Mining Frequent Itemsets Using Support Constraints

Ke Wang

National University of Singapore & National University of Singapore

Simon Fraser University
wangk@cs.sfu.ca

Abstract

Interesting patterns often occur at varied lev-
els of support. The classic association mining
based on a uniform minimum support, such
as Apriori, either misses interesting patterns
of low support or suffers from the bottleneck
of itemset generation. A better solution is
to exploit support constraints, which specify
what minimum support is required for what
itemsets, so that only necessary itemsets are
generated. In this paper, we present a frame-
work of frequent itemset mining in the pres-
ence of support constraints. Qur approach is
to “push” support constraints into the Apriori
itemset generation so that the “best” mini-
mum support is used for each itemset at run
time to preserve the essence of Apriori.

1 Introduction

The association rules mining, first studied in [ATS93,
AS94] for market-basket analysis, is to find all asso-
ciation rules above some user-specified minimum sup-
port and minimum confidence. The bottleneck of this
problem is finding frequent itemsets (and support), i.e.,
itemsets that have a support above the minimum sup-
port. The importance of frequent itemsets goes far be-
yond market-basket analysis because they serve as an
estimation of joint probabilities of events, thereby, use-
ful whenever such estimation is required. For example,
several recent studies have leveraged frequent itemsets
to build intrusion detection models [LSM98], to con-

Permaission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice 1s
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

hey@comp.nus.edu.sg

Yu He

Jiawel Han

han@cs.sfu.ca

struct classifiers [LHM98, MW99], to build Yahoo!-
like information hierarchies [WZL99], and to discover
emerging patterns [DL99]. We believe that more and
more internet/web related data mining will require the
ability of finding frequent itemsets.

1.1 Apriori lives on a uniform minimum sup-
port

The best known search strategy of frequent itemests,
called Apriori [AIS93, AS94], exploits the follow-
ing property: if an itemset is frequent, so are
all its subsets. Thus, Apriori ensures a level-
wise generation of itemsets where each candidate
k-itemset {i1,...,4g—2,0k_1,7%} is generated from
two frequent (k — 1)-itemsets {i1,...,4k—2,4,—1} and
{i1, .. Tp—2, ik} To make Apriori work, how-
ever, 1t 1s essential that all itemsets have a uni-
form minimum support. Consider what happens
if the minimum support of {coffee, sugar,tea} is
2% and the minimum support of {coffee, tea},
{sugar,tea}, {coffee,sugar} is 5%: it is possible
that {cof fee, sugar,tea} is frequent with respect to
its minimum support, but none of {coffee,tea},
{sugar,tea}, {cof fee, sugar} is frequent with respect
to their minimum support!

1.2 The reality is not uniform

In reality, the minimum support is not uniform. First,
deviations and exceptions often have much lower sup-
port than general trends. For example, rules for ac-
cidents are much less supported than rules for non-
accidents, but the former are often more interest-
ing than the latter. Second, the support require-
ment varies with the support of items contained in
an itemset. Rules containing bread and mailk usually
have higher support than rules containing food pro-
cessor and pan. A similar scenario is that dense at-
tributes such as States have less support than sparse
attributes such as Gender. Third, item presence has
less support than item absence. Fourth, the support
requirement varies at different concept levels of items
[HF95, SA95]. Finally, hierarchical classification like

Simon Fraser University

[WZL99] requires feature terms to be discovered at dif-
ferent concept levels, thereby, requiring a non-uniform
minimum support.

Given that existing algorithms assume a uniform
minimum support, the best one can do is to apply
such algorithms at the lowest minimum support ever
specified and filter the result using higher minimum
supports. This method will generate many candidates
that are later discarded. From our experience (see
Section T), the increase of candidates often causes a
non-linear increase of execution time and a drastic
performance deterioration once page swapping takes
place between memory and disk, during the support
counting where candidates were read from disk for
each transaction. In the world of non-uniform mini-
mum support, we need a technique that finds the item-
sets above their minimum supports without forcing the
lowest minimum support across all itemsets.

1.3 Our approach

We propose support constraints as a way to specify
general constraints on minimum support. Informally,
a support constraint specifies what itemsets are re-
quired to satisfy what minimum support. We consider
support constraints of the form SC;(By, ..., Bs) > 6;,
where s > 0. Each Bj;, called a bin, is a set of items
that need not be distinguished with respect to the
specification of minimum support. 6; is a minimum
support in the range [0..1]. The above support con-
straint specifies that any itemset containing at least
one item from each B; has the minimum support 6;.
The topic of this paper 1s to “push” such support con-
straints into the itemset generation to prune candi-
dates as early as possible. We illustrate this approach
using an example.

Example 1.1 Consider four support constraints
SC1(By, B3) > 0.2, SC3(Bs3) > 04, SC3(B2) > 0.6,
and SCy() > 0.8. Each bin B; contains a disjoint set
of items. We assume that if more than one constraint
is applicable to an itemset, the constraint specifying
the lowest minimum support is chosen. We will ex-
plain the rationale of this choice in Section 3. With
this assumption, we have the following specifications.
Case (i) SCy(By1, B3) > 0.2 specifies minimum sup-
port 0.2 for any itemset containing (probably more,
same below) one item in each of By and Bs. Case
(ii): SC2(Bs) > 0.4 specifies minimum support 0.4
for any itemset containing one item in Bs, but no
item in B; (otherwise, Case (i) applies). Case (iii):
SC5(Bg) > 0.6 specifies minimum support 0.6 for any
itemset containing one item in Bz, but no item in By
(otherwise, Case (ii) applies). Case (iv): SCq() > 0.8
specifies minimum support 0.8 for any other itemset
(i.e., the default minimum support). There are two
key 1ssues in making use of these specifications:
Constraint pushing. On the one hand, we would
like to treat these cases separately so that the high-

est possible minimum support is applied in each case.
On the other hand, we would like to share the work
done 1n different cases so that each itemset is gener-
ated at most once. For example, as in Apriori, we like to
generate itemset {bg, b1, b2} in Case (iii) using {bo, b1}
generated in Case (iv) and {bg, b2} generated in Case
(iii), where b; denotes an item from B;. This requires
the minimum support 0.6 of {by, b1, b2} to be “pushed”
down to {bg, b1}, on the ground that {bo, b1, b2} “de-
pends on” {bg, b1}, and further down to {by} and {b;}.
The pushed minimum support 0.6 is lower than the
minimum support for {bg, b1}, {bo}, {b1}, i.e., 0.8, but
is higher than the lowest minimum support 0.2. In
this sense, we have pruned the minimum support 0.2
for certain itemsets and tightened up the search space.
Order sensitivity. The above has implicitly as-
sumed that b3 does not follow by in the item or-
dering used by the Apriori itemset generation. If bg
does follow by in the item ordering, {bg,by,bs, b3}
would depend on {bp, b1, b2}, and the minimum sup-
port 0.2 for {bg, by, bs,bs} would be pushed down to
{bo, b1, b2}, and transitively, down to {bg, b1}, {bo, b2},
{bo},{b1}, {b2}. In this case, a lower minimum sup-
port is pushed, compared with 0.6, and more itemsets
will be generated. The idea of tightening up the search
space 1s to order items in such a way that allows the
highest possible minimum support to be pushed. O

Here is the overview of our approach. We define a
framework for specifying support constraints in Sec-
tion 3. We then present a strategy for pushing sup-
port constraints into the Apriori itemset generation in
Section 4. The constraint pushing exploits the depen-
dency between itemsets, represented by an enumera-
tion tree of sets of bins, and determines the highest
minimum support to be pushed to each itemset. This
phase makes use of the information of support con-
straints, but not the database. It turns out that the
ordering of nodes in an enumeration tree drastically
impacts the pushed minimum support. We present
several ordering strategies to maximize the pushed
minimum support in Section 5. At the itemset gen-
eration phase, candidates are generated as in Apriori
and the pushed minimum support is used to deter-
mine whether a candidate is frequent. We call this
strategy Adaptive Apriori to emphasize that the pushed
minimum support is determined individually for each
itemset and that Adaptive Apriori generalizes Apriori to
non-uniform minimum support while preserving the
essence of Apriori. An example in Section 6 illustrates
our mining algorithm. We evaluate the effectiveness
of this approach in Section 7. Finally, we conclude the
paper in Section 8.

2 Related work

The support-based Apriori pruning was first studied
in [AIS93, AS94], and a similar idea in [MTV94].

Nearly all later frequent itemset minings rely on Apri-
ori as a basic pruning strategy. Another strategy is
to push certain constraints into the itemset genera-
tion. However, none of these approaches considers
non-uniform minimum support. The correlation ap-
proach [AY98, BMS97] considers the support require-
ment relative to the independence assumption, but not
general support constraints or constraint pushing. In-
stead of abandoning the support requirement like in
[C*00], our approach is to make it more realistic by
allowing different support requirements for different
itemsets. [HPYO0O] generates frequent itemsets with-
out using the Apriori itemset generation, but still crit-
ically relies on a uniform support requirement.

To our knowledge, [LHM99] is the only work ex-
plicitly dealing with non-uniform minimum support.
In [LHM99], a minimum item support (or MIS) is as-
sociated with each item, and the minimum support of
an itemset is defined to be the lowest MIS associated
with the items in the itemset. This specification is un-
natural for three reasons. (i) The MIS of individual
items has to reflect the minimum support of unseen
itemsets at the specification time. (ii) In some ap-
plications the user may have a minimum support for
an itemset, e.g., {white,male}, as a single concept,
but not for individual items in the itemset (e.g., white
or male). The minimum support for {white, male} is
usually lower than that for white or male. (iii) Dif-
ferent minimum supports cannot be specified for two
itemsets, like {white, male} and {white, male, grad},
if a common item has the lowest MIS, like white. We
allow the support requirement to be specified directly
on itemsets, thereby, overcoming these difficulties.

3 Specifying support constraints
As in [AIS93, AS94], the database is a collection of

transactions. Each transaction is a set of items taken
from a fixed universe. A k-ttemset 1s a set of k items.
The support of an itemset I, denoted sup(l), is the
fraction of the transactions containing all the items in

1.

3.1 The support specification

The task of support specification is to specify the min-
imum support for each itemset. Clearly, 1t is not prac-
tical to enumerate all itemsets. Our approach is to
partition the set of items into bins, denoted as Bj,
such that items that need not be distinguished in the
specification are in the same bin. Therefore, for a bag
(i.e., multiset) 3 = {By,..., B} of bins, all k-itemsets
{i1,...,ix}, 1; € B;, have the same minimum support.
B is called the schema of itemsets {i1, ..., ix }. To spec-
ify the minimum support for itemsets, we need only to
specify the minimum support for schemas. This moti-
vates the notion of support constraints.

Definition 3.1 (Support constraints) A support
constraint (SC) has the form SC;(l1,...,l;) > 0; (or
simply SC; > 6;), s > 0. Each l; is either a bin or
a variable for bins. 6;, called a minimum support, is
a function over ly,...,l; and returns a real in [0..1].
The order of I;’s does not matter and {; may repeat.
A SC is ground if 1t contains no variable, otherwise,
non-ground. A non-ground SC can be instantiated to
a ground SC by replacing each variable with a bin. A
support specification is a non-empty set of SCs. O

There are two considerations in interpreting a SC.
First, we can interpret a SC either as specifying some
items in an itemset, called the open interpretation, or
as specifying all items in an 1temset, called the closed
wnterpretation. Second, a choice must be made if an
itemset “matches” the item specification of more than
one SC. Consider itemset [= {by, by, b, ba} of support
015, and Scl(Bl,Bz) Z 0.1 and 502(33,34) Z 02,
where b; 1s an item in B;. In the open interpretation, 1
matches the item specification of both SCs. Therefore,
whether [1s frequent depends on which SC is used as
the minimum support for I. Our decision is that the
lower minimum support 0.1 prevails. The rationale is
simple: the minimum support should not be increased
by adding more items.

Definition 3.2 (Frequent itemsets) An itemset [
malches a ground SC; > 6; in the open interpretation
if I contains at least one item from each bin in SC;
and these items are distinct. An itemset I matches a
ground SC; > 6; in the closed interpretation if 7 con-
tains exactly one item from each bin in SC; and these
items are distinct. An itemset I matches a non-ground
SC if I matches some instantiation of the SC. The min-
imum support of itemset I, denoted minsup(T), is the
lowest 8; of all SC; > 8; matched by I. If I matches no
SC, minsup(I) is undefined. An itemset I is frequent
if minsup(l) is defined and sup(I) > minsup(I). O

The notion of “match” and minsup can be extended
to schemas in a natural way. A schema 3 matches a
ground SC; > 6; in the open interpretation if SCj is a
sub-bag of 3 1. A schema 3 matches a ground SC; > 6;
in the close interpretation if SC; = 5. A schema
maltches a non-ground SC; > 6; if § matches some
instantiation of the SC.

Let minsup(f) denote the minimum support for
(the itemsets of) schema §. In the open interpreta-
tion, for ground SCy(51) > 61 and SC2(B2) > b2, if
/1 D o and b1 > fa, SC1(B1) > 01 is never used.
In fact, if any itemset I matches SC1(81) > 61, 1
also matches SC3(f32) > 63, and we always use the
lower 65 as the minimum support for I. In this sense,
SC1(B1) > 0y is redundant. We assume that all redun-
dant SCs are removed. With this assumption, a SC of

LA bag « is a sub-bag of a bag y if is a subset of y with
duplicates considered.

the form SC;() > 6;, if specified, must have the high-
est minimum support, therefore, is used only when no
other SC is matched. For this reason, SC;() > 0; is
called the default SC.

Example 3.1 (The running example) Consider
the transactions and support specification in Figure
1 in the open interpretation. Each item is represented
by an integer from 0 to 8. For any itemset [/ contain-
ing an item from B; and an item from Bz, I matches
both 501(31,33) Z 0.2 and SCQ(BQ,) Z 0.4. But
minsup(I) = 0.2 because the lowest minimum sup-
port of matched SCs is used. Some examples of such
I are {0,2}, {0,2,3}, and {2,3,4}. {0,2} is frequent,
but {0,2,3} and {2, 3,4} are not. The minimum sup-
port of {2,4,7}, {2,4,8}, {4,7,8}, and {2,4,7,8} is
0.6 because these itemsets match only SC3(Bz) > 0.6.
These itemsets are frequent. {2,7} and {2,8} match
only SCy() > 0.8, and {2, 7} is frequent, but {2,8} is
not. O

Example 3.2 An example of non-ground SCs in the
closed interpretation is SC;(V1,..., Vi) > sup(V1) x

x sup(Vi), 1 < k < 4, where V; are variables and
each bin B; contains the items of the same support, de-
noted sup(B;). Each instantiation SC; (Bl, ooy Br) >
sup(By) X ... x sup(By) specifies the minimum sup-
port relatlve to the independence assumption about
item occurrence. Due to the closed interpretation, any
itemset containing more than 4 items has an undefined
minimum support. O

In SC; > 6;, 8; should be “evaluable” at the spec-
ification time. For example, SC(«, 8) > minconf x
sup(a) does not satisfy this requirement, where o and
(§ are schemas and each bin contains a single item,
because sup(«) is unknown at the specification time.
Even at the itemset generation, sup(a) is known only
for frequent 1temsets .

The notion of support constraints generalizes sev-
eral existing classes of constraints. The classic uni-
form minimum support [AIS93, AS94] can be speci-
fied by one default SC;() > 0; with 0; being the usual
minimum support. The item constraints [SVA97] can
be specified by non-default SCs in which all mini-
mum supports are equal. To model the MIS speci-
fication in [LHM99], we can group the items of the
same support into a bin and specify the non-ground
SC; Vi, ..., Vi) > min{sup(V1),...,sup(V)} in the
closed interpretation, where V; are variables for bins.
However, it is not hard to see that the MIS spec-
ification cannot model the specification in Example
3.2 nor the specification: SCy(Bi, B, Bs) > 0.2,
SCQ(Bl, Bg) Z 03, and SCQ(BQ, Bg) Z 0.4.

3.2 Typical scenarios of specification

Until now, we have not said much about how the end
user determines bins B; and minimum support 6; in a

SC. Though this decision largely depends on applica-
tions, we consider several typical scenarios and hope
that they are indicative to the end user.

Support-based specification. Example 3.2 illus-
trates three points. (a) A bin B; contains similarly
supported items and #; is a function of some represen-
tative supports of of bins (such as max, min, or avg).
Such bins can be found by computing the support of
items in one pass of the transactions and then clus-
tering items based on their support. The number of
bins can be optionally specified by the user. (b) 6; can
be either chosen from a menu of built-in functions or
supplied by the user. (c) Without a particular schema
in mind for specification, a generic specification given
by a non-ground SC can be used.

Concept-based specification. In the presence
of a item concept hierarchy, it is desirable to spec-
ify SCs based on the generality of the concept of
items. For example, SCy(c1,) > 2 x W;n& X m
states that any itemset containing at least one child
of ¢; and one child of ¢; has the minimum support
2 % W;n& X anﬁ, where ¢; and ¢ are variables rep-
resenting concepts, and m and n are the number of
child concepts of ¢y and ¢s.

Attribute-based specification. For a database
in the form of a relational table, it makes sense for
each bin to correspond to the set of attribute/value
pairs from the same attribute. For example, if
States and Gender are attributes in the table,
SCy(States, Gender) 2 5 X 7 specifies that any 1tem—
set containing a state code and a gender has the mini-
mum support z N N Where N is the number of tuples
in the relatlonal table, &5 and % are the average sup-
port of state codes and the average support of gender.

Enumeration-based specification. The most
flexible specification is explicitly enumerating the
items in a bin, on the basis that they are not distin-
guishable with respect to the specification. For exam-
ple, SC1(B1, Bs) > 0.1, where By = {milk, cheese}
and Bs = {boots, sock}, says that any itemset con-
taining at least one item in B; and one item in Bs
has minimum support 0.1. In this case, the user is
interested 1n only milk and cheese, rather than all
dairy products, and only boots and sock, rather than
all footwear products.

For the rest of the paper, we assume that a support
specification is given.

4 Adaptive Apriori

A key idea of our approach is to push SCs follow-
ing the “dependency chain” in the Apriori itemset
generation. This dependency is best described by a
schema enumeration tree. In a schema enumeration
tree, each node (except the root) is labeled by a bin
B;. A node v represents the schema given by the la-
bels By ... By along the path from the root to v. If

database

TID | Items bins a specification
100 | 0,2,7 By | 1,78 5Co() > 0.8
200 | 0,4,7,8 B | 2,6 SCy(By, Bs) > 0.2
300 | 2,4,5,7,8 By | 4,5 5C,(Bs) > 0.4
400 | 1,2,4,7,8 Bs | 0,3 5C5(Bs) > 0.6
500 | 2,4,6,7,8
Figure 1: The running example
%
0.2102 04 0.410.2 0.4/0.2 oe/os oe/os 0.6/0.6 0808 0808 0.810.8

Figure 2: A schema enumeration tree, marked with Sminsup/Pminsup

a schema enumeration tree contains two sibling nodes
representing schemas s; = By ... Bg_2Bg_1 and s =
By ...By_2By, where s1 is on the left of so (if By_1 #
By), the schema enumeration tree also contains the
node representing schema s = By ... By_2B;_1 By, as
a child of the node for s;. s; and sy are called gen-
erating schemas of s. Every schema depends on its
generating schemas in that the former is constructed
by the latter. For example, in Figure 2, By By depends
on By and By, but not on By By or Bs.

Several comments follow. (i) Unlike the static lexi-
cal ordering in a standard set enumeration tree [R92],
the ordering of nodes in a schema enumeration tree is
determined dynamically on a per-node basis to achieve
a certain optimality of constraint pushing. We will
consider the ordering issue in Section 5. (ii) There is an
one-to-one correspondence between nodes and schemas
represented by nodes, and the terms “schema” and
“node” are interchangeable. (iii) There should be no
confusion between B; as a label and B; as a schema of
length 1. As alabel, B; can occur at several nodes (like
Bs in Figure 2), but as a schema, B; is represented by
a unique node. (iv) We can associate minsup with
nodes, in the way of associating it with schemas. (v)
A label B; is allowed to repeat on a path to cover
itemsets containing more than one item from B;.

4.1 The pushed minimum support

Consider schema s = Bi...Bp_2Bp_1B;, and its
generating schemas s; = By ...Bp_2Br_1 and s, =
B ...By_3B;. In the case of non-uniform minimum
support, minsup(s), minsup(s1), minsup(sz) are not
always the same, and the Apriori-generation of frequent
itemsets of s from those of s; and s5 is lost. Our ap-
proach is to replace minsup with a new function, de-
noted by Pminsup, such that (i) Pminsup defines a
superset of the frequent itemsets defined by minsup

and (ii) we can generate this superset in the manner
of Apriori. Let us formalize this idea.

For any function f from schemas to [0..1], we
say that an itemset I of schema s is frequent(f) if
sup(I) > f(s). Let F(f) denote the set of frequent(f)
itemsets.

Definition 4.1 (Pminsup) Let Pminsup be a func-
tion from (the schemas of) schema enumeration tree
T to [0..1] satisfying:

e Completeness: For every schema s in 1" such that
minsup(s) is defined, Pminsup(s) < minsup(s);

e Apriori-like: For every schema s and its gener-
ating schemas
sy and so, whenever {iy,...,ik_2,ix—1,ix} of s
is frequent(Pminsup), so are {1, ... ,i5_2,i5—1}

of sy and {i1,...,ik—2, 1%} of sa;

Mazimality: Pminsup is maximal with respect to
the above Completeness and Apriori-like. O

Pminsup 1s called the pushed mintmum support with
respect to 1" and minsup. O

Completeness ensures that F(Pminsup) is a su-
perset of F(minsup). Apriori-like ensures the Apriori
generation of F(Pminsup). Maximality ensures that
F(Pminsup) is tightest to satisfy these properties. By
replacing minsup with Pminsup, we are guaranteed
to find a tight superset of F(minsup) in the manner of
Apriori. This strategy is referred as to Adaptive Apri-
ori. The novelty of Adaptive Apriori is that it breaks
the barrier of uniform minimum support by defining
the “best” minimum support, i.e., Pminsup, for each
schema individually while preserving the essence of
Apriori.

At this point, two questions need to be answered.
First, how do we determine Pminsup with respect

notation meaning

s a node or schema

L(s) the label of s

subtree(s) the subtree rooted at s

a(s) the set of SCs in subtree(s)

RS(s) the set of right siblings of s plus s itself
LS5(s) the set of left siblings of s

minsup(s) the minimum support of s

Sminsup(s) | the lowest minimum support in o(s)
Pminsup(s) | the pushed minimum support of s

Table 1: Notation for a schema enumeration tree

to a given schema enumeration tree 77 Second, how
do we generate a schema enumeration tree for which
Prminsup is maximized? We answer the first question
in the rest of this section and answer the second ques-
tion in Section 5.

In the rest of the paper, we shall use the notation in
Table 1. For example, for schema s = B3B5 in Figure
2, L(s), the label of node s, is the Ba; subtree(s) is the
subtree rooted at s (not shown); o(s) contains all SCs
except SC1(By, Bsz) > 0.2 because label By does not
occur in subtree(s); Sminsup(s) is the lowest mini-
mum support in o(s), i.e.; 0.4; RS(s) contains schemas
Bs By, B3 By, BsBs; and LS(s) contains schema BBy .
Notice that while minsup only depends on the prob-
lem specification, Pminsup and Sminsup also depend
on the schema enumeration tree used.

4.2 Determining Pminsup

Consider the running example and Figure 2. In
subtree(By), no schema will match SCy(By, Bs) > 0.2
and SC43(Bs) > 0.4 because label Bz does not occur
in the subtree. In this sense, these SCs or minimum
supports are pruned from subtree(Bs). The same goes
for subtree(By) and subtree(Bg). In general, for gen-
erating nodes [and r (which must be siblings) with [
on the left and r on the right, the node generated by
[and r is a child of [and has label L(r). Therefore,
label L(r) occurs in subtree(l), but label L(l) never
occurs in subtree(r). This has two implications stated
below.

Corollary 4.1 Consider any node v in a schema enu-
meration tree 7.

1. Only the labels of nodes in RS(v) can occur in
subtree(v). As such, all SCs containing labels of
nodes in LS(v) are pruned from subtree(v).

2. Only the nodes in subtree(v) and in subtree(u) for
u € LS(v) depend on v. Such as, Pminsup(v) =
min{Sminsup(u) | u € LS(v) U{v}}.

Example 4.1 In Figure 2, each schema s is marked
by Sminsup(s)/Pminsup(s). Since label Bz does

not occur in subtree(B;), all SCs containing Bs
are pruned in subtree(Bs), so o(B2) = {SCu() >
0.8, SC3(B3) > 0.6} and Sminsup(B2) = 0.6.
Similarly, Sminsup(Bs) = 0.2. Pminsup(B;) =
min{Sminsup(Bsz), Sminsup(Ba2)} = 0.2. Similarly,
Pminsup(s) = 0.6 for s = BaBy,s = B2By,s = By Bs
because SC; > 0.2 and SC3 > 0.4 are pruned in
subtree(s), and Pminsup(s) = 0.8 for s = B1By,s =
B1By,s = BgBgy because SC; > 0.2, SC» > 0.4, and
SC5 > 0.6 are pruned from subtree(s). O

4.3 The characteristic of Pminsup

To get insights into the benefit of using Pminsup, we
analyze how Pminsup changes in a schema enumera-
tion tree. Refer to Table 1 for notation. As we move
from a left sibling ! to a right sibling », Corollary 4.1(1)
implies that L(l) is pruned from subtree(r), thereby,
o(r) C o(l) and Sminsup(l) < Sminsup(r). As we
move from a parent node p to a child node ¢, o(c) is
the set of SCs in ¢(p) matched by at least some schema
in subtree(c), thereby, o(c) C o(p) and Sminsup(p) <
Sminsup(c). The following theorems summarize these
characteristics, whose proofs are given in [WHHO00].

Theorem 4.1 Consider a schema enumeration tree.

1. Let s1,..., s, be the schemas at siblings from left
to right. Then (a)
Sminsup(s;) < Sminsup(sit1); (b) Pminsup(s;)
= Pminsup(s1) = Sminsup(s1).

2. Let s1,...,s; be the schemas on a path start-
ing from the root. Then (a) Sminsup(s;) <
Sminsup(sit1); (b) Pminsup(s;) < Sminsup(s;)
< Pminsup(sit1). O

Theorem 4.1(2b) tells that Pminsup is never de-
creased by moving from a parent p to a child ¢. The
next theorem characterizes when Pminsup is actually
increased.

Theorem 4.2 Consider a parent node p and a child
node ¢. The following are equivalent:

1. p has a left sibling p’ such that Sminsup(p’) <
Sminsup(p);

2. p has a left sibling p’ such that Sminsup(p’) is
pruned in subtree(p);

3. Pminsup(p) < Pminsup(c). O

In Figure 3 (which contains only the nodes for
non-empty sets of candidates), since Sminsup(Bsz) <
Sminsup(B;), for i = 2,1,0, every child of schema
B; has a higher Prmunsup than B; does. Similarly,
since Sminsup(Bs B1) < Sminsup(Bs Bs), every child
of B3 Bs has a higher Pminsup than BsBs does. The

0.8/0.8

& @
.6/0.6 0.6/0.6

@ 0.6/0.6

Figure 3: Nodes marked Sminsup/Pminsup
above theorems give a clear picture of how Pminsup
changes in a schema enumeration tree: (a) All sibling
nodes have the same Pminsup. (b) As we move down
from a parent p to a child ¢, Pminsup never decreases.
(c) Whether Pminsup is actually increased, thereby,
tightening up the search space, depends on whether p
has a left sibling with a lower Sminsup. It turns out
that the ordering of siblings has a major impact on
(c). We now examine how to order siblings to maxi-
mize Pminsup.

5 The ordering of nodes

Compare Figure 2 with Figure 3. The former is pre-
ferred because of higher Pminsup for most schemas.
For example, Pminsup(B2B1) and Pminsup(BgBa)
are 0.6 in Figure 2, but are 0.2 in Figure 3. This change
is caused by placing labels By and Bz to the right end
at level 1in Figure 4, making SCy(By, Bs) > 0.2 appli-
cable in subtree(B2By) and subtree(ByBs). Thus, the
order of sibling nodes has a major impact on Pminsup.
Unfortunately, no “optimal” order exists in general
[WHHO00]. Therefore, a reasonable thing to do is to or-
der sibling nodes heuristically to maximize Pminsup.
Let us consider such heuristic orderings.

Assume that s1,...,sg are the siblings from left to
right. From Corollary 4.1(1), for ¢ < j, L(s;) does not
occur in subtree(s;), and all SCs containing L(s;) are
pruned from o(s;). Therefore, if we want to prune,
as early as possible, the SCs specifying low minimum
supports, label L(sy) for the first sibling s; should oc-
cur in such SCs. Subsequently, to determine L(s3)
for the second sibling sa2, we remove the SCs contain-
ing L(s1) and repeat the same for the remaining SCs.
The strategy is to greedily prune the lowest minimum
support from all sibling subtrees on the right. Put
another way, this strategy maximizes the chance of
Sminsup(s;) < Sminsup(s;), for all right siblings s;
of s;, and thus, the chance of the condition in The-
orem 4.2(3). This analysis leads to the first ordering
strategy.

Strategy 1 Select the label specifying the lowest min-
imum support as the next sibling. O

Example 5.1 Consider ordering the child nodes of
the root for the example in Figure 1. There is a

02002 02002 0400.2 200, 40, 0.4/0.4

Figure 4: Nodes marked Sminsup/Pminsup

tie between B; and Bjs as both specify the lowest
minimum support in SCy(By, Bz) > 0.2. Suppose
that Bj is selected as the first child. SCy(By, Bs) >
0.2 is then pruned from subtree(Bs), subtree(Bs),
and subtree(By). We select Bs as the second child
because it specifies the lowest minimum support in
the remaining SCs. SC3(Bs) > 0.4 is then pruned
from subtree(Bs) and subtree(Bg). Finally, we se-
lect By and By in that order. This gives the or-
der O = By, Bs, B2, By at level 1. Sminsup(B,) =
0.2, Sminsup(Bs) = 0.4, Sminsup(By) = 0.6, and
Sminsup(By) = 0.8. If we select Bs as the first child
instead, the order is O = B3, Bs, By, By. O

The above Strategy 1 is dynamic in that there is a
separate round of selection for each sibling. In static
Strategy 1 all siblings are selected in a single round, by
ignoring the interaction between siblings. Our second
strategy is to greedily prune as many SCs as possible.
At each sibling, from left to right, we select the la-
bel that occurs in the most number of remaining SCs.
In effect, this prunes all the SCs containing this label
from the sibling subtrees on the right of the current
sibling. By pruning as many SCs as possible, the de-
fault SC, which always specifies the highest minimum
support, can be used as early as possible.

Strategy 2 Select the label specifying the most num-
ber of SCs as the next sibling. O

6 The algorithm

The algorithm expands the schema enumeration tree
iteratively, one level per iteration. There are two
phases in iteration k. Phase 1 generates new nodes
s; at level k and determines Pminsup(s;). This phase
examines only the support specification and schemas,
not the database or itemsets. Phase 2 generates
frequent(Pminsup) at nodes s;, similar to Apriori. We
shall focus on Phase 1. Each node p at level k — 1 1s
associated with the set of SCs at p, o(p), and the rela-
tion T, for frequent(Pminsup) itemsets of p. (Refer
to Table 1 for notation.) To expand to level k, three
steps are performed in Phase 1. Step 1 creates child
nodes s; at level k and Step 2 orders these nodes ac-
cording to one of the strategies proposed in Section 5.

Step 3 computes o(s;) and Pminsup(s;) according to
Corollary 4.1. We illustrate Step 3 by an example.

Example 6.1 As in Example 5.1, the nodes at level
1 are in the order Oy = Bs, B2, By, By. o(Bs) is ini-
tialized to o(root) because Bs is the left-most child of
the root. We delete label Bs from the SCs in o(Bs)
because every schema in subtree(Bsz) does contain Bs.
Now O'(Bg) = {SCO() Z 08,501(31) Z 02,502() Z
are redundant in the presence of SC2() > 0.4, so
deleted from ¢ (Bs). This gives o(Bs) = {SC1(B1) >
0.2,S5C5() > 0.4}, where SC2() > 0.4 becomes the
default SC in subtree(Bs). By Corollary 4.1(2),
Pminsup(Bs) = Sminsup(Bs) = 0.2. Similarly, for
sibling Ba, 0(B2) = {SC53() > 0.6}, Sminsup(B2) =
0.6, Pminsup(B2) = 0.2; for sibling By, o(B1) =
{SCy() > 0.8}, Sminsup(B1) = 0.8, Pminsup(By) =
0.2; for sibling By, o(By) = {SCo() > 0.8},
Sminsup(By) = 0.8, and Pminsup(By) =0.2. O

7 Evaluation

We study the scalability with respect to the lowest
minimum support specified. The scalability is mea-
sured by the dead point, defined as the lowest minimum
support at which page swapping between memory and
disk starts to takes place. We observed that whenever
the available physical memory dropped to only a few
Mbytes, the run did not finish within 3 hours and much
longer time was needed. So, practically the dead point
was taken as the lowest tested minimum support for
which a run finishes within 3 hours. All experiments
were performed on PII 300-MMX with 128MB mem-
ory and NT Server 4.0.

We chose Apriori and Max_Miner for comparison.
Apriori provides a baseline for measuring the benefit
of our approach. Max_Miner generates only maximal
frequent itemsets and is a good candidate to overcome
the bottleneck of itemest generation. Since neither
Apriori nor Max_Miner handles general support con-
straints, the lowest minimum support in a support
specification was used for them. There are several
other high performance algorithms, by being smart
in candidate generating and support counting, e.g.,
[BMUT97, PCY96, SON95]. Like Apriori, thoes tech-
niques can be adopted in our itemset generation phase.
So we do not compare with every such algorithm.

We borrowed the census data used in [SBMU98].
The data has 23 attributes, 77 items 2 and 126,229
transactions. Each transaction corresponds to an
individual, and each item corresponds to an at-
tribute/value pair. About an half of the items have
support less than 10%, and the rest of the items have
widely varied support from 10% to more than 90%.

2originally 63 items, but we explicitly represented the FALSE
value of the 14 binary attributes as items, making 77 items in
total.

To generate support specifications, we grouped the
items from the same attribute into a bin, giving 23
bins By,..., Bag. Let V; be a bin variable and S(1})
be the smallest support of the items in the bin rep-
resented by V;. We specified the following SCs in the
closed interpretation:

SCZ'(Vl,...,Vk)Z@i(vl,...,vk) (0<k’§[() (1)

where K is the maximal itemset size K specified by
the user. 6;(Vy,..., Vi) =" "1 x S(V1) x ... x S(Vk)
if ¥*=1 x S(V1) x ... x S(Vi) is within [0.0000158, 1].
If vF~1 x S(V1) x ... x S(Vg) is less than the lower
bound or larger than the upper bound, the correspond-
ing bound is used. The lower bound 0.0000158 corre-
sponds to the support requirement of at least 2 trans-
actions. Each specification is defined by a pair of 4 and
K. Since the occurrence of bins is symmetric, Strat-
egy 2 does not impose a bias on the ordering of nodes
and we report only “static 1”7 as the “dynamic 17 did
not make a tangible difference. “average” refers to the
average of 10 random orders for Adaptive Apriori. A
more detailed study of various strategies is reported in

[WHHO0].

We varied v and K to simulate different support
requirements. In general, as v decreases and K in-
creases, the lowest minimum support in a specification
decreases. The bottom of Figure 7 shows the lowest
minimum support for each (7, K) pair. In Figure 7, on
the left are the measures for v = 5, and on the right
are the measures for v = 20. In Figure 7(4a,4b), the
y-value for Max_Miner is the number of maximal fre-
quent itemsets. The dead point is represented by the
right-most point on a curve. All algorithms were ter-
minated after K iterations for a given K. In general,
Apriori and Max_Miner reached the dead point earlier
than “static 17 and “average”. “static 1”7 and “aver-
age” performed better at v = 20 than at v = 5. This is
because minimum supports are well spread at v = 20,
as shown in the table in Figure 7.

We plotted Pminsup vs nodes numbered in the
breath-first ordering for the dead point of “static 1”
at (y =20, K =7) and (y =5, K = 5), shown in Fig-
ure 7 and Figure 6, respectively. The two cases have
the lowest minimum support, 0.0000158. For the case
of (y = 20, K = 7), the minimum supports are well
spread and Adaptive Apriori was able to exploit a higher
Pminsup for 99% of the nodes expanded! For the case
of (y = 5, K = 5), the minimum supports tended to
be crowded towards 0.0000158, and only 88% of the
nodes expanded have Pminsup higher than 0.0000158.
This experiment strongly supports our claim that if
itemsets are of varied supports, pushing support con-
straints 1s an effective strategy to deal with the bot-
tleneck of itemset generation.

Pminsup
(o]
(&)
T T T T T T T T T

Ul

o 4000 8000 12000
Node No.

Figure 5: 99.3% nodes above 0.0000158
8 Conclusion

We motivated the need for support constraints and
proposed a way of specifying support constraints. We
presented a framework for pushing support constraints
into the itemset generation. The challenge is that the
classic Apriori is lost in the presence of non-uniform
minimum support. Our approach is to use the best
“run time” minimum support for each itemset so as to
preserve the Apriori itemset generation. We call this
strategy Adaptive Apriori. Unlike existing constraint
pushing strategies, Adaptive Apriori does not rely on a
uniform support requirement. A key issue for Adap-
tive Apriori is to order items so that the “run time”
minimum support is maximized. We proposed several
strategies for this. Our experiments showed that push-
ing support constraints is highly effective in dealing
with the bottleneck of itemset generation. A meaning-
ful future work 1s to study how the non-uniform sup-
port framework can be extended to frequent itemset
mining without generating candidates like in [HPY00].

References
[ATS93] R. Agrawal, T. Imilienski, and A. Swami. Mining

association rules between sets of items in large datasets.

SIGMOD 1993, 207-216.

[AS94] R. Agrawal and R. Srikant. Fast algorithm for min-
ing association rules. VLDB 1994, 487-499

[AY98] C. C. Aggarwal and P. S. Yu. A new framework for
itemset generation. PODS 1998, 18-24

[BMS97] S. Brin, R. Motwani, and C. Silverstein. Beyond
market baskets: generalizing association rules to corre-
lations. SIGMOD 1997, 265-276

[BMUT97] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur.
Dynamic itemset counting and implication rules for mar-
ket basket data. SIGMOD 1997, 255-264

[C*00] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. In-
dyk, R. Motwani, J.D. Ullman, C. Yang. Finding in-
teresting associations without support pruning. ICDE
2000, 489-499

[DL99] G. Dong, J. Li. Efficient mining of emerging pat-
terns: discovering trends and differences. SIGKDD 1999,
43-52

Pminsup
(o]
(&)
T T T T T T T T T

or bl aidl

o 5000 10000 15000 20000 25000
Node No.

Figure 6: 88.1% nodes above 0.0000158

[HF95] J. Han and Y. Fu. Discovery of multiple-level asso-
ciation rules from large databases. VLLDB 1995, 420-431

[HPYO0O0] J. Han, J. Pei, and Y. Yin. Mining Frequent Pat-
terns without Candidate Generation. SIGMOD 2000, 1-
12

[LHMO98] B. Liu, W. Hsu, Y. Ma. Integrating classification
and association rule mining. KDD 1998, 80-86

[LHM99] B. Liu, W. Hsu, Y. Ma. Mining association rules
with multiple minimum supports. SIGKDD 1999, 125-
134

[LSM98] W. Lee, S.J. Stolfo, K.W. Mok. Mining audit
data to build intrusion detection models. KDD 1998,
66-72

[MW99] D. Meretakis, B. Wuthrich. Extending naive
Bayes classifiers using long itemsets. SIGKDD 1999,
165-174

[MTV94] H. Mannila, H. Toivonen, A.I. Verkamo. Efficient
algorithm for discovering association rules. KDD 1994,
181-192

[PCY96] J.S. Park, M. -S. Chen, P.S. Yu. An efficient hash
based algorithm for mining association rules. SIGMOD
1995, 175-186

[R92] R. Rymon. Search through systematic set enumera-
tion. Principles of Knowledge Representation and Rea-
soning, 1992, 539-550

[SA95] R. Srikant and R. Agrawal. Mining generalized as-
sociation rules. VLDB 1995, 407-419

[SBMU98] C. Silverstein, S. Brin, R. Motwani, J. Ullman.
Scalable techniques for mining causal structures. VLDB
1998, 594-605

[SON95] A. Savasere, E. Omiecinski, S. Navathe. An ef-
ficient algorithm for mining association rules in large
databases. VLDB 1995, 432-444

[SVA97] R. Srikant, Q. Vu, and R. Agrawal. Mining asso-
ciation rules with item constraints. KDD 1997, 67-73

[WHHO00] K. Wang, Y. He, J. Han. Pushing support con-
straints into frequent itemset mining. School of Com-
puting, National University of Singapore, 2000

[WZL99] K. Wang, S.Q. Zhou, S.C. Liew. Building hier-
archical classifiers using class proximity. VLDB 1999,
363-374

of frequent(Pminsup) itemsets # of candidates Time (sec)

of frequent(minsup) itemsets

5000 T 6000 T T
4500 staticl —e— q staticl —e— «
4000 | average 5000 - average -——+--—- 7 e
Apriori Apriori - /
3500 | Max_Miner 4000 | Max_Miner ----- / |
3000 § /,’
2500 o 3000 / 1
2000 E -~
1500 | 2000 |
1000 1000 |
500
0 — [0 »
1 2 1 2 3
K value K value
1.2e+06 T 1.4e+06
static1 —e— staticl —e—
1le+06 - average -——+--— 1 1.2e+06 - average —+— * 1
o e k
Max Miner - < g 16406 [y MO e .
800000 — B o ax_Miner -- /
= /
% 800000 [/ E
600000 c /
8 600000 -
k<]
400000 b 400000 -
200000 200000 |
0 (0F »
1 2
K value K value
900000 " 300000 T T]
800000 | static1 —e—] static1 —e— p
average ---—+--— £ 250000 - average - s
700000 |- Apriori 2 Apriori ©
600000 'g: 200000 /
500000 - 2
£ 150000
400000 a
300000 g 100000 -
200000 g 50000
100000 S
(OF ¢ * * (oF
1 2 1
600000 T 250000
static 1 —e— 2 staticl —e— x
400000 | Max_Miner -3 i = Max_Miner -/
2 150000 - ; -
300000 | x g g
' 2 100000 |
200000 (4a) <
g
100000 | 4 % 50000 |
+*
0 »* * oK 0 * -
1 2 3 4 5 1 2
K value

The lowest minimum support
|7 |K=1]K=2 [K=3 | K=4 | K=5 | K=6 | K=T7 |
5 | 0.0038 | 0.00016 | 0.0000158 | 0.0000158 | 0.0000158 | 0.0000158 | 0.0000158
20 | 0.0038 | 0.00064 | 0.00022 0.0000804 | 0.0000320 | 0.0000158 | 0.0000158

Figure 7: The dead points for the census dataset (the left for ¥ = 5 and the right for v = 20)

