has some value on
the quasi-identifier, at least k−1 other records have that value.
The k-anonymization for classification is to produce a masked
table that satisfies the k-anonymity requirement and retains
useful information for classification. A formal statement will
be given in Section II.

If classification is the goal, why does not the data provider
build and publish a classifier (instead of publishing the data)?
There are real-life scenarios where it is necessary to release the
data. First of all, knowing that the data is used for classification
does not imply that the data provider knows exactly how
the recipient may analyze the data. The recipient often has
application-specific bias towards building the classifier. For
example, some recipient prefers accuracy while the others

TABLE I
(COMPRESSED) TABLE

Education Sex Work Hrs Class # of Recs.
9th M 30 0Y3N 3
10th M 32 0Y4N 4
11th M 35 2Y3N 5
12th F 37 3Y1N 4

Bachelors F 42 4Y2N 6
Bachelors F 44 4Y0N 4
Masters M 44 4Y0N 4
Masters F 44 3Y0N 3

Doctorate F 44 1Y0N 1
Total: 21Y13N 34

prefer interpretability, or some prefers recall while the others
prefer precision, and so on. In other cases, the recipient may
not know exactly what to do before seeing the data, such as
visual data mining where the human makes decisions based on
certain distributions of data records at each step. Publishing the
data provides the recipient a greater flexibility of data analysis.

Our insight is as follows. Typically the data contains overly
specific “noises” that are harmful to classification. To construct
a classifier, noises need to be generalized into patterns that
are shared by more records in the same class. The data
also contains “redundant structures”. For example, if any of
Education and Work Hrs is sufficient for determining the class
and if one of them is distorted, the class can still be determined
from the other attribute. Our approach exploits such rooms
provided by noises and redundant structures to mask the data
without compromising the quality of classification. To this end,
we propose an information metric to focus masking operations
on the noises and redundant structures. We conducted intensive
experiments to evaluate the impact of anonymization on the
classification of future data. Below are several useful features
of our approach.

• Information and privacy guided top-down refinement.
Instead of masking the most specific table bottom-up, we
refine masked values top-down starting from the most
masked table.

• Handling different types of attributes. We handle cat-
egorical attributes with taxonomy, categorical attributes
without taxonomy, and continuous attributes.

• Handling multiple quasi-identifiers. Compared to the sin-
gle quasi-identifier that contains all the attributes, we
enforce k-anonymity on only attribute sets that can be
potentially used as an quasi-identifier. This approach
avoids unnecessary distortion to the data.

• Scalable and anytime solution. Our method has a linear
time complexity in the table size. Moreover, the user can
stop the top-down refinement any time and have a table
satisfying the anonymity requirement.

The notion of k-anonymity was first proposed in [1]. In
general, a cost metric is used to measure the data distor-
tion of anonymization. Two types of cost metric have been
considered. The first type, based on the notion of minimal
generalization [2] [6], is independent of the purpose of the
data release. The second type factors in the purpose of the
data release such as classification [7]. The goal is to find the
optimal k-anonymization that minimizes this cost metric. In
general, achieving optimal k-anonymization is NP -hard [8]
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[9]. Greedy methods were proposed in [10] [11] [12] [13] [14]
[15]. Scalable algorithms (with the exponential complexity
the worst-case) for finding the optimal k-anonymization were
studied in [2] [6] [7] [16].

Our insight is that the optimal k-anonymization is not suit-
able to classification where masking structures and masking
noises have different effects: the former deems to damage
classification whereas the latter helps classification. It is well
known in data mining and machine learning that the unmod-
ified data, which has the lowest possible cost according to
any cost metric, often has a worse classification than some
generalized (i.e., masked) data. In a similar spirit, less masked
data could have a worse classification than some more masked
data. This observation was confirmed by our experiments. The
optimal k-anonymization seeks to minimize the error on the
training data, thus over-fits the data, subject to the privacy
constraint. Neither the over-fitting nor the privacy constraint
is relevant to the classification goal that seeks to minimize the
error on future data.

Besides the standard setting, extensions of k-anonymity
were also studied. [19] proposed the notion of multidimen-
sional k-anonymity where data generalization is over multi-
dimension-at-a-time, and [17] extended multidimensional gen-
eralization to anonymize data for a specific task such as
classification. [20] proposed some greedy methods to achieve
k-anonymity with cell generalization, and showed that the cell
generalization generally causes less information loss than the
multidimensional generalization. These masking operations
allow the co-existence of a specific value and a general value,
such as Bachelor and University in Table I. Such masked
data will suffer from “interpretation difficulty” in the data
analysis phase. For example, the exact number of bachelors
cannot be determined when only some, say only 3 out of the
10, Bachelor’s are generalized to University’s. If a classifier
is built from such data, it is unclear which classification rule,
Bachelor → Y or University → N?, should be used to
classify bachelor.

[21] measured anonymity by the l-diversity that corre-
sponds to some notion of uncertainty of linking a quasi-
identifier to a particular sensitive value. [22] [23] proposed to
bound the confidence of inferring a particular sensitive value
using one or more privacy templates specified by the data
provider. [15] proposed some generalization methods to si-
multaneously achieve k-anonymity and bound the confidence.
[24] limited the breach probability, which is similar to the
notion of confidence, and allowed a flexible threshold for
each individual. k-anonymization for data owned by multiple
parties was considered in [18]. k-anonymization for sequential
releases was studied in [25].

II. PROBLEM DEFINITION

A data provider wants to release a person-specific table
T (D1, . . . , Dm, Class) to the public for modelling the class
label Class. Each Di is either a categorical or a continuous
attribute. A record has the form 〈v1, . . . , vm, cls〉, where vi is
a domain value for Di and cls is a class for Class. att(v)
denotes the attribute of a value v. The data provider also wants

to protect against linking an individual to sensitive information
either within or outside T through some identifying attributes,
called a quasi-identifier or simply QID. A sensitive linking
occurs if some value of the quasi-identifier identifies a “small”
number of records in T . This requirement is formally defined
below.

Definition 1 (Anonymity requirement): Consider p quasi-
identifiers QID1, . . . , QIDp on T . a(qidi) denotes the num-
ber of data records in T that share the value qidi on QIDi. The
anonymity of QIDi, denoted A(QIDi), is the smallest a(qidi)
for any value qidi on QIDi. A table T satisfies the anonymity
requirement {〈QID1, k1〉, . . . , 〈QIDp, kp〉} if A(QIDi) ≥ ki

for 1 ≤ i ≤ p, where ki is the anonymity threshold on QIDi

specified by the data provider.
It is not hard to see that if QIDj is a subset of QIDi,

A(QIDi) ≤ A(QIDj). Therefore, if kj ≤ ki, A(QIDi) ≥ ki

implies A(QIDj) ≥ kj , and 〈QIDj , kj〉 can be removed in
the presence of 〈QIDi, ki〉. Following a similar argument,
to prevent a linking through any QID that is any subset of
attributes in QID1 ∪ · · · ∪ QIDp, the single QID require-
ment 〈QID, k〉 where QID = QID1 ∪ · · · ∪ QIDp and
k = max{kj} can be specified. However, a table satisfy-
ing {〈QID1, k1〉, . . . , 〈QIDp, kp〉} does not have to satisfy
〈QID, k〉.

Example 2: Suppose that a data provider wants to re-
lease Table I. To protect linking {Education, Sex} to
sensitive information, the data provider specifies 〈QID1 =
{Education, Sex}, 4〉. This requirement is violated by
〈9th,M〉, 〈Masters, F 〉, 〈Doctorate, F 〉. To protect linking
through {Sex,Work Hrs} as well, the data provider can
specify the two QIDs in Figure 1. To prevent linking through
any combination of the identifying attributes, the data provider
can specify QID = {Education, Sex,Work Hrs}.

Definition 1 generalizes the classic notion of k-anonymity
by allowing multiple QIDs (with possibly different thresh-
olds). Suppose that the data provider wants to release a
table T (A,B,C,D, S), where S is the sensitive attribute, and
knows that the recipient has access to previously released
tables T1(A,B,X) and T2(C,D, Y ), where X and Y are
attributes not in T . To prevent linking the records in T to X
or Y , the data provider only has to specify the k-anonymity on
QID1 = {A,B} and QID2 = {C,D}. In this case, enforcing
the k-anonymity on QID = {A,B,C,D} will distort the data
more than what is necessary. All previous works suffer from
this problem because they handled multiple QIDs through the
single QID made up of all attributes in the multiple QIDs.

To transform T to satisfy the anonymity requirement, we
consider three types of masking operations on the attributes
Dj in ∪QIDi.
Masking operations:

1) Generalize Dj if Dj is a categorical attribute with a
taxonomy tree. A leaf node represents a domain value
and a parent node represents a less specific value. Figure
2 shows a taxonomy tree for Education. A generalized
Dj can be viewed as a “cut” through its taxonomy tree.
A cut of a tree is a subset of values in the tree, denoted
Cutj , that contains exactly one value on each root-to-
leaf path. This type of generalization does not suffer
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from the interpretation difficulty discussed in Section I,
and it was previously employed in [7] [12] [13] [14]
[18] [25].

2) Suppress Dj if Dj is a categorical attribute with no
taxonomy tree. The suppression of a value on Dj means
replacing all occurrences of the value with the special
value ⊥j . All suppressed values on Dj are represented
by the same ⊥j , which is treated as a new value in Dj

by a classification algorithm. We use Supj to denote the
set of values suppressed by ⊥j . This type of suppression
is at the value level in that Supj is in general a subset
of the values in the attribute Dj .

3) Discretize Dj if Dj is a continuous attribute. The
discretization of a value v on Dj means replacing all
occurrences of v with an interval containing the value.
Our algorithm dynamically grows a taxonomy tree for
intervals at runtime, where each node represents an
interval, and each non-leaf node has two child nodes
representing some “optimal” binary split of the parent
interval. More details will be discussed in Section III. A
discretized Dj can be represented by the set of intervals,
denoted Intj , corresponding to the leaf nodes in the
dynamically grown taxonomy tree of Dj .

Definition 2 (Anonymity for Classification): Given a table
T , an anonymity requirement {〈QID1, k1〉, . . . , 〈QIDp, kp〉},
and an optional taxonomy tree for each categorical attribute
contained in ∪QIDi, mask T on the attributes ∪QIDi to
satisfy the anonymity requirement while preserving the classi-
fication structure in the data (that is, the masked table remains
useful for classifying the Class column).

The cost metric for our anonymization should be measured
by the classification error on the future data. It does not
work to replace this cost metric by the classification error on
the masked table because a perfect classifier for the masked
table (say, a classifier based on a system-assigned record ID)
can be inaccurate for the future data. For this reason, our
problem does not have a closed form cost metric, and an
“optimal” solution to our problem is not necessarily an optimal
k-anonymization based on a closed form cost metric, and
vice versa. Therefore, the previous optimal k-anonymization
approaches [7] [16] based on a closed-form cost metric are not
suitable. A more reasonable approach is minimally, not always
optimally, masking the data, with a focus on classification. We
will present such an approach in Section III.

It is impractical to enumerate all masked tables because the
number of masked tables can be very large. For a categorical
attribute with a taxonomy tree Y , the number of possible cuts,
denoted C(Y ), is equal to C(Y1) × . . . × C(Yu) + 1 where
Y1, . . . , Yu are the subtrees rooted at the children of the root of
Y and 1 is for the trivial cut at the root of Y . C(Y ) increases
very quickly as we unfold the definition for each subtree Yi

recursively. For a categorical attribute without a taxonomy tree
and with q distinct values, there are 2q possible suppressions
because each distinct value can be either suppressed or not. For
a continuous attribute, each existing value can be a potential
split in the dynamically grown taxonomy tree. The number of
possible masked tables is equal to the product of such numbers
for all the attributes in ∪QIDi.

A masked table T can be represented by
〈∪Cutj ,∪Supj ,∪Intj〉, where Cutj , Supj , Intj are
defined as above. If the masked T satisfies the anonymity
requirement, 〈∪Cutj ,∪Supj ,∪Intj〉 is called a solution set.

III. SEARCH CRITERIA

A table T can be masked by a sequence of refinements
starting from the most masked state in which each attribute
is either generalized to the top most value, or suppressed to
the special value ⊥, or represented by a single interval. Our
method iteratively refines a masked value selected from the
current set of cuts, suppressed values and intervals, until vio-
lating the anonymity requirement. Each refinement increases
the information and decreases the anonymity since records
with specific values are more distinguishable. The key is
selecting the “best” refinement at each step with both impacts
considered.

A. Refinement

Below, we formally describe the notion of refinement on
different types of attributes Dj ∈ ∪QIDi and define a
selection criterion for a single refinement.
Refinement for generalization. Consider a categorical at-
tribute Dj with a user-specified taxonomy tree. Let child(v)
be the set of child values of v in a user-specified taxonomy
tree. A refinement, written v → child(v), replaces the parent
value v with the child value in child(v) that generalizes the
domain value in each (generalized) record that contains v.
Refinement for suppression. For a categorical attribute Dj

without taxonomy tree, a refinement ⊥j → {v,⊥j} refers to
disclosing one value v from the set of suppressed values Supj .
Let R⊥j

denote the set of suppressed records that currently
contain ⊥j . Disclosing v means replacing ⊥j with v in all
records in R⊥j

that originally contain v.
Refinement for discretization. For a continuous attribute,
refinement is similar to that for generalization except that no
prior taxonomy tree is given and the taxonomy tree has to be
grown dynamically in the process of refinement. Initially, the
interval that covers the full range of the attribute forms the
root. The refinement on an interval v, written v → child(v),
refers to the optimal split of v into two child intervals child(v)
that maximizes the information gain. The anonymity is not
used for finding a split good for classification. This is similar
to defining a taxonomy tree where the main consideration is
how the taxonomy best describes the application. Due to this
extra step of identifying the optimal split of the parent interval,
we treat continuous attributes separately from categorical
attributes with taxonomy trees.

A refinement is valid (with respect to T ) if T satisfies the
anonymity requirement after the refinement. A refinement is
beneficial (with respect to T ) if more than one class is involved
in the refined records. A refinement is performed only if it is
both valid and beneficial. Therefore, a refinement guarantees
that every newly generated qid has a(qid) ≥ k.

Example 3: Continue with Example 2. Figure 2 shows a
cut, indicated by the dashed curve. This cut is the lowest
(maximal) in the sense that any refinement on Junior Sec. or
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Fig. 2. Example 3: A cut for QID1 = {Education, Sex}

Grad School would violate the anonymity requirement, i.e.,
invalid. Also, refinement on Junior Sec. or Grad School

is non-beneficial since none of them refines data records in
different classes.

B. Selection Criterion

We propose a selection criterion for guiding our top-down
refinement process to heuristically maximize the classification
goal. Consider a refinement v → child(v) where v ∈ Dj and
Dj is a categorical attribute with a user-specified taxonomy
tree or Dj is a continuous attribute with a dynamically grown
taxonomy tree. The refinement has two effects: it increases the
information of the refined records with respect to classification,
and it decreases the anonymity of the refined records with
respect to privacy. These effects are measured by “information
gain” and denoted InfoGain(v), and “anonymity loss” and
denoted AnonyLoss(v). v is a good candidate for refinement
if InfoGain(v) is large and AnonyLoss(v) is small. Our
selection criterion is choosing the candidate v, for the next re-
finement, that has the maximum information-gain/anonymity-
loss trade-off, defined as

Score(v) =
InfoGain(v)

AnonyLoss(v) + 1
. (1)

1 is added to AnonyLoss(v) to avoid division by zero. Each
choice of InfoGain(v) and AnonyLoss(v) gives a trade-off
between classification and anonymization. It should be noted
that Score is not a goodness metric of k-anonymization. In
fact, it is difficult to have a closed form metric to capture
the classification goal (on future data). We achieve this goal
through this heuristic selection criterion.

For concreteness, we borrow Shannon’s information theory
to measure information gain [26]. Let Rv denote the set of
records masked to the value v and let Rc denote the set of
records masked to a child value c in child(v) after refining v.
Let |x| be the number of elements in a set x. |Rv| =

∑
c |Rc|,

where c ∈ child(v).
InfoGain(v): defined as

InfoGain(v) = I(Rv)−
∑

c

|Rc|

|Rv|
I(Rc), (2)

where I(Rx) is the entropy of Rx [26]:

I(Rx) = −
∑

cls

freq(Rx, cls)

|Rx|
× log2

freq(Rx, cls)

|Rx|
. (3)

freq(Rx, cls) is the number of data records in Rx having
the class cls. Intuitively, I(Rx) measures the entropy (or “im-
purity”) of classes in Rx. The more dominating the majority
class in Rx is, the smaller I(Rx) is (i.e., less entropy in Rx).
Therefore, I(Rx) measures the error because non-majority

classes are considered as errors. InfoGain(v) then measures
the reduction of entropy after refining v. InfoGain(v) is non-
negative. For more details on information gain and classifica-
tion, see [27].

AnonyLoss(v): defined as

AnonyLoss(v) = avg{A(QIDj)−Av(QIDj)}, (4)

where A(QIDj) and Av(QIDj) represent the anonymity
before and after refining v. avg{A(QIDj) − Av(QIDj)} is
the average loss of anonymity for all QIDj that contain the
attribute of v.

If Dj is a categorical attribute without taxonomy tree, the
refinement ⊥j → {v,⊥j} means refining R⊥j

into Rv and
R′

⊥j
, where R⊥j

denotes the set of records containing ⊥j

before the refinement, Rv and R′

⊥j
denote the set of records

containing v and ⊥j after the refinement, respectively. We
employ the same Score(v) function to measure the goodness
of the refinement ⊥j → {v,⊥j}, except that InfoGain(v) is
now defined as:

InfoGain(v) = I(R⊥j
)−

|Rv|

|R⊥j
|
I(Rv)−

|R′

⊥j
|

|R⊥j
|
I(R′

⊥j
). (5)

Example 4: The refinement on ANY Edu refines the 34
records into 16 records for Secondary and 18 records for
University. The calculation of Score(ANY Edu) is:

I(RANY Edu) = − 21

34
× log2

21

34
− 13

34
× log2

13

34
= 0.9597

I(RSecondary) = − 5

16
× log2

5

16
− 11

16
× log2

11

16
= 0.8960

I(RUniversity) = − 16

18
× log2

16

18
− 2

18
× log2

2

18
= 0.5033

InfoGain(ANY Edu) = I(RANY Edu)
−( 16

34
× I(RSecondary) + 18

34
× I(RUniversity)) = 0.2716

AnonyLoss(ANY Edu) = (34− 16)/1 = 18
Score(ANY Edu) = 0.2716

18+1
= 0.0143.

C. InfoGain vs. Score

An alternative to Score is using InfoGain alone, that is,
maximizing the information gain produced by a refinement
without considering the loss of anonymity. This alternative
may pick a candidate that has a large reduction in anonymity,
which may lead to a quick violation of the anonymity re-
quirement, thereby, prohibiting refining the data to a lower
granularity. The next example illustrates this point.

Example 5: Consider Table II(a), the anonymity
requirement
〈QID = {Education, Sex,Work Hrs}, 4〉,

the most masked table containing one row
〈ANY Edu,ANY Sex, [1 − 99)〉 with the class frequency
20Y20N, and three candidate refinements:
ANY Edu → {8th, 9th, 10th}, ANY Sex → {M,F},

and [1− 99) → {[1− 40), [40− 99)}.
Table II(b) shows the calculated InfoGain, AnonyLoss,
and Score of the three candidate refinements. According
to the InfoGain criterion, ANY Edu will be first refined
because it has the highest InfoGain. The result is shown
in Table II(c) with A(QID) = 4. After that, there is no
further valid refinement because refining either ANY Sex or
[1 − 99) will result in a violation of 4-anonymity. Note that
the first 24 records in the table fail to separate the 4N from
the other 20Y.
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TABLE II
COMPARING InfoGain AND Score FOR EXAMPLE 5

(a) (Compressed) table
Education Sex Work Hrs Class # of Recs.

10th M 40 20Y0N 20
10th M 30 0Y4N 4
9th M 30 0Y2N 2
9th F 30 0Y4N 4
9th F 40 0Y6N 6
8th F 30 0Y2N 2
8th F 40 0Y2N 2

Total: 20Y20N 40

(b) Statistics for the most masked table
Candidate InfoGain AnonyLoss Score
ANY Edu 0.6100 40− 4 = 36 0.6100/(36 + 1) = 0.0165
ANY Sex 0.4934 40− 14 = 26 0.4934/(26 + 1) = 0.0183

[1-99) 0.3958 40− 12 = 28 0.3958/(28 + 1) = 0.0136

(c) Final masked table by InfoGain

Education Sex Work Hrs Class # of Recs.
10th ANY Sex [1-99) 20Y4N 24
9th ANY Sex [1-99) 0Y12N 12
8th ANY Sex [1-99) 0Y4N 4

(d) Intermediate masked table by Score

Education Sex Work Hrs Class # of Recs.
ANY Edu M [1-99) 20Y6N 26
ANY Edu F [1-99) 0Y14N 14

(e) Final masked table by Score

Education Sex Work Hrs Class # of Recs.
ANY Edu M [40-99) 20Y0N 20
ANY Edu M [1-40) 0Y6N 6
ANY Edu F [40-99) 0Y8N 8
ANY Edu F [1-40) 0Y6N 6

In contrast, according to the Score criterion, ANY Sex

will be first refined. The result is shown in Table II(d),
and A(QID) = 14. Subsequently, further refinement on
ANY Edu is invalid because it will result in a(〈9th,M, [1−
99)〉) = 2 < k, but the refinement on [1−99) is valid because
it will result in A(QID) = 6 ≥ k. The final masked table
is shown in Table II(e) where the information for separating
the two classes is preserved. Thus by considering the informa-
tion/anonymity trade-off, the Score criterion produces a more
desirable sequence of refinements for classification.

IV. TOP-DOWN REFINEMENT

A. The Algorithm
We present our algorithm, Top-Down Refinement (TDR).

In a preprocessing step, we compress the given table T by
removing all attributes not in ∪QIDi and collapsing duplicates
into a single row with the Class column storing the class
frequency as in Table I. The compressed table is typically
much smaller than the original table. Below, the term “data
records” refers to data records in this compressed form. There
exists a masked table satisfying the anonymity requirement if
and only if the most masked table does, i.e., |T | ≥ k. This
condition is checked in the preprocessing step as well. To focus
on main ideas, we assume that |T | ≥ k and the compressed
table fits in the memory. Section IV-E, we will discuss the
modification needed if the compressed table does not fit in
the memory.

High level description of our algorithm. Algorithm 1
summarizes the conceptual algorithm. Initially, Cutj contains

Algorithm 1 Top-Down Refinement (TDR)
1: Initialize every value of Dj to the top most value or suppress

every value of Dj to ⊥j or include every continuous value of
Dj into the full range interval, where Dj ∈ ∪QIDi.

2: Initialize Cutj of Dj to include the top most value, Supj of Dj

to include all domain values of Dj , and Intj of Dj to include
the full range interval, where Dj ∈ ∪QIDi.

3: while some x∈〈∪Cutj ,∪Supj ,∪Intj〉 is valid & beneficial do
4: Find the Best refinement from 〈∪Cutj ,∪Supj ,∪Intj〉.
5: Perform Best on T and update 〈∪Cutj ,∪Supj ,∪Intj〉.
6: Update Score(x) and validity for x∈〈∪Cutj ,∪Supj ,∪Intj〉.
7: end while
8: return Masked T and 〈∪Cutj ,∪Supj ,∪Intj〉.

only the top most value for a categorical attribute Dj with
a taxonomy tree, Supj contains all domain values of a
categorical attribute Dj without a taxonomy tree, and Intj
contains the full range interval for a continuous attribute Dj .
The valid, beneficial refinements in 〈∪Cutj ,∪Supj ,∪Intj〉
form the set of candidates. At each iteration, we find the
candidate of the highest Score, denoted Best (Line 4),
apply Best to T and update 〈∪Cutj ,∪Supj ,∪Intj〉 (Line
5), and update Score and the validity of the candidates in
〈∪Cutj ,∪Supj ,∪Intj〉 (Line 6). The algorithm terminates
when there is no more candidate in 〈∪Cutj ,∪Supj ,∪Intj〉,
in which case it returns the masked table together with the
solution set 〈∪Cutj ,∪Supj ,∪Intj〉.

Example 6: Consider the anonymity requirement:
{〈QID1 = {Education, Sex}, 4〉,
〈QID2 = {Sex,Work Hrs}, 11〉}.

Assume that the taxonomy trees in Figure 1 are spec-
ified for Education and Sex. Initially, all data records
in Table I are masked and collapsed into a single row
〈ANY Edu,ANY Sex, [1 − 99)〉, with the class frequency
21Y13N and ∪Cutj = {ANY Edu,ANY Sex} and
∪Intj = {[1 − 99)}. All refinements in 〈∪Cutj ,∪Intj〉 are
candidates. To find the best refinement, we need to compute
Score(ANY Edu), Score(ANY Sex), Score([1− 99)).

Our algorithm obtains the masked T by iteratively refining
the table from the most masked state. An important property
of TDR is that the anonymity requirement is anti-monotone
with respect to the top-down refinement: if it is violated before
a refinement, it remains violated after the refinement. This is
because a refinement never equates distinct values, therefore,
never increases the count of duplicates, a(qid). Hence, the
hierarchically organized search space with the most masked
state at the top is separated by a border above which lie all
satisfying states and below which lie all violating states. The
top-down refinement finds a state on the border and this state
is maximally refined in that any further refinement of it would
cross the border and violate the anonymity requirement. Note
that there may be more than one maximally refined state on
the border. Our algorithm finds the one based on the heuristic
selection criterion of maximizing Score at each step. Samarati
[2] presents some results related to anti-monotonicity, but the
results are based on a different masking model that generalizes
all values in an attribute to the same level and suppresses data
at the record level.
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Theorem 1: Algorithm 1 finds a maximally refined table
that satisfies the given anonymity requirement.

Algorithm 1 makes no claim on efficiency. In fact, in
a straightforward implementation, Line 4, 5 and 6 require
scanning all data records and recomputing Score for all
candidates in 〈∪Cutj ,∪Supj ,∪Intj〉. Obviously, this is not
scalable. The key to the efficiency of our algorithm is di-
rectly accessing the data records to be refined, and updating
Score based on some statistics maintained for candidates in
〈∪Cutj ,∪Supj ,∪Intj〉. In the rest of this section, we explain
a scalable implementation of Line 4, 5 and 6.

B. Find the Best Refinement (Line 4)

This step makes use of computed InfoGain(x) and
Ax(QIDi) for all candidates x in 〈∪Cutj ,∪Supj ,∪Intj〉
and computed A(QIDi) for each QIDi. Before the first
iteration, such information is computed in an initialization
step for every top most value, every suppressed value, and
every full range interval. For each subsequent iteration, such
information comes from the update in the previous iteration
(Line 6). Finding the best refinement Best involves at most
| ∪ Cutj | + | ∪ Supj | + | ∪ Intj | computations of Score
without accessing data records. Updating InfoGain(x) and
Ax(QIDi) will be considered in Section IV-D.

C. Perform the Best Refinement (Line 5)

We consider two cases of performing the Best refinement,
corresponding to whether a taxonomy tree is available for the
attribute Dj for Best.
Case 1: Dj has a taxonomy tree. Consider the refinement
Best → child(Best), where Best ∈ Dj , and Dj is either
a categorical attribute with a specified taxonomy tree or a
continuous attribute with a dynamically grown taxonomy tree.
First, we replace Best with child(Best) in 〈∪Cutj , ∪Intj〉.
Then, we need to retrieve RBest, the set of data records
masked to Best, to tell the child value in child(Best) for each
individual data record. We present a data structure, Taxonomy
Indexed PartitionS (TIPS), to facilitate this operation. This
data structure is also crucial for updating InfoGain(x) and
Ax(QIDi) for candidates x. The general idea is to group data
records according to their masked records on ∪QIDi.

Definition 3 (TIPS): TIPS is a tree structure with each
node representing a masked record over ∪QIDi, and each
child node representing a refinement of the parent node on
exactly one attribute. Stored with each leaf node is the set
of (compressed) data records having the same masked record,
called a leaf partition. For each candidate refinement x, Px

denotes a leaf partition whose masked record contains x, and
Linkx denotes the link of all such Px. The head of Linkx is
stored with x.

The masked table is represented by the leaf partitions of
TIPS. Linkx provides a direct access to Rx, the set of
(original) data records masked by the value x. Initially, TIPS
has only one leaf partition containing all data records, masked
by the top most value or interval on every attribute in ∪QIDi.
In each iteration, we perform the best refinement Best by
refining the leaf partitions on LinkBest.

Refine Best in TIPS. We refine each leaf partition
PBest found on LinkBest as follows. For each value c in
child(Best), a child partition Pc is created under PBest, and
data records in PBest are split among the child partitions:
Pc contains a data record in PBest if a categorical value c

generalizes the corresponding domain value in the record, or
if an interval c contains the corresponding domain value in the
record. An empty Pc is removed. Linkc is created to link up
all Pc’s for the same c. Also, link Pc to every Linkx to which
PBest was previously linked, except for LinkBest. Finally,
mark c as “beneficial” if Rc has more than one class, where
Rc denotes the set of data records masked to c.

This is the only operation that actually accesses data records
in the whole algorithm. The overhead is maintaining Linkx.
For each attribute in ∪QIDi and each leaf partition on
LinkBest, there are at most |child(Best)| “relinkings”. There-
fore, there are at most |∪QIDi|×|LinkBest|×|child(Best)|
“relinkings” for applying Best.

Example 7: Continue with Example 6. Initially, TIPS has
only one leaf partition containing all data records and repre-
senting the masked record 〈ANY Edu,ANY Sex, [1−99)〉.
Let the best refinement be [1 − 99) → {[1 − 37), [37 − 99)}
on Work Hrs. We create two child partitions under the root
partition as in Figure 3, and split data records between them.
Both child partitions are on LinkANY Edu and LinkANY Sex.
∪Intj is updated into {[1 − 37), [37 − 99)} and ∪Cutj
remains unchanged. Suppose that the next best refinement is
ANY Edu → {Secondary, University}, which refines the
two leaf partitions on LinkANY Edu, resulting in the TIPS in
Figure 3.

Count statistics in TIPS. A scalable feature of our al-
gorithm is maintaining some statistical information for each
candidate x in 〈∪Cutj , ∪Intj〉 for updating Score(x) without
accessing data records. For each value c in child(Best) added
to 〈∪Cutj , ∪Intj〉 in the current iteration, we collect the
following count statistics of c while scanning data records
in PBest for updating TIPS: (1) |Rc|, |Rd|, freq(Rc, cls),
and freq(Rd, cls) for computing InfoGain(c), where d ∈
child(c) and cls is a class label. Refer to Section III for these
notations. (2) |Pd|, where Pd is a child partition under Pc as
if c is refined, kept together with the leaf node for Pc. These
information will be used in Section IV-D.

TIPS has several useful properties. (1) All data records in
the same leaf partition have the same masked record although
they may have different refined values. (2) Every data record
appears in exactly one leaf partition. (3) Each leaf partition
Px has exactly one masked qidj on QIDj and contributes the
count |Px| towards a(qidj). Later, we use the last property to
extract a(qidj) from TIPS.
Case 2: Dj has no taxonomy tree. Consider a refinement
⊥j → {Best,⊥j} where ⊥j ∈ Dj , and Dj is a categorical
attribute without a taxonomy tree. First, we remove Best

from Supj . Then we replace ⊥j with the disclosed value
Best in all suppressed records that currently contain ⊥j and
originally contain Best. The TIPS data structure in Definition
3 can also support the refinement operation in this case. The
only difference is to add an extra Link⊥j

to link up all leaf
partitions P⊥j

containing value ⊥j . The candidate set now
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LinkSecondary

Head of LinkSecondary

ANY_Edu ANY_Sex [37-99)ANY_Edu ANY_Sex [1-37)

Education Sex Work_Hrs
ANY_Edu ANY_Sex [1-99)

Secondary ANY_Sex [1-37) Secondary ANY_Sex [37-99) University ANY_Sex [37-99)

Head of LinkUniversity

ANY_Edu       {Secondary, University}

34
# of Recs.

12 22

12 184

[1-99)       {[1-37), [37-99)}

Fig. 3. The TIPS data structure

Algorithm 2 Computing a(qidi) for new qidi

1: for each Pc ∈ Linkc do
2: for each QIDi containing att(Best) do
3: a(qidi) = a(qidi) + |Pc|, where qidi is the masked value

on QIDi for Pc

4: end for
5: end for

includes ∪Supj , that is, 〈∪Cutj ,∪Supj ,∪Intj〉.
Disclose Best in TIPS. We refine each leaf partition P⊥j

found on Link⊥j
as follows. Two child partitions PBest and

P ′

⊥j
are created under P⊥j

. Data records in P⊥j
are split

among the child partitions: PBest contains a data record r in
P⊥j

if Best is the original domain value in r; otherwise, P ′

⊥j

contains r. Then link PBest to every Linkx to which P⊥j

was previously linked, except for Link⊥j
. Also, link P ′

⊥j
to

every Linkx to which P⊥j
was previously linked, except for

LinkBest.
Count statistics in TIPS. Similar to Case 1, we collect

the following count statistics of x ∈ ∪Supj while scanning
data records in P⊥j

for updating TIPS. (1) |R′

⊥j
|, |Rx|,

freq(R′

⊥j
, cls), freq(Rx, cls) for computing InfoGain(x),

where x ∈ ∪Supj and cls is a class label. (2) |Py|, where Py

is a child partition under Px as if x is disclosed, kept together
with the leaf node for Px. These information will be used in
Section IV-D.

D. Update Score and Validity (Line 6)

This step updates Score(x) and validity for candidates
x in 〈∪Cutj ,∪Supj ,∪Intj〉 to reflect the impact of the
Best refinement. The key is computing Score(x) from the
count statistics maintained in Section IV-C without access-
ing data records. We update InfoGain(x) and Ax(QIDi)
separately. Note that the updated A(QIDi) is obtained from
ABest(QIDi).

1) Update InfoGain(x): An observation is that
InfoGain(x) is not affected by Best → child(Best),
except that we need to compute InfoGain(c) for each
newly added value c in child(Best). InfoGain(c) can be
computed while collecting the count statistics for c in Case
1 of Section IV-C. In case that the refined attribute has no
taxonomy tree, InfoGain(x) can be computed from the
count statistics for x in Case 2 of Section IV-C.

2) Update AnonyLoss(x): Again, we consider the two
cases:

Case 1: Dj has a taxonomy tree. Unlike information gain,
it is not enough to compute Ac(QIDi) only for the new
values c in child(Best). Recall that Ax(QIDi) is equal to
the minimum a(qidi) after refining x. If both att(x) and
att(Best) are contained in QIDi, the refinement on Best may
affect this minimum, hence, Ax(QIDi). Below, we present
a data structure, Quasi-Identifier TreeS (QITS), to extract
a(qidi) efficiently from TIPS for updating Ax(QIDi).

Definition 4 (QITS): QITi for QIDi = {D1, . . . , Dw} is a
tree of w levels. The level p > 0 represents the masked values
for Dp. Each root-to-leaf path represents an existing qidi on
QIDi in the masked data, with a(qidi) stored at the leaf node.
A branch is trimmed if its a(qidi) = 0.
A(QIDi) is equal to the minimum a(qidi) in QITi. In other

words, QITi provides an index of a(qidi) by qidi. Unlike
TIPS, QITS does not maintain data records. On applying
Best→ child(Best), we update every QITi such that QIDi

contains the attribute att(Best).
Update QITi. For each occurrence of Best in QITi, create

a separate branch for each c in child(Best). The procedure
in Algorithm 2 computes a(qidi) for the newly created qidi’s
on such branches. The general idea is to loop through each Pc

on Linkc in TIPS, increment a(qidi) by |Pc|. This step does
not access data records because |Pc| was part of the count
statistics of Best. Let r be the number of QIDi containing
att(Best). The number of a(qidi) to be computed is at most
r × |LinkBest| × |child(Best)|.

Example 8: In Figure 4, the initial QIT1 and QIT2 (i.e.,
left most) have a single path. After applying [1 − 99) →
{[1− 37), [37− 99)}, the qid 〈ANY Sex, [1− 99)〉 in QIT2

is replaced with two new qids 〈ANY Sex, [1 − 37)〉 and
〈ANY Sex, [37 − 99)〉, and A(QID2) = 12. Since QID1

does not include Work Hrs, QIT1 remains unchanged and
A(QID1) = 34.

After applying the second refinement ANY Edu →
{Secondary, University}, QIT2 remains unchanged, and
A(QID2) = 12. The qid 〈ANY Edu,ANY Sex〉 in QIT1

is replaced with two new qids 〈Secondary,ANY Sex〉
and 〈University, ANY Sex〉. To compute a(qid) for
these new qids, we add |PSecondary| to LinkSecondary

and |PUniversity| to LinkUniversity (see Figure 3):
a(〈Secondary,ANY Sex〉) = 0 + 12 + 4 = 16,
and a(〈University, ANY Sex〉) = 0 + 18 = 18. So
AANY Edu(QID1) = 16.

We now update Ax(QIDi) for candidates x in
〈∪Cutj ,∪Intj〉 (in the impact of Best → child(Best)).



To appear in IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2007 9

Education

Sex

Initial

a(qid) count

After Refinement
on [1-99)

ANY_Sex
34

ANY_Edu

After Refinement
on ANY_Edu

RootQIT1

QIT2

Sex

Work_Hrs
a(qid) count

ANY_Sex
34

ANY_Edu

Root

ANY_Sex
16

Secondary

Root

ANY_Sex
18

University

[1-99)
34

ANY_Sex

Root

[1-37)
12

ANY_Sex

Root

[37-99)
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Fig. 4. The QITS data structure

Doing this by refining x requires accessing data records,
hence, is not scalable. We compute Ax(QIDi) using the
count statistics maintained for x without accessing data
records.

Update Ax(QIDi). For a candidate x in 〈∪Cutj ,∪Intj〉,
computing Ax(QIDi) is necessary in two cases. First, x is
in child(Best) because Ax(QIDi) has not been computed
for newly added candidates x. Second, Ax(QIDi) might be
affected by the refinement on Best, in which case att(x) and
att(Best) must be contained in QIDi. In both cases, we first
compute a(qidx

i ) for the new qidx
i ’s created as if x is refined.

The procedure is the same as in Algorithm 2 for refining Best,
except that Best is replaced with x and no actual update is
performed on QITi and TIPS. Note that the count |Pc|, where
c is in child(x), used in the procedure is part of the count
statistics maintained for x.

Next, we compare a(qidx
i ) with A(QIDi) to determine the

minimum, i.e., Ax(QIDi). There are two subcases:

1) If no contributing qid of A(QIDi) (i.e., a(qid) =
A(QIDi)) contains the value x, the contributing qids
of A(QIDi) will remain existing if x is refined. Hence,
Ax(QIDi) is the minimum of A(QIDi) and a(qidx

i ).
2) If some contributing qid of A(QIDi) contains the value

x, such qid’s become new qidx
i if x is refined, so

Ax(QIDi) is the minimum of a(qidx
i ).

Finally, if the new Ax(QIDi) ≥ ki, we keep it with x and
mark x as “valid” in the cut.
Case 2: Dj has no taxonomy tree. Even the refined attribute
has no taxonomy tree, the general operation of computing
AnonyLoss(x) is the same as Case 1. The difference is that
the refined values of ⊥j becomes {Best,⊥j} where Best is
the disclosed value and the updated ⊥j represents the remain-
ing suppressed values Supj . Also, the candidate set includes
∪Supj , that is, 〈∪Cutj ,∪Supj ,∪Intj〉. On disclosing Best,
we update all QITi such that att(Best) is in QITi to reflect
the move of records from Link⊥j

to LinkBest.
Update QITi. For each occurrence of ⊥j in QITi, create

a separate branch for Best and a separate branch for updated
⊥j . Follow the procedure in Algorithm 2 to compute a(qidi)
for the newly created qidi’s on such branches, except that Pc’s
become PBest and P ′

⊥j
. Refer to Case 2 in Section IV-C for

these notations.

E. Efficiency Analysis

Each iteration involves two types of work. The first type
accesses data records in RBest or R⊥j

for updating TIPS and
count statistics in Section IV-C. If Best is an interval, an
extra step is required for determining the optimal split for each
child interval c in child(Best). This requires making a scan
on records in Rc, which is a subset of RBest. To determine a
split, Rc has to be sorted which can be an expensive operation.
Fortunately, resorting Rc is unnecessary for each iteration
because its superset RBest are already sorted. Thus, this type
of work involves one scan of the records being refined in each
iteration. The second type of work computes Score(x) for
the candidates x in 〈∪Cutj ,∪Supj ,∪Intj〉 without accessing
data records in Section IV-D. For a table with m attributes and
each taxonomy tree with at most p nodes, the number of such x
is at most m×p. This computation makes use of the maintained
count statistics and does not access data records. Let h be the
maximum number of times that a value in a record will be
refined. For an attribute with a taxonomy tree, h is bounded
by the height of the taxonomy tree, and for an attribute without
taxonomy tree, h is bounded by 1 (i.e., a suppressed value is
refined at most once). In the whole computation, each record
will be refined at most m×h times, therefore accessed at most
m× h times because only refined records are accessed. Since
m × h is a small constant independent of the table size, our
algorithm is linear in the table size.

In the special case that there is only a single QID, each root-
to-leaf path in TIPS has represented a qid, and we can store
a(qid) directly at the leaf partitions in TIPS without QITS.
A single QID was considered in [7] [10] [12] [16] where the
QID contains all potentially identifying attributes to be used
for linking the table to an external source. Our algorithm is
more efficient in this special case.

To focus on main ideas, our current implementation as-
sumes that the compressed table fits in memory. Often, this
assumption is valid because the compressed table can be much
smaller than the original table. If the compressed table does
not fit in the memory, we can store leaf partitions of TIPS
on disk if necessary. Favorably, the memory is used to keep
only leaf partitions that are smaller than the page size to avoid
fragmentation of disk pages. A nice property of TDR is that
leaf partitions that cannot be further refined (i.e., on which
there is no candidate refinement) can be discarded, and only
some statistics for them needs to be kept. This likely applies
to small partitions in memory, therefore, the memory demand
is unlikely to build up.

Compared to iteratively masking the data bottom-up starting
from domain values, the top-down refinement is more natural
and efficient for handling continuous attributes. To produce
a small number of intervals for a continuous attribute, the
top-down approach needs only a small number of interval
splitting, whereas the bottom-up approach needs many interval
merging starting from many domain values. In addition, the
top-down approach can discard data records that cannot be
further refined, whereas the bottom-up approach has to keep
all data records until the end of computation.
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V. EXPERIMENTAL EVALUATION

Our goal in this section is to evaluate the proposed method,
TDR, in terms of preserving the usefulness for classification
and the scalability on large data sets. For the usefulness
evaluation, we compare the classifier built from the masked
data with the classifier built from the unmodified data. This
comparison makes sense because the anonymization is due
to the privacy consideration and the data will be released
without modification in the absence of such consideration. In
addition, the unmodified data has the lowest possible cost,
therefore, serves the best possible candidate according to
previous cost metrics [7] [12] [16]. Though some recent works
such as [7] model the classification metric on the masked
table, the optimality of such metrics does not translate into
the optimality of classifiers, as pointed out in Section I. To
our knowledge, [12] is the only work that has evaluated the
impact of anonymity on classification with single dimensional
generalization. For these reasons, our evaluation uses the
baseline of the unmodified data and the reported results in
[12]. All experiments on TDR were conducted on an Intel
Pentium IV 2.6GHz PC with 1GB RAM.

A. Data Quality

Our first objective is to evaluate if the proposed TDR
preserves the quality for classification while masking the
data to satisfy various anonymity requirements. We used
the C4.5 classifier [27] and Naive Bayesian classifier (from
http://magix.fri.uni-lj.si/orange/) as classification models. We
adopted three widely used benchmarks: Adult, Japanese Credit
Screening, and German Credit Data were obtained from the
UCI repository [28]. Unless stated otherwise, all attributes
were used for building classifiers.

In a typical real life situation, the data provider releases
all data records in a single file, leaving the split of training
and testing sets to the data miner. Following this practice,
we combined the training set and testing set into one set for
masking, and built a classifier using the masked training set
and collected the error using the masked testing set. This error,
called the anonymity error, denoted AE, was compared with
the baseline error, denoted BE, for the unmodified training
and testing sets. Note that AE depends on the anonymity
requirement. AE −BE measures the quality loss due to data
masking.
Data set: Adult

The Adult data set has 6 continuous attributes, 8 categorical
attributes, and a binary Class column representing two income
levels, ≤50K or >50K. Table III(a) describes each attribute
(cont. for continuous and cat. for categorical). After removing
records with missing values from the pre-split training and
testing sets, we have 30,162 records and 15,060 records for
training and testing respectively. This is exactly the same data
set as used in [12].

For the same anonymity threshold k, a single QID is always
more restrictive than breaking it into multiple QIDs. For this
reason, we first consider the case of single QID. To ensure
that masking is working on attributes that have impact on
classification, the QID contains the top N attributes ranked

TABLE III
ATTRIBUTES FOR DATA SETS

(a) The Adult data set
Attribute Type Numerical Range

# of Leaves # of Levels
Age (Ag) cont. 17 - 90
Capital-gain (Cg) cont. 0 - 99999
Capital-loss (Cl) cont. 0 - 4356
Education-num (En) cont. 1 - 16
Final-weight (Fw) cont. 13492 - 1490400
Hours-per-week (H) cont. 1 - 99
Education (E) cat. 16 5
Martial-status (M) cat. 7 4
Native-country (N) cat. 40 5
Occupation (O) cat. 14 3
Race (Ra) cat. 5 3
Relationship (Re) cat. 6 3
Sex (S) cat. 2 2
Work-class (W) cat. 8 5

(b) The German data set
Attribute Type Numerical Range

# of Values
Duration (Du) cont. 4 - 72
Credit (Cd) cont. 250 - 18424
Installment-rate (Ir) cont. 1 - 4
Residence-time (Rt) cont. 1 - 4
Age (Ag) cont. 19 - 75
Existing-credits (Ec) cont. 1 - 4
Liable-people (Li) cont. 1 - 2
Account-status (As) cat. 4
Credit-history (Ch) cat. 5
Loan-purpose (Lp) cat. 11
Savings-account (Sa) cat. 5
Employment (Em) cat. 5
Personal-status (Ps) cat. 5
Debtors (D) cat. 3
Property (Pr) cat. 4
Installments (I) cat. 3
Housing (H) cat. 3
Job (J) cat. 4
Telephone (T) cat. 2
Foreign (F) cat. 2

by the C4.5 classifier. The top rank attribute is the attribute
at the top of the C4.5 decision tree. Then we remove this
attribute and repeat this process to determine the rank of other
attributes. The top 9 attributes are Cg, Ag, M , En, Re, H , S,
E, O in that order. We specified three anonymity requirements
denoted Top5, Top7, and Top9, where the QID contains the
top 5, 7, and 9 attributes respectively. The upper error, denoted
UE, refers to the error on the data with all the attributes in
the QID removed (equivalent to generalizing them to the top
most ANY or suppressing them to ⊥ or including them into
a full range interval). UE − BE measures the impact of the
QID on classification.

Figure 5 displays AE for the C4.5 classifier with the
anonymity threshold 20 ≤ k ≤ 1000 by applying discretiza-
tion on the 6 continuous attributes and suppression on the
8 categorical attributes without taxonomy trees. Note that k
is not spaced linearly. We summarize the analysis for Top7
as follows. First, AE − BE, where BE = 14.7%, is less
than 2.5% over the entire range of tested anonymity threshold,
and AE is much lower than UE = 21.5%. This supports
that accurate classification and privacy protection can coexist.
Second, AE generally increases as the anonymity threshold
k increases, but not monotonically. For example, the error
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Fig. 5. Suppress and discretize TopN in Adult

slightly drops when k increases from 180 to 200. This is due
to the variation between the training and testing sets, and the
fact that a better structure may appear in a more masked state.

We further evaluate the effectiveness of generalization on
categorical attributes with taxonomy trees. Although the au-
thor of [12] has specified taxonomy trees for categorical
attributes, we do not agree with the author’s groupings.
For example, the author grouped Native-country according
to continents, except Americas. We followed the grouping
according to the World Factbook published by the CIA
(http://www.cia.gov/cia/publications/factbook/).

Figure 6(a) displays AE for the C4.5 classifier with the
anonymity threshold 20 ≤ k ≤ 1000 by applying discretiza-
tion on the 6 continuous attributes and generalization on the
8 categorical attributes according to our specified taxonomy
trees. We summarize the analysis for Top7 as follows. AE −
BE, where BE = 14.7%, is less than 2% over the range of
anonymity threshold 20 ≤ k ≤ 600, and AE is much lower
than UE = 21.5%. These results are similar to the results
in Figure 5 although the finally masked versions of data are
very different. This suggests there exists redundant “good”
classification structures in the data.

A closer look at the masked data for Top7 with k = 500
reveals that among the seven top ranked attributes, three are
masked to a different degree of granularity, and four, namely
Cg (ranked 1st), Ag (ranked 2nd), Re (ranked 5th), and S

(ranked 7th), are masked to the top most value ANY . Even
for this drastic masking, AE has only increased by 2% from
BE = 14.7%, while the worst case can be UE = 21.5%.
With the masking, classification now is performed by the
remaining three attributes in the QID and the unmodified but
lower ranked attributes. Clearly, this is a different classification
structure from what would be found from the unmodified data.
As a result, though masking may eliminate some structures,
new structures emerge to help.

Figure 6(b) displays AE for the Naive Bayesian classifier.
Compared to the C4.5 classifier, though BE and UE are
higher (which has to do with the classification method, not
the masking), the quality loss due to masking, AE − BE

(note BE = 18.07%), is smaller, no more than 1.5% for the
range of anonymity threshold 20 ≤ k ≤ 1000. This suggests
that the information based masking is also useful to other
classification methods such as the Naive Bayesian that do not
use the information gain. Another observation is that AE is
even lower than BE for the anonymity threshold k ≤ 180
for Top5 and Top7. This confirms again that the optimal k-
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Fig. 6. Generalize and discretize TopN in Adult

anonymization is not relevant to the classification goal due
to possibility of “over-fitting”. The unmodified data certainly
has the least distortion by any cost metric. However, this
experiment shows that the least distortion does not translate
into the accuracy of classifier. AE < BE also occurs in the
experiment on the CRX data set in Figure 9(a). Our approach is
bias toward masking the noises in order to help classification.

ANY
[1-99)

[1-42) [42-99)

Work Hrs per Week

[1-9)

ANY
[1-20)

[1-13) [13-20)

[9-13)

Years of Education

[13-15) [15-20)

Fig. 7. Generated taxonomy trees of Hours-per-week and Education-num

Figure 7 shows the generated taxonomy trees for continuous
attributes Hours-per-week and Education-num with Top7 and
k = 60. The splits are very reasonable. For example, in the
taxonomy tree of Education-num, the split point at 13 distin-
guishes whether the person has post-secondary education. If
the user does not like these trees, she may modify them or
specify her own and subsequently treat continuous attributes
as categorical attributes with specified taxonomy trees.

Our method took at most 10 seconds for all previous
experiments. Out of the 10 seconds, approximately 8 seconds
were spent on reading data records from disk and writing
the masked data to disk. The actual processing time for
generalizing the data is relatively short.

In an effort to study the effectiveness of multiple QIDs,
we compared AE between a multiple QIDs requirement
and the corresponding single united QID requirement. We
randomly generated 30 multiple QID requirements as follows.
For each requirement, we first determined the number of
QIDs using the uniform distribution U [3, 7] (i.e., randomly
drawn a number between 3 and 7) and the length of QIDs
using U [2, 9]. For simplicity, all QIDs in the same require-
ment have the same length and same threshold k = 100.
For each QID, we randomly selected some attributes ac-
cording to the QID length from the 14 attributes. A re-
peating QID was discarded. For example, a requirement
of 3 QIDs and length 2 is {〈{Ag,En}, k〉, 〈{Ag,Ra}, k〉,
〈{S,H}, k〉}, and the corresponding single QID requirement
is {〈{Ag,En,Ra, S,H}, k〉}.
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Fig. 8. SingleQID vs MultiQID (k = 100)
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Fig. 9. Suppress and discretize TopN in CRX and German

In Figure 8, each data point represents the AE of a multiple
QID requirement, denoted MultiQID, and the AE of the
corresponding single QID requirement, denoted SingleQID.
The C4.5 classifier was used. Most data points appear at the
upper left corner of the diagonal, suggesting that MultiQID
generally yields lower AE than its corresponding SingleQID.
This verifies the effectiveness of multiple QIDs to avoid
unnecessary masking and improve data quality.
Data set: Japanese Credit Screening

The Japanese Credit Screening data set, also known as CRX,
is based on credit card application. There are 6 continuous
attributes, 9 categorical attributes, and a binary class attribute
representing the application status succeeded or failed. After
removing records with missing values, there are 465 and 188
records for the pre-split training and testing respectively. In the
UCI repository, all values and attribute names in CRX have
been changed to meaningless symbols, e.g., A1 . . . A15. No
taxonomy tree is given in advance. The Top9 attributes in CRX
are A9, A11, A10, A8, A15, A7, A14, A6, A5 in that order.

Figure 9(a) displays AE for the C4.5 classifier with the
anonymity threshold 20 ≤ k ≤ 600 by applying discretization
on the 6 continuous attributes and suppression on the 8 cate-
gorical attributes without taxonomy trees. Different anonymity
requirements Top5, Top7, and Top9 yield similar AE’s and
similar patterns, indicating more restrictive requirement may
not have much impact on classification quality. This largely
depends on the availability of alternative “good” classification
structures in the data set.

We summarize the analysis for Top7 as follows. First, AE−
BE, where BE = 15.4%, is less than 4% over the range of
anonymity threshold 20 ≤ k ≤ 300, and AE is much lower
than UE = 42%. This supports that accurate classification and
privacy protection can coexist. AE drastically increases when
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Fig. 10. Comparing with genetic algorithm

k > 300 since CRX only has 653 records.
Data set: German Credit Data

The German Credit Data, or simply German, has 7 con-
tinuous attributes, 13 categorical attributes, and a binary class
attribute representing the good or bad credit risks. There are
666 and 334 records, without missing values, for the pre-split
training and testing respectively. Table III(b) describes each
attribute. The Top9 attributes in German are Cd, As, Du,
Ch, Sa, I , Lp, D, Pr in that order.

Figure 9(b) displays AE for the C4.5 classifier with the
anonymity threshold 20 ≤ k ≤ 1000 by applying discretiza-
tion on the 7 continuous attributes and suppression on the
13 categorical attributes without taxonomy trees. AE − BE,
where BE = 28.8%, is less than 4% over the range of
anonymity threshold 20 ≤ k ≤ 100 for the anonymity
requirement Top7. Although AE is mildly lower than UE =
36%, the benefit of masking UE−AE is not as significant as
in other data sets. If the data provider requires higher degree of
anonymity, then she may consider simply removing the TopN
attributes from the data set rather than masking them.

B. Comparing with Other Algorithms

[12] presented a genetic algorithm solution. This experi-
ment was customized to conduct a fair comparison with the
results in [12]. We used the same Adult data set, same at-
tributes, and same anonymity requirement as specified in [12]:

GA = 〈{Ag,W,E,M,O,Ra, S,N}, k〉.
We obtained the taxonomy trees from the author for general-
ization, except for the continuous attribute Ag which we used
discretization. Following the procedure in [12], all attributes
not in GA were removed and were not used to produce BE,
AE, and UE in this experiment, and all errors were based on
the 10-fold cross validation and the C4.5 classifier. For each
fold, we first masked the training data and then applied the
masking to the testing data.

Figure 10 compares AE of TDR with the errors reported
for two methods in [12], Loss Metric (LM) and Classification
Metric (CM), for 10 ≤ k ≤ 500. TDR outperformed LM,
especially for k ≥ 100, but performed only slightly better
than CM. TDR continued to perform well from k = 500
to k = 1000, for which no result was reported for LM and
CM in [12]. This analysis shows that our method is at least
comparable to genetic algorithm [12] in terms of accuracy.
However, our method took only 7 seconds to mask the data,
including reading data records from disk and writing the



To appear in IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2007 13

0

100

200

300

400

500

600

0 200 400 600 800 1000

# of Records (in thousands)

Ti
m

e 
(s

ec
on

ds
)

AllAttQID MultiQID

Fig. 11. Scalability vs # of records (k = 50)

masked data to disk. [12] reported that his method requires
18 hours to transform this data, which has about only 30K
data records. Clearly, the genetic algorithm is not scalable.

Recently, [17] compared with our previous version of TDR
in [14] in terms of data quality on some other data sets.
Their experiments suggested that the classification quality on
the masked data can be further improved by using a more
flexible masking operation, multidimensional generalization;
however, this type of generalization suffers from the interpre-
tation difficulty as discussed in Section I. [20] reported that
the multidimensional generalization algorithm took about 10
seconds to mask the Adult data set. We compared TDR with
some recently developed greedy anonymization algorithms
that also conducted experiments on the Adult data set. The
efficiency of the bottom-up cell generalization algorithm in
[15] is comparable to TDR when k = 2, 10, but they did
not report the efficiency for larger k. A cell generalization
algorithm in [20] took about 60 seconds to mask the data. In
general, multidimensional and cell generalization algorithms
are less efficient than our method due to the larger number of
possible masked tables.

C. Efficiency and Scalability

This experiment evaluates the scalability of TDR by blowing
up the size of the Adult data set. First, we combined the
training and testing sets, giving 45,222 records. For each
original record r in the combined set, we created α − 1
“variations” of r, where α > 1 is the blowup scale. For
each variation of r, we randomly selected q attributes from
∪QIDj , where q has the uniform distribution U [1, |∪QIDj |],
i.e., randomly drawn between 1 and the number of attributes
in QIDs, and replaced the values on the selected attributes
with values randomly drawn from the domain of the attributes.
Together with all original records, the enlarged data set has
α × 45, 222 records. To provide a precise evaluation, the
runtime reported excludes the time for loading data records
from disk and the time for writing the masked data to disk.

Figure 11 depicts the runtime of TDR using generalization
and discretization for 200K to 1M data records and the
anonymity threshold k = 50 based on two types of anonymity
requirements. AllAttQID refers to the single QID having all
14 attributes. This is one of the most time consuming settings
because of the largest number of candidate refinements to
consider at each iteration. For TDR, the small anonymity
threshold of k = 50 requires more iterations to reach a

solution, hence more runtime, than a larger threshold. TDR
takes approximately 80 seconds to transform 1M records.

In Figure 11, MultiQID refers to the average runtime over
the 30 random multiple QID requirements in Section V-
A with k = 50. Compared to AllAttQID, TDR becomes
less efficient for handling multiple QIDs for two reasons.
First, an anonymity requirement on multiple QIDs is a less
restrictive constraint than the single QID anonymity require-
ment containing all attributes; therefore, TDR has to perform
more refinements before violating the anonymity requirement.
Moreover, TDR needs to create one QIT for each QID and
maintains a(qid) in QITS. The increase is roughly by a
factor proportional to the number of QIDs in an anonymity
requirement. The runtime of suppression and discretization
on this expanded data set is roughly the same as shown in
Figure 11.

D. Summary

Our experiments verified several claims about the proposed
TDR method. First, TDR masks a given table to satisfy a
broad range of anonymity requirements without sacrificing
significantly the usefulness to classification. Second, while
producing a comparable accuracy, TDR is much more efficient
than previously reported approaches, particularly, the genetic
algorithm in [12]. Third, the previous optimal k-anonymization
[7] [16] does not necessarily translate into the optimality of
classification. The proposed TDR finds a better anonymization
solution for classification. Fourth, the proposed TDR scales
well with large data sets and complex anonymity requirements.
These performances together with the features discussed in
Section I make TDR a practical technique for privacy protec-
tion while sharing information.

VI. CONCLUSIONS

We considered the problem of ensuring individual’s
anonymity while releasing person-specific data for classifi-
cation analysis. We pointed out that the previous optimal k-
anonymization based on a closed form of cost metric does not
address the classification requirement. Our approach is based
on two observations specific to classification: information spe-
cific to individuals tends to be over-fitting, thus of little utility,
to classification; even if a masking operation eliminates some
useful classification structures, alternative structures in the
data emerge to help. Therefore, not all data items are equally
useful for classification and less useful data items provide
the room for anonymizing the data without compromising
the utility. With these observations, we presented a top-down
approach to iteratively refine the data from a general state into
a special state, guided by maximizing the trade-off between
information and anonymity. This top-down approach serves
a natural and efficient structure for handling categorical and
continuous attributes and multiple anonymity requirements.
Experiments showed that our approach effectively preserves
both information utility and individual’s privacy and scales
well for large data sets.
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