
Mining Frequent Itemsets Using Support ConstraintsKe Wang Yu He Jiawei HanNational University of Singapore & National University of Singapore Simon Fraser UniversitySimon Fraser Universitywangk@cs.sfu.ca hey@comp.nus.edu.sg han@cs.sfu.caAbstractInteresting patterns often occur at varied lev-els of support. The classic association miningbased on a uniform minimum support, suchas Apriori, either misses interesting patternsof low support or su�ers from the bottleneckof itemset generation. A better solution isto exploit support constraints, which specifywhat minimum support is required for whatitemsets, so that only necessary itemsets aregenerated. In this paper, we present a frame-work of frequent itemset mining in the pres-ence of support constraints. Our approach isto \push" support constraints into the Aprioriitemset generation so that the \best" mini-mum support is used for each itemset at runtime to preserve the essence of Apriori.1 IntroductionThe association rules mining, �rst studied in [AIS93,AS94] for market-basket analysis, is to �nd all asso-ciation rules above some user-speci�ed minimum sup-port and minimum con�dence. The bottleneck of thisproblem is �nding frequent itemsets (and support), i.e.,itemsets that have a support above the minimum sup-port. The importance of frequent itemsets goes far be-yond market-basket analysis because they serve as anestimation of joint probabilities of events, thereby, use-ful whenever such estimation is required. For example,several recent studies have leveraged frequent itemsetsto build intrusion detection models [LSM98], to con-Permission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 26th VLDB Conference,Cairo, Egypt, 2000.

struct classi�ers [LHM98, MW99], to build Yahoo!-like information hierarchies [WZL99], and to discoveremerging patterns [DL99]. We believe that more andmore internet/web related data mining will require theability of �nding frequent itemsets.1.1 Apriori lives on a uniform minimum sup-portThe best known search strategy of frequent itemests,called Apriori [AIS93, AS94], exploits the follow-ing property: if an itemset is frequent, so areall its subsets. Thus, Apriori ensures a level-wise generation of itemsets where each candidatek-itemset fi1; : : : ; ik�2; ik�1; ikg is generated fromtwo frequent (k � 1)-itemsets fi1; : : : ; ik�2; ik�1g andfi1; : : : ; ik�2; ikg. To make Apriori work, how-ever, it is essential that all itemsets have a uni-form minimum support. Consider what happensif the minimum support of fcoffee; sugar; teag is2% and the minimum support of fcoffee; teag,fsugar; teag, fcoffee; sugarg is 5%: it is possiblethat fcoffee; sugar; teag is frequent with respect toits minimum support, but none of fcoffee; teag,fsugar; teag, fcoffee; sugarg is frequent with respectto their minimum support!1.2 The reality is not uniformIn reality, the minimum support is not uniform. First,deviations and exceptions often have much lower sup-port than general trends. For example, rules for ac-cidents are much less supported than rules for non-accidents, but the former are often more interest-ing than the latter. Second, the support require-ment varies with the support of items contained inan itemset. Rules containing bread and milk usuallyhave higher support than rules containing food pro-cessor and pan. A similar scenario is that dense at-tributes such as States have less support than sparseattributes such as Gender. Third, item presence hasless support than item absence. Fourth, the supportrequirement varies at di�erent concept levels of items[HF95, SA95]. Finally, hierarchical classi�cation like

[WZL99] requires feature terms to be discovered at dif-ferent concept levels, thereby, requiring a non-uniformminimum support.Given that existing algorithms assume a uniformminimum support, the best one can do is to applysuch algorithms at the lowest minimum support everspeci�ed and �lter the result using higher minimumsupports. This method will generate many candidatesthat are later discarded. From our experience (seeSection 7), the increase of candidates often causes anon-linear increase of execution time and a drasticperformance deterioration once page swapping takesplace between memory and disk, during the supportcounting where candidates were read from disk foreach transaction. In the world of non-uniform mini-mum support, we need a technique that �nds the item-sets above their minimumsupports without forcing thelowest minimum support across all itemsets.1.3 Our approachWe propose support constraints as a way to specifygeneral constraints on minimum support. Informally,a support constraint speci�es what itemsets are re-quired to satisfy what minimum support. We considersupport constraints of the form SCi(B1; : : : ; Bs) � �i,where s � 0. Each Bj , called a bin, is a set of itemsthat need not be distinguished with respect to thespeci�cation of minimum support. �i is a minimumsupport in the range [0..1]. The above support con-straint speci�es that any itemset containing at leastone item from each Bj has the minimum support �i.The topic of this paper is to \push" such support con-straints into the itemset generation to prune candi-dates as early as possible. We illustrate this approachusing an example.Example 1.1 Consider four support constraintsSC1(B1; B3) � 0:2, SC2(B3) � 0:4, SC3(B2) � 0:6,and SC0() � 0:8. Each bin Bi contains a disjoint setof items. We assume that if more than one constraintis applicable to an itemset, the constraint specifyingthe lowest minimum support is chosen. We will ex-plain the rationale of this choice in Section 3. Withthis assumption, we have the following speci�cations.Case (i): SC1(B1; B3) � 0:2 speci�es minimum sup-port 0.2 for any itemset containing (probably more,same below) one item in each of B1 and B3. Case(ii): SC2(B3) � 0:4 speci�es minimum support 0.4for any itemset containing one item in B3, but noitem in B1 (otherwise, Case (i) applies). Case (iii):SC3(B2) � 0:6 speci�es minimum support 0.6 for anyitemset containing one item in B2, but no item in B3(otherwise, Case (ii) applies). Case (iv): SC0() � 0:8speci�es minimum support 0.8 for any other itemset(i.e., the default minimum support). There are twokey issues in making use of these speci�cations:Constraint pushing. On the one hand, we wouldlike to treat these cases separately so that the high-

est possible minimum support is applied in each case.On the other hand, we would like to share the workdone in di�erent cases so that each itemset is gener-ated at most once. For example, as in Apriori, we like togenerate itemset fb0; b1; b2g in Case (iii) using fb0; b1ggenerated in Case (iv) and fb0; b2g generated in Case(iii), where bi denotes an item from Bi. This requiresthe minimumsupport 0.6 of fb0; b1; b2g to be \pushed"down to fb0; b1g, on the ground that fb0; b1; b2g \de-pends on" fb0; b1g, and further down to fb0g and fb1g.The pushed minimum support 0.6 is lower than theminimum support for fb0; b1g, fb0g, fb1g, i.e., 0.8, butis higher than the lowest minimum support 0.2. Inthis sense, we have pruned the minimum support 0.2for certain itemsets and tightened up the search space.Order sensitivity. The above has implicitly as-sumed that b3 does not follow b2 in the item or-dering used by the Apriori itemset generation. If b3does follow b2 in the item ordering, fb0; b1; b2; b3gwould depend on fb0; b1; b2g, and the minimum sup-port 0.2 for fb0; b1; b2; b3g would be pushed down tofb0; b1; b2g, and transitively, down to fb0; b1g, fb0; b2g,fb0g; fb1g; fb2g. In this case, a lower minimum sup-port is pushed, compared with 0.6, and more itemsetswill be generated. The idea of tightening up the searchspace is to order items in such a way that allows thehighest possible minimum support to be pushed. 2Here is the overview of our approach. We de�ne aframework for specifying support constraints in Sec-tion 3. We then present a strategy for pushing sup-port constraints into the Apriori itemset generation inSection 4. The constraint pushing exploits the depen-dency between itemsets, represented by an enumera-tion tree of sets of bins, and determines the highestminimum support to be pushed to each itemset. Thisphase makes use of the information of support con-straints, but not the database. It turns out that theordering of nodes in an enumeration tree drasticallyimpacts the pushed minimum support. We presentseveral ordering strategies to maximize the pushedminimum support in Section 5. At the itemset gen-eration phase, candidates are generated as in Aprioriand the pushed minimum support is used to deter-mine whether a candidate is frequent. We call thisstrategy Adaptive Apriori to emphasize that the pushedminimum support is determined individually for eachitemset and that Adaptive Apriori generalizes Apriori tonon-uniform minimum support while preserving theessence of Apriori. An example in Section 6 illustratesour mining algorithm. We evaluate the e�ectivenessof this approach in Section 7. Finally, we conclude thepaper in Section 8.2 Related workThe support-based Apriori pruning was �rst studiedin [AIS93, AS94], and a similar idea in [MTV94].

Nearly all later frequent itemset minings rely on Apri-ori as a basic pruning strategy. Another strategy isto push certain constraints into the itemset genera-tion. However, none of these approaches considersnon-uniform minimum support. The correlation ap-proach [AY98, BMS97] considers the support require-ment relative to the independence assumption, but notgeneral support constraints or constraint pushing. In-stead of abandoning the support requirement like in[C*00], our approach is to make it more realistic byallowing di�erent support requirements for di�erentitemsets. [HPY00] generates frequent itemsets with-out using the Apriori itemset generation, but still crit-ically relies on a uniform support requirement.To our knowledge, [LHM99] is the only work ex-plicitly dealing with non-uniform minimum support.In [LHM99], a minimum item support (or MIS) is as-sociated with each item, and the minimum support ofan itemset is de�ned to be the lowest MIS associatedwith the items in the itemset. This speci�cation is un-natural for three reasons. (i) The MIS of individualitems has to re
ect the minimum support of unseenitemsets at the speci�cation time. (ii) In some ap-plications the user may have a minimum support foran itemset, e.g., fwhite;maleg, as a single concept,but not for individual items in the itemset (e.g., whiteor male). The minimum support for fwhite;maleg isusually lower than that for white or male. (iii) Dif-ferent minimum supports cannot be speci�ed for twoitemsets, like fwhite;maleg and fwhite;male; gradg,if a common item has the lowest MIS, like white. Weallow the support requirement to be speci�ed directlyon itemsets, thereby, overcoming these di�culties.3 Specifying support constraintsAs in [AIS93, AS94], the database is a collection oftransactions. Each transaction is a set of items takenfrom a �xed universe. A k-itemset is a set of k items.The support of an itemset I, denoted sup(I), is thefraction of the transactions containing all the items inI.3.1 The support speci�cationThe task of support speci�cation is to specify the min-imum support for each itemset. Clearly, it is not prac-tical to enumerate all itemsets. Our approach is topartition the set of items into bins, denoted as Bj ,such that items that need not be distinguished in thespeci�cation are in the same bin. Therefore, for a bag(i.e., multiset) � = fB1; : : : ; Bkg of bins, all k-itemsetsfi1; : : : ; ikg, ij 2 Bj , have the same minimum support.� is called the schema of itemsets fi1; : : : ; ikg. To spec-ify the minimum support for itemsets, we need only tospecify the minimum support for schemas. This moti-vates the notion of support constraints.

De�nition 3.1 (Support constraints) A supportconstraint (SC) has the form SCi(l1; : : : ; ls) � �i (orsimply SCi � �i), s � 0. Each lj is either a bin ora variable for bins. �i, called a minimum support, isa function over l1; : : : ; ls and returns a real in [0::1].The order of lj 's does not matter and lj may repeat.A SC is ground if it contains no variable, otherwise,non-ground. A non-ground SC can be instantiated toa ground SC by replacing each variable with a bin. Asupport speci�cation is a non-empty set of SCs. 2There are two considerations in interpreting a SC.First, we can interpret a SC either as specifying someitems in an itemset, called the open interpretation, oras specifying all items in an itemset, called the closedinterpretation. Second, a choice must be made if anitemset \matches" the item speci�cation of more thanone SC. Consider itemset I = fb1; b2; b3; b4g of support0.15, and SC1(B1; B2) � 0:1 and SC2(B3; B4) � 0:2,where bi is an item in Bi. In the open interpretation, Imatches the item speci�cation of both SCs. Therefore,whether I is frequent depends on which SC is used asthe minimum support for I. Our decision is that thelower minimum support 0.1 prevails. The rationale issimple: the minimum support should not be increasedby adding more items.De�nition 3.2 (Frequent itemsets) An itemset Imatches a ground SCi � �i in the open interpretationif I contains at least one item from each bin in SCiand these items are distinct. An itemset I matches aground SCi � �i in the closed interpretation if I con-tains exactly one item from each bin in SCi and theseitems are distinct. An itemset I matches a non-groundSC if I matches some instantiation of the SC. Themin-imum support of itemset I, denoted minsup(I), is thelowest �i of all SCi � �i matched by I. If I matches noSC, minsup(I) is unde�ned. An itemset I is frequentif minsup(I) is de�ned and sup(I) � minsup(I). 2The notion of \match" andminsup can be extendedto schemas in a natural way. A schema � matches aground SCi � �i in the open interpretation if SCi is asub-bag of � 1. A schema � matches a ground SCi � �iin the close interpretation if SCi = �. A schema �matches a non-ground SCi � �i if � matches someinstantiation of the SC.Let minsup(�) denote the minimum support for(the itemsets of) schema �. In the open interpreta-tion, for ground SC1(�1) � �1 and SC2(�2) � �2, if�1 � �2 and �1 > �2, SC1(�1) � �1 is never used.In fact, if any itemset I matches SC1(�1) � �1, Ialso matches SC2(�2) � �2, and we always use thelower �2 as the minimum support for I. In this sense,SC1(�1) � �1 is redundant. We assume that all redun-dant SCs are removed. With this assumption, a SC of1A bag x is a sub-bag of a bag y if x is a subset of y withduplicates considered.

the form SCi() � �i, if speci�ed, must have the high-est minimum support, therefore, is used only when noother SC is matched. For this reason, SCi() � �i iscalled the default SC.Example 3.1 (The running example) Considerthe transactions and support speci�cation in Figure1 in the open interpretation. Each item is representedby an integer from 0 to 8. For any itemset I contain-ing an item from B1 and an item from B3, I matchesboth SC1(B1; B3) � 0:2 and SC2(B3) � 0:4. Butminsup(I) = 0:2 because the lowest minimum sup-port of matched SCs is used. Some examples of suchI are f0; 2g, f0; 2; 3g, and f2; 3; 4g. f0; 2g is frequent,but f0; 2; 3g and f2; 3; 4g are not. The minimum sup-port of f2; 4; 7g, f2; 4; 8g, f4; 7; 8g, and f2; 4; 7; 8g is0.6 because these itemsets match only SC3(B2) � 0:6.These itemsets are frequent. f2; 7g and f2; 8g matchonly SC0() � 0:8, and f2; 7g is frequent, but f2; 8g isnot. 2Example 3.2 An example of non-ground SCs in theclosed interpretation is SCi(V1; : : : ; Vk) � sup(V1) �: : :� sup(Vk), 1 � k � 4, where Vi are variables andeach binBi contains the items of the same support, de-noted sup(Bi). Each instantiation SCi(B1; : : : ; Bk) �sup(B1) � : : : � sup(Bk) speci�es the minimum sup-port relative to the independence assumption aboutitem occurrence. Due to the closed interpretation, anyitemset containing more than 4 items has an unde�nedminimum support. 2In SCi � �i, �i should be \evaluable" at the spec-i�cation time. For example, SC(�; �) � minconf �sup(�) does not satisfy this requirement, where � and� are schemas and each bin contains a single item,because sup(�) is unknown at the speci�cation time.Even at the itemset generation, sup(�) is known onlyfor frequent itemsets �.The notion of support constraints generalizes sev-eral existing classes of constraints. The classic uni-form minimum support [AIS93, AS94] can be speci-�ed by one default SCi() � �i with �i being the usualminimum support. The item constraints [SVA97] canbe speci�ed by non-default SCs in which all mini-mum supports are equal. To model the MIS speci-�cation in [LHM99], we can group the items of thesame support into a bin and specify the non-groundSCi(V1; : : : ; Vk) � minfsup(V1); : : : ; sup(Vk)g in theclosed interpretation, where Vj are variables for bins.However, it is not hard to see that the MIS spec-i�cation cannot model the speci�cation in Example3.2 nor the speci�cation: SC1(B1; B2; B3) � 0:2,SC2(B1; B3) � 0:3, and SC2(B2; B3) � 0:4.3.2 Typical scenarios of speci�cationUntil now, we have not said much about how the enduser determines bins Bj and minimum support �i in a

SC. Though this decision largely depends on applica-tions, we consider several typical scenarios and hopethat they are indicative to the end user.Support-based speci�cation. Example 3.2 illus-trates three points. (a) A bin Bj contains similarlysupported items and �i is a function of some represen-tative supports of of bins (such as max, min, or avg).Such bins can be found by computing the support ofitems in one pass of the transactions and then clus-tering items based on their support. The number ofbins can be optionally speci�ed by the user. (b) �i canbe either chosen from a menu of built-in functions orsupplied by the user. (c) Without a particular schemain mind for speci�cation, a generic speci�cation givenby a non-ground SC can be used.Concept-based speci�cation. In the presenceof a item concept hierarchy, it is desirable to spec-ify SCs based on the generality of the concept ofitems. For example, SC1(c1; c2) � 2� sup(c1)m � sup(c2)nstates that any itemset containing at least one childof c1 and one child of c2 has the minimum support2� sup(c1)m � sup(c2)n , where c1 and c2 are variables rep-resenting concepts, and m and n are the number ofchild concepts of c1 and c2.Attribute-based speci�cation. For a databasein the form of a relational table, it makes sense foreach bin to correspond to the set of attribute/valuepairs from the same attribute. For example, ifStates and Gender are attributes in the table,SC1(States;Gender) � N50�N2 speci�es that any item-set containing a state code and a gender has the mini-mum support N50� N2 , where N is the number of tuplesin the relational table, N50 and N2 are the average sup-port of state codes and the average support of gender.Enumeration-based speci�cation. The most
exible speci�cation is explicitly enumerating theitems in a bin, on the basis that they are not distin-guishable with respect to the speci�cation. For exam-ple, SC1(B1; B2) � 0:1, where B1 = fmilk; cheesegand B2 = fboots; sockg, says that any itemset con-taining at least one item in B1 and one item in B2has minimum support 0.1. In this case, the user isinterested in only milk and cheese, rather than alldairy products, and only boots and sock, rather thanall footwear products.For the rest of the paper, we assume that a supportspeci�cation is given.4 Adaptive AprioriA key idea of our approach is to push SCs follow-ing the \dependency chain" in the Apriori itemsetgeneration. This dependency is best described by aschema enumeration tree. In a schema enumerationtree, each node (except the root) is labeled by a binBi. A node v represents the schema given by the la-bels B1 : : :Bk along the path from the root to v. If

databaseTID Items100 0,2,7200 0,4,7,8300 2,4,5,7,8400 1,2,4,7,8500 2,4,6,7,8 binsB0 1,7,8B1 2,6B2 4,5B3 0,3 a speci�cationSC0() � 0.8SC1(B1;B3) � 0:2SC2(B3) � 0:4SC3(B2) � 0:6Figure 1: The running example
B0

B3

B0B0B0B0

B1

B1
B1B1 B2

B2

B2

B3

0.8/0.2

0.8/0.80.4/0.20.4/0.2 0.4/0.20.2/0.2

0.2/0.2 0.6/0.2 0.8/0.2

0.6/0.60.6/0.6 0.6/0.6 0.8/0.8 0.8/0.8Figure 2: A schema enumeration tree, marked with Sminsup=Pminsupa schema enumeration tree contains two sibling nodesrepresenting schemas s1 = B1 : : :Bk�2Bk�1 and s2 =B1 : : :Bk�2Bk, where s1 is on the left of s2 (if Bk�1 6=Bk), the schema enumeration tree also contains thenode representing schema s = B1 : : :Bk�2Bk�1Bk, asa child of the node for s1. s1 and s2 are called gen-erating schemas of s. Every schema depends on itsgenerating schemas in that the former is constructedby the latter. For example, in Figure 2, B2B1 dependson B2 and B1, but not on B1B0 or B3.Several comments follow. (i) Unlike the static lexi-cal ordering in a standard set enumeration tree [R92],the ordering of nodes in a schema enumeration tree isdetermined dynamically on a per-node basis to achievea certain optimality of constraint pushing. We willconsider the ordering issue in Section 5. (ii) There is anone-to-one correspondence between nodes and schemasrepresented by nodes, and the terms \schema" and\node" are interchangeable. (iii) There should be noconfusion between Bi as a label and Bi as a schema oflength 1. As a label, Bi can occur at several nodes (likeB2 in Figure 2), but as a schema, Bi is represented bya unique node. (iv) We can associate minsup withnodes, in the way of associating it with schemas. (v)A label Bi is allowed to repeat on a path to coveritemsets containing more than one item from Bi.4.1 The pushed minimum supportConsider schema s = B1 : : :Bk�2Bk�1Bk, and itsgenerating schemas s1 = B1 : : :Bk�2Bk�1 and s2 =B1 : : :Bk�2Bk. In the case of non-uniform minimumsupport, minsup(s), minsup(s1), minsup(s2) are notalways the same, and the Apriori-generation of frequentitemsets of s from those of s1 and s2 is lost. Our ap-proach is to replace minsup with a new function, de-noted by Pminsup, such that (i) Pminsup de�nes asuperset of the frequent itemsets de�ned by minsup

and (ii) we can generate this superset in the mannerof Apriori. Let us formalize this idea.For any function f from schemas to [0::1], wesay that an itemset I of schema s is frequent(f) ifsup(I) � f(s). Let F (f) denote the set of frequent(f)itemsets.De�nition 4.1 (Pminsup) Let Pminsup be a func-tion from (the schemas of) schema enumeration treeT to [0..1] satisfying:� Completeness: For every schema s in T such thatminsup(s) is de�ned, Pminsup(s) � minsup(s);� Apriori-like: For every schema s and its gener-ating schemass1 and s2, whenever fi1; : : : ; ik�2; ik�1; ikg of sis frequent(Pminsup), so are fi1; : : : ; ik�2; ik�1gof s1 and fi1; : : : ; ik�2; ikg of s2;� Maximality: Pminsup is maximal with respect tothe above Completeness and Apriori-like. 2Pminsup is called the pushed minimum support withrespect to T and minsup. 2Completeness ensures that F (Pminsup) is a su-perset of F (minsup). Apriori-like ensures the Apriorigeneration of F (Pminsup). Maximality ensures thatF (Pminsup) is tightest to satisfy these properties. Byreplacing minsup with Pminsup, we are guaranteedto �nd a tight superset of F (minsup) in the manner ofApriori. This strategy is referred as to Adaptive Apri-ori. The novelty of Adaptive Apriori is that it breaksthe barrier of uniform minimum support by de�ningthe \best" minimum support, i.e., Pminsup, for eachschema individually while preserving the essence ofApriori.At this point, two questions need to be answered.First, how do we determine Pminsup with respect

notation meanings a node or schemaL(s) the label of ssubtree(s) the subtree rooted at s�(s) the set of SCs in subtree(s)RS(s) the set of right siblings of s plus s itselfLS(s) the set of left siblings of sminsup(s) the minimum support of sSminsup(s) the lowest minimum support in �(s)Pminsup(s) the pushed minimum support of sTable 1: Notation for a schema enumeration treeto a given schema enumeration tree T? Second, howdo we generate a schema enumeration tree for whichPminsup is maximized? We answer the �rst questionin the rest of this section and answer the second ques-tion in Section 5.In the rest of the paper, we shall use the notation inTable 1. For example, for schema s = B3B2 in Figure2, L(s), the label of node s, is the B2; subtree(s) is thesubtree rooted at s (not shown); �(s) contains all SCsexcept SC1(B1; B3) � 0:2 because label B1 does notoccur in subtree(s); Sminsup(s) is the lowest mini-mum support in �(s), i.e., 0.4; RS(s) contains schemasB3B2; B3B0; B3B3; and LS(s) contains schema B3B1.Notice that while minsup only depends on the prob-lem speci�cation, Pminsup and Sminsup also dependon the schema enumeration tree used.4.2 Determining PminsupConsider the running example and Figure 2. Insubtree(B2), no schema will match SC1(B1; B3) � 0:2and SC2(B3) � 0:4 because label B3 does not occurin the subtree. In this sense, these SCs or minimumsupports are pruned from subtree(B2). The same goesfor subtree(B1) and subtree(B0). In general, for gen-erating nodes l and r (which must be siblings) with lon the left and r on the right, the node generated byl and r is a child of l and has label L(r). Therefore,label L(r) occurs in subtree(l), but label L(l) neveroccurs in subtree(r). This has two implications statedbelow.Corollary 4.1 Consider any node v in a schema enu-meration tree T .1. Only the labels of nodes in RS(v) can occur insubtree(v). As such, all SCs containing labels ofnodes in LS(v) are pruned from subtree(v).2. Only the nodes in subtree(v) and in subtree(u) foru 2 LS(v) depend on v. Such as, Pminsup(v) =minfSminsup(u) j u 2 LS(v) [fvgg.Example 4.1 In Figure 2, each schema s is markedby Sminsup(s)=Pminsup(s). Since label B3 does

not occur in subtree(B2), all SCs containing B3are pruned in subtree(B2), so �(B2) = fSC0() �0:8; SC3(B2) � 0:6g and Sminsup(B2) = 0:6.Similarly, Sminsup(B3) = 0:2. Pminsup(B2) =minfSminsup(B3); Sminsup(B2)g = 0:2. Similarly,Pminsup(s) = 0:6 for s = B2B1; s = B2B0; s = B2B2because SC1 � 0:2 and SC2 � 0:4 are pruned insubtree(s), and Pminsup(s) = 0:8 for s = B1B1; s =B1B0; s = B0B0 because SC1 � 0:2, SC2 � 0:4, andSC3 � 0:6 are pruned from subtree(s). 24.3 The characteristic of PminsupTo get insights into the bene�t of using Pminsup, weanalyze how Pminsup changes in a schema enumera-tion tree. Refer to Table 1 for notation. As we movefrom a left sibling l to a right sibling r, Corollary 4.1(1)implies that L(l) is pruned from subtree(r), thereby,�(r) � �(l) and Sminsup(l) � Sminsup(r). As wemove from a parent node p to a child node c, �(c) isthe set of SCs in �(p) matched by at least some schemain subtree(c), thereby, �(c) � �(p) and Sminsup(p) �Sminsup(c). The following theorems summarize thesecharacteristics, whose proofs are given in [WHH00].Theorem 4.1 Consider a schema enumeration tree.1. Let s1; : : : ; sk be the schemas at siblings from leftto right. Then (a)Sminsup(si) � Sminsup(si+1); (b) Pminsup(si)= Pminsup(s1) = Sminsup(s1).2. Let s1; : : : ; sk be the schemas on a path start-ing from the root. Then (a) Sminsup(si) �Sminsup(si+1); (b) Pminsup(si) � Sminsup(si)� Pminsup(si+1). 2Theorem 4.1(2b) tells that Pminsup is never de-creased by moving from a parent p to a child c. Thenext theorem characterizes when Pminsup is actuallyincreased.Theorem 4.2 Consider a parent node p and a childnode c. The following are equivalent:1. p has a left sibling p0 such that Sminsup(p0) <Sminsup(p);2. p has a left sibling p0 such that Sminsup(p0) ispruned in subtree(p);3. Pminsup(p) < Pminsup(c). 2In Figure 3 (which contains only the nodes fornon-empty sets of candidates), since Sminsup(B3) <Sminsup(Bi), for i = 2; 1; 0, every child of schemaBi has a higher Pminsup than Bi does. Similarly,since Sminsup(B3B1) < Sminsup(B3B2), every childof B3B2 has a higher Pminsup than B3B2 does. The

B0

B3

B0 B0

B0

B1

B1

B2

B2

B2

B1

B0B0B0

B0B0

B0

0.2/0.2

0.8/0.2

0.4/0.4

0.6/0.6

0.6/0.6

0.6/0.6

0.6/0.6

0.6/0.6

0.2/0.2

0.2/0.2

0.2/0.2 0.6/0.2 0.8/0.2

0.8/0.80.4/0.2
0.4/0.2

0.8/0.8Figure 3: Nodes marked Sminsup=Pminsup 0.2/0.2

0.2/0.2

0.2/0.2

0.2/0.2

0.2/0.2

0.2/0.20.2/0.2 0.2/0.2 0.2/0.2

0.4/0.2

0.4/0.40.4/0.2 0.4/0.2 0.4/0.2

B0

B1

B3 B3

B0

B1B1B1 B2B2

B2

B3

B3

B3Figure 4: Nodes marked Sminsup=Pminsupabove theorems give a clear picture of how Pminsupchanges in a schema enumeration tree: (a) All siblingnodes have the same Pminsup. (b) As we move downfrom a parent p to a child c, Pminsup never decreases.(c) Whether Pminsup is actually increased, thereby,tightening up the search space, depends on whether phas a left sibling with a lower Sminsup. It turns outthat the ordering of siblings has a major impact on(c). We now examine how to order siblings to maxi-mize Pminsup.5 The ordering of nodesCompare Figure 2 with Figure 3. The former is pre-ferred because of higher Pminsup for most schemas.For example, Pminsup(B2B1) and Pminsup(B0B2)are 0.6 in Figure 2, but are 0.2 in Figure 3. This changeis caused by placing labels B1 and B3 to the right endat level 1 in Figure 4, making SC1(B1; B3) � 0:2 appli-cable in subtree(B2B1) and subtree(B0B2). Thus, theorder of sibling nodes has a major impact on Pminsup.Unfortunately, no \optimal" order exists in general[WHH00]. Therefore, a reasonable thing to do is to or-der sibling nodes heuristically to maximize Pminsup.Let us consider such heuristic orderings.Assume that s1; : : : ; sk are the siblings from left toright. From Corollary 4.1(1), for i < j, L(si) does notoccur in subtree(sj), and all SCs containing L(si) arepruned from �(sj). Therefore, if we want to prune,as early as possible, the SCs specifying low minimumsupports, label L(s1) for the �rst sibling s1 should oc-cur in such SCs. Subsequently, to determine L(s2)for the second sibling s2, we remove the SCs contain-ing L(s1) and repeat the same for the remaining SCs.The strategy is to greedily prune the lowest minimumsupport from all sibling subtrees on the right. Putanother way, this strategy maximizes the chance ofSminsup(si) < Sminsup(sj), for all right siblings sjof si, and thus, the chance of the condition in The-orem 4.2(3). This analysis leads to the �rst orderingstrategy.Strategy 1 Select the label specifying the lowest min-imum support as the next sibling. 2Example 5.1 Consider ordering the child nodes ofthe root for the example in Figure 1. There is a

tie between B1 and B3 as both specify the lowestminimum support in SC1(B1; B3) � 0:2. Supposethat B1 is selected as the �rst child. SC1(B1; B3) �0:2 is then pruned from subtree(B3), subtree(B2),and subtree(B0). We select B3 as the second childbecause it speci�es the lowest minimum support inthe remaining SCs. SC2(B3) � 0:4 is then prunedfrom subtree(B2) and subtree(B0). Finally, we se-lect B2 and B0 in that order. This gives the or-der O1 = B1; B3; B2; B0 at level 1. Sminsup(B1) =0:2, Sminsup(B3) = 0:4, Sminsup(B2) = 0:6, andSminsup(B0) = 0:8. If we select B3 as the �rst childinstead, the order is O2 = B3; B2; B1; B0. 2The above Strategy 1 is dynamic in that there is aseparate round of selection for each sibling. In staticStrategy 1 all siblings are selected in a single round, byignoring the interaction between siblings. Our secondstrategy is to greedily prune as many SCs as possible.At each sibling, from left to right, we select the la-bel that occurs in the most number of remaining SCs.In e�ect, this prunes all the SCs containing this labelfrom the sibling subtrees on the right of the currentsibling. By pruning as many SCs as possible, the de-fault SC, which always speci�es the highest minimumsupport, can be used as early as possible.Strategy 2 Select the label specifying the most num-ber of SCs as the next sibling. 26 The algorithmThe algorithm expands the schema enumeration treeiteratively, one level per iteration. There are twophases in iteration k. Phase 1 generates new nodessi at level k and determines Pminsup(si). This phaseexamines only the support speci�cation and schemas,not the database or itemsets. Phase 2 generatesfrequent(Pminsup) at nodes si, similar to Apriori. Weshall focus on Phase 1. Each node p at level k � 1 isassociated with the set of SCs at p, �(p), and the rela-tion Tp for frequent(Pminsup) itemsets of p. (Referto Table 1 for notation.) To expand to level k, threesteps are performed in Phase 1. Step 1 creates childnodes si at level k and Step 2 orders these nodes ac-cording to one of the strategies proposed in Section 5.

Step 3 computes �(si) and Pminsup(si) according toCorollary 4.1. We illustrate Step 3 by an example.Example 6.1 As in Example 5.1, the nodes at level1 are in the order O2 = B3; B2; B1; B0. �(B3) is ini-tialized to �(root) because B3 is the left-most child ofthe root. We delete label B3 from the SCs in �(B3)because every schema in subtree(B3) does contain B3.Now �(B3) = fSC0() � 0:8; SC1(B1) � 0:2; SC2() �0:4; SC3(B2) � 0:6g. SC3(B2) � 0:6 and SC0() � 0:8are redundant in the presence of SC2() � 0:4, sodeleted from �(B3). This gives �(B3) = fSC1(B1) �0:2; SC2() � 0:4g, where SC2() � 0:4 becomes thedefault SC in subtree(B3). By Corollary 4.1(2),Pminsup(B3) = Sminsup(B3) = 0:2. Similarly, forsibling B2, �(B2) = fSC3() � 0:6g, Sminsup(B2) =0:6, Pminsup(B2) = 0:2; for sibling B1, �(B1) =fSC0() � 0:8g, Sminsup(B1) = 0:8, Pminsup(B1) =0:2; for sibling B0, �(B0) = fSC0() � 0:8g,Sminsup(B0) = 0:8, and Pminsup(B0) = 0:2. 27 EvaluationWe study the scalability with respect to the lowestminimum support speci�ed. The scalability is mea-sured by the dead point, de�ned as the lowest minimumsupport at which page swapping between memory anddisk starts to takes place. We observed that wheneverthe available physical memory dropped to only a fewMbytes, the run did not �nish within 3 hours and muchlonger time was needed. So, practically the dead pointwas taken as the lowest tested minimum support forwhich a run �nishes within 3 hours. All experimentswere performed on PII 300-MMX with 128MB mem-ory and NT Server 4.0.We chose Apriori and Max Miner for comparison.Apriori provides a baseline for measuring the bene�tof our approach. Max Miner generates only maximalfrequent itemsets and is a good candidate to overcomethe bottleneck of itemest generation. Since neitherApriori nor Max Miner handles general support con-straints, the lowest minimum support in a supportspeci�cation was used for them. There are severalother high performance algorithms, by being smartin candidate generating and support counting, e.g.,[BMUT97, PCY96, SON95]. Like Apriori, thoes tech-niques can be adopted in our itemset generation phase.So we do not compare with every such algorithm.We borrowed the census data used in [SBMU98].The data has 23 attributes, 77 items 2 and 126,229transactions. Each transaction corresponds to anindividual, and each item corresponds to an at-tribute/value pair. About an half of the items havesupport less than 10%, and the rest of the items havewidely varied support from 10% to more than 90%.2originally63 items, but we explicitly represented the FALSEvalue of the 14 binary attributes as items, making 77 items intotal.

To generate support speci�cations, we grouped theitems from the same attribute into a bin, giving 23bins B1; : : : ; B23. Let Vi be a bin variable and S(Vi)be the smallest support of the items in the bin rep-resented by Vi. We speci�ed the following SCs in theclosed interpretation:SCi(V1; : : : ; Vk) � �i(V1; : : : ; Vk) (0 < k � K) (1)where K is the maximal itemset size K speci�ed bythe user. �i(V1; : : : ; Vk) =
k�1 � S(V1) � : : :� S(Vk)if
k�1 � S(V1) � : : :� S(Vk) is within [0:0000158;1].If
k�1 � S(V1) � : : : � S(Vk) is less than the lowerbound or larger than the upper bound, the correspond-ing bound is used. The lower bound 0.0000158 corre-sponds to the support requirement of at least 2 trans-actions. Each speci�cation is de�ned by a pair of
 andK. Since the occurrence of bins is symmetric, Strat-egy 2 does not impose a bias on the ordering of nodesand we report only \static 1" as the \dynamic 1" didnot make a tangible di�erence. \average" refers to theaverage of 10 random orders for Adaptive Apriori. Amore detailed study of various strategies is reported in[WHH00].We varied
 and K to simulate di�erent supportrequirements. In general, as
 decreases and K in-creases, the lowest minimum support in a speci�cationdecreases. The bottom of Figure 7 shows the lowestminimum support for each (
;K) pair. In Figure 7, onthe left are the measures for
 = 5, and on the rightare the measures for
 = 20. In Figure 7(4a,4b), they-value for Max Miner is the number of maximal fre-quent itemsets. The dead point is represented by theright-most point on a curve. All algorithms were ter-minated after K iterations for a given K. In general,Apriori and Max Miner reached the dead point earlierthan \static 1" and \average". \static 1" and \aver-age" performed better at
 = 20 than at
 = 5. This isbecause minimum supports are well spread at
 = 20,as shown in the table in Figure 7.We plotted Pminsup vs nodes numbered in thebreath-�rst ordering for the dead point of \static 1"at (
 = 20;K = 7) and (
 = 5;K = 5), shown in Fig-ure 7 and Figure 6, respectively. The two cases havethe lowest minimum support, 0.0000158. For the caseof (
 = 20;K = 7), the minimum supports are wellspread and Adaptive Aprioriwas able to exploit a higherPminsup for 99% of the nodes expanded! For the caseof (
 = 5;K = 5), the minimum supports tended tobe crowded towards 0.0000158, and only 88% of thenodes expanded have Pminsup higher than 0.0000158.This experiment strongly supports our claim that ifitemsets are of varied supports, pushing support con-straints is an e�ective strategy to deal with the bot-tleneck of itemset generation.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4000 8000 12000 16000

Pm
ins

up

Node No.Figure 5: 99.3% nodes above 0.0000158 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000 25000

Pm
ins

up

Node No.Figure 6: 88.1% nodes above 0.00001588 ConclusionWe motivated the need for support constraints andproposed a way of specifying support constraints. Wepresented a framework for pushing support constraintsinto the itemset generation. The challenge is that theclassic Apriori is lost in the presence of non-uniformminimum support. Our approach is to use the best\run time" minimum support for each itemset so as topreserve the Apriori itemset generation. We call thisstrategy Adaptive Apriori. Unlike existing constraintpushing strategies, Adaptive Apriori does not rely on auniform support requirement. A key issue for Adap-tive Apriori is to order items so that the \run time"minimum support is maximized. We proposed severalstrategies for this. Our experiments showed that push-ing support constraints is highly e�ective in dealingwith the bottleneck of itemset generation. A meaning-ful future work is to study how the non-uniform sup-port framework can be extended to frequent itemsetmining without generating candidates like in [HPY00].References[AIS93] R. Agrawal, T. Imilienski, and A. Swami. Miningassociation rules between sets of items in large datasets.SIGMOD 1993, 207-216.[AS94] R. Agrawal and R. Srikant. Fast algorithm for min-ing association rules. VLDB 1994, 487-499[AY98] C. C. Aggarwal and P. S. Yu. A new framework foritemset generation. PODS 1998, 18-24[BMS97] S. Brin, R. Motwani, and C. Silverstein. Beyondmarket baskets: generalizing association rules to corre-lations. SIGMOD 1997, 265-276[BMUT97] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur.Dynamic itemset counting and implication rules for mar-ket basket data. SIGMOD 1997, 255-264[C*00] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. In-dyk, R. Motwani, J.D. Ullman, C. Yang. Finding in-teresting associations without support pruning. ICDE2000, 489-499[DL99] G. Dong, J. Li. E�cient mining of emerging pat-terns: discovering trends and di�erences. SIGKDD 1999,43-52

[HF95] J. Han and Y. Fu. Discovery of multiple-level asso-ciation rules from large databases. VLDB 1995, 420-431[HPY00] J. Han, J. Pei, and Y. Yin. Mining Frequent Pat-terns without Candidate Generation. SIGMOD 2000, 1-12[LHM98] B. Liu, W. Hsu, Y. Ma. Integrating classi�cationand association rule mining. KDD 1998, 80-86[LHM99] B. Liu, W. Hsu, Y. Ma. Mining association ruleswith multiple minimum supports. SIGKDD 1999, 125-134[LSM98] W. Lee, S.J. Stolfo, K.W. Mok. Mining auditdata to build intrusion detection models. KDD 1998,66-72[MW99] D. Meretakis, B. Wuthrich. Extending naiveBayes classi�ers using long itemsets. SIGKDD 1999,165-174[MTV94] H. Mannila, H. Toivonen, A.I. Verkamo. E�cientalgorithm for discovering association rules. KDD 1994,181-192[PCY96] J.S. Park, M. -S. Chen, P.S. Yu. An e�cient hashbased algorithm for mining association rules. SIGMOD1995, 175-186[R92] R. Rymon. Search through systematic set enumera-tion. Principles of Knowledge Representation and Rea-soning, 1992, 539-550[SA95] R. Srikant and R. Agrawal. Mining generalized as-sociation rules. VLDB 1995, 407-419[SBMU98] C. Silverstein, S. Brin, R. Motwani, J. Ullman.Scalable techniques for mining causal structures. VLDB1998, 594-605[SON95] A. Savasere, E. Omiecinski, S. Navathe. An ef-�cient algorithm for mining association rules in largedatabases. VLDB 1995, 432-444[SVA97] R. Srikant, Q. Vu, and R. Agrawal. Mining asso-ciation rules with item constraints. KDD 1997, 67-73[WHH00] K. Wang, Y. He, J. Han. Pushing support con-straints into frequent itemset mining. School of Com-puting, National University of Singapore, 2000[WZL99] K. Wang, S.Q. Zhou, S.C. Liew. Building hier-archical classi�ers using class proximity. VLDB 1999,363-374

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5

T
im

e
(s

ec
)

K value

static 1
average

Apriori
Max_Miner (1a)

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7

T
im

e
(s

ec
)

K value

static 1
average

Apriori
Max_Miner (1b)

0

200000

400000

600000

800000

1e+06

1.2e+06

1 2 3 4 5

of

 c
an

di
da

te
s

K value

static 1
average

Apriori
Max_Miner (2a)

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1 2 3 4 5 6 7

of

 c
an

di
da

te
s

K value

static 1
average

Apriori
Max_Miner (2b)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5

of

 fr
eq

ue
nt

(P
m

in
su

p)
 it

em
se

ts

K value

static 1
average

Apriori (3a)
0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7

of

 fr
eq

ue
nt

(P
m

in
su

p)
 it

em
se

ts

K value

static 1
average

Apriori (3b)
0

100000

200000

300000

400000

500000

600000

1 2 3 4 5

of

 fr
eq

ue
nt

(m
in

su
p)

 it
em

se
ts

K value

static 1
average

Apriori
Max_Miner (4a)

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7

of

 fr
eq

ue
nt

(m
in

su
p)

 it
em

se
ts

K value

static 1
average

Apriori
Max_Miner (4b)The lowest minimum support
 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 75 0.0038 0.00016 0.0000158 0.0000158 0.0000158 0.0000158 0.000015820 0.0038 0.00064 0.00022 0.0000804 0.0000320 0.0000158 0.0000158Figure 7: The dead points for the census dataset (the left for
 = 5 and the right for
 = 20)

