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From 1966 t h rough  1972, t h e  Ar t i f ic ia l  Intelligence Center  a t  SRI 

conducted research o n  a mobile robot s y s t e m  n icknamed  "Shakey." 

Endowed w i t h  a l imi t ed  ability t o  perceive a n d  model its env i ronment ,  

Skakey could per form t a s k s  t h a t  required planning,  route-f inding,  a n d  t h e  

rearranging o f  s imple  objects. Al though t h e  Shakey  project led t o  

numerous  advances in A? techniques,  m a n y  o f  w h i c h  were reported in t h e  

literature, much specif ic  i n f o r m a t i o n  t h a t  m i g h t  be u s e f u l  in current  

robotics research appears only  in a series o f  relatively inaccessible S R I  

technical  reports. O u r  purpose here, consequently, is t o  m a k e  this 

material  more  readily available by extract ing a n d  reprint ing those  

section* of  t h e  reports t h a t  s e e m  particularly interest ing,  relevant a n d  

import  an t .  





CHAPTER ONE 

Introduction 

From 1966 through 1972, t he  Arti f icial  Intelligence Center at S R I  

conducted research on  a mobile robot aystem nicknamed 'Shakey." Th i s  

research was sponsored by  t h e  Advanced Research Projects Agency under 

a succession of contracts w i th  t he  Rome  Air  Development Center, t h e  

Nat  ional Aeronautics and Space Adminis trat ion,  and the  A r m y  Research 

Off ice .  Two complete versions of Shakey were developed. I n  1969 we 

completed our first integrated robot system: a mobile vehicle equipped 

w i th  a T V c a m e r a  and other sensors-all radio-controlled by a n  SDS-040 

computer. I n  1971 we completed a more powerful robot sys tem by making  

subetantial program improvements and by replacing t h e  SDS-940 

computer w i t h  a Digital Equipment Corporation PDP-10/PDP-15 facility. 

Dramatic recent progress in reducing t h e  size and cost of powerful 

computer hardware makes  t he  prospect of autonomous robots m u c h  more 

realistic t h a n  it wau f i f teen years ago. There are several new robot 

projects underway tha t  might benefit from Shakey'a legacy. The Shakes  

project led t o  several advances in AItechniquea, m a n y  o f  which were 

reported in t h e  literature, but a great deal of specific in format ion  

nevertheless appears only in a series of relatively inaccessible S R I  

technical reports 11-1 C]. Therefore, t o  make  t h i s  material more readily 

available, we have decided t o  extract and reprint here what seem t o  be t he  

moat relevant and important sections o f these reports. O f  particular 

interest are (1) t he  techniques used in Shaken's action routines t ha t  

enabled flexible recovery f rom inappropriately executed actions, (Â£ t h e  

method o f  integrating perception with action, and (3) t h e  techniques for 

planning and executing complex sequences of actions. /The reader who  

needs additional details can obtain copies of t h e  original reports from the  

National Technical I n  formation Service (NTIS). See t h e  NTIS access 

numbers in t h e  references at t he  end of this report.) 



This report will  describe only t h e  second o f  t h e  t w o  Shakey  s y s t e m s  

because it w a s  far more  advanced t h a n  i t s  predecessor. (A s u m m a r y  of  

t h e  f i rs t  s y s t e m  appears in [5].) T h e  mater ia l  is reprinted in i t s  original 

form, but w i t h  m i n o r  changes t o  m a k e  figure, chapter, a n d  c i ta t ion  

n u m b e r s  cons is tent .  Whenever  deemed advisable and  help fu l ,  t h e  t e x t  is 

supplemented by occasional explanatory c o m m e n t s  in italics.  Un less  

otherwise attributed, a n y  chapter or sect ion references included in these  

commentar ies  pertain t o  t h e  present collection only. 

W e  begin w i t h  an excerpt from t h e  first report [I], issued in 1966. 

Major Goals and Objectives of this Program 

I t  is the objective of this program to develop concepts and techniques in artificial 

intelligence enabling an automaton to function independently in realistic environments. 

These concepts shall be demonstrated by means of a breadboard, mobile vehicle 

containing visual, tactile, and acoustic sensors, signal processing and pattern-recognition 

equipment, and computer programming. Primary goals shall be the solution of 

incompletely specified problems (requiring creation of intermediate strategies and goals) 

and improvement of performance with training experience. 

Some of the ground rules guiding our research were established immediately. First, it was 

decided that the basic goal of this project was to design an integrated system consisting of 

a mobile vehicle under the real-time control and supervision of a powerful digital 

computer. The vehicle should be equipped with at  least rudimentary manipulative 

abilities, and with sensory and communication subsystems. Various automata have been 

built which are controlled by relatively few, simple, onboard logic circuits, but the essence 

of this project is real-time control by a full-scale, programmable, digital computer. 

Second, we decided to minimize hardware complexities whenever possible to allow us to 

focus primary attention on the problem of directing the automaton's actions and planning 

by means of a hierarchy of computer programs. For this project the mechanical 

engineering problems of building a robot with articulated limbs and delicate grasping 

abilities are irrelevant. One can face very tough problems in artificial intelligence directly 

in attempting to write computer programs to control even a very simple vehicle. It is for 



t h i s  reason also that we shall make no attempts here to design highly miniaturized 

cornput,ers that can fit into the "head" of an automaton. Technology will sooner or later 

provide us with such small but powerful computers in any case; in the meantime, we shall 

learn how to program their large and cumbersome ancestors to control an automaton 

remotely via cable or radio link. 

Third, we decided to conduct no extensive research on the subject of visual pattern 

recognition in this project. This ground rule by no means should be taken as minimizing 

the importance of the problem of visual perception. On the contrary, it is probably one of 

the most important problems to be faced in designing automata. But we felt that the 

perceptual abilities conferred by employing presently existing pattern-recognition methods 

were more than adequate to permit the use of a real environment sufficiently rich to tax 

our skills in developing control programs for that environment. In the meantime, research 

on mechanizing perception could and should continue independently. 

Fourth, we decided that the environment of the automaton should be large in extent. Its 

components may be simple in quality in the beginning, but there should be a non-trivial, 

extensive environment that the automation is expected to  deal with. This ground rule 

forces us immediately to consider only methods for e fjicient internal representations of 

the world.* 

T h e  eleventh report [I11 gave a concise s u m m a r y  of the  organization o f  

t h e  S h a k e s  s y s t e m  which can. also serve a s  a n  overview t o  the  present 

n o t e :  

The robot system is a hierarchical structure in which we shall identify five major levels. 

Although some of these levels are much more clearly defined than others and some have 

considerable substructure, the five levels described below constitute a useful division for 

this exposition. Also, the effectiveness of the system is largely derived from the clear 

specifications for these levels and their interconnections. 

The bottom level of the system consists of the robot vehicle and its connection to the user 

programs. This connection includes radio and microwave communication links, a PDP-15 

peripheral computer and its software, and a communications channel, with its associated 

software, between the PDP-15 and the PDP-10. This bottom level may be thought of as 

defining the elementary physical capabilities of the system. 

'From [l], pages 1-2. 



The robot vehicle is described i n  Chapter T w o  and Appendix A of the  

present report, and the  PDP-15/PDP-10 interface i s  described i n  Appendix 

G 0 f [I 01. 

The heart o f  the  software tha t  controls Shaken i s  i t s  "model" of the  

world it inhabits. This  model i s  a global da ta  structure tha t  can be 

accessed and modif ied  by the  other routines.  It f described i n  Chapter 

Three. 

Cont inuing w i t h  the  excerpt from [ll]: 

The second level consists of what we call Low-Level Actions, or "LLAs." These are the 

lowest-level robot control programs available to  user programs in the LISP language, our 

principal programming tool. The LLAs are programatic handles on the robot's physical 

capabilities such as "ROLL" and "TILT." They are described in detail in Chapter Four. 

So that it can exhibit interesting behavior, our robot system has been equipped with a 

library of Intermediate-Level Actions, or "ILAs." These third-level elements are 

preprogrammed packages of LLAs, embedded in a Markov table framework with various 

per~ept~ion, control and error-correction features. (Markov formalizations are explained in 

Chapter Five, Section B.) Each ILA represents built-in expertise in some significant 

physical capability, such as "PUSH" or "GO TO." The ILAs might be thought of as 

instinctive abilities of the robot, analogous to such built-in complex animal abilities as 

"WALK" or "EAT." Chapter Five contains a description of the present set of ILAs, 

along with the conditions under which they are applicable and how they each can affect 

the state of the world. 

The principal sensor of the perceptual system is the TV camera. Programs for processing 

picture data have been restricted to a few special "vision" routines, that orient the robot 

and detect and locate objects. These programs are incorporated into the system at either 

the ILA or LIA level. The algorithms in these routines are described in Chapter Six and 

Appendix B. 

Above the ILAs we have the fourth level, which is concerned with planning the solutions 

to problems. The basic planning mechanism is STRIPS, described in Chapter Seven. 

STRIPS constructs sequences of ILAs needed to carry out specified tasks. Such a 

sequence, along with its expected effects, can be represented by a triangular table called a 



1ACROP (" macro operation

). 

Chapter Eight describes how such MACROPs can be

generated in generalized forIl, thereby enabling an interesting form of learning and plan

sdcction to take place.

Finally t the fifth , or top, level of the system is the executive, the program that actually

invokes and monitors executions of the ILAs specified in a MACROP. The current

executive program, called PLANEX, is brieny described at the end of Chapter Eight. *

* From /11/, pages 9-4.





CHAPTER TWO 

The  Robot Vehicle, The  Computers ,  and  Other  Hardware 

A. The Vehicle and its Environment 

The robot vehicle itself is shown in Figures 1 and 2. It is propelled by two stepping 

mot.ors independently driving a wheel on either side of the vehicle. I t  carries a vidicon 

television camera and optical range-finder in a movable "head." Control logic on board 

the vehicle routes commands from the computer to  the appropriate action sites on the 

vehicle.. In addition to the drive motors, there are motors to control the camera focus and 

iris settings and the tilt angle of the head. Other computer commands arm or disarm 

interrupt logic, control power switches and request readings of the status of various 

rcgist,ers on the vehicle. Besides the television camera and range-finder sensors, several 
11 cat-whisker" touch-sensors are attached to the vehicle's perimeter. These touch sensors 

enable the vehicle to know when it bumps into something. Commands from the computer 

to the vehicle and information from the vehicle to the computer are sent over two special 

radio links, one for narrow-band telemetering and one for transmission of the TV video 

from the vehicle to the computer.* 

More detailed in format ion  about t h e  vehicle c a n  be found i n  A p p e n d i x  A 

at the  end o f  t h e  present report.  

The initial environment of the Automaton was real, but contrived. It has been sufficiently 

simple t-o allow current visual capabilities to be useful to the Automaton, and sufficiently 

complex to indicate the weaknesses of current methods and to suggest areas of further 

research. Perhaps the most important result of our vision-research effort on the 

Automaton project is an appreciation of the potential complexity of the problem of vision 

when the real world is the subject matter, and a strong notion that the first step we have 

taken towards a general capability is very small indeed. 

'From [s], page 1. 



Figure 1: AUTOMATON VEHICLE*

* From /5/, page 2.



Figure 2: AUTOMATON VEHICLE IN ITS ENVIRONMENT*

* From 15/, page 3.



The current Automaton is restricted by its method of locomotion to move only on nearly 

flat surfaces. Init,ially its travel was limited by the length of cable connecting it and the 

computer. The addition of the radio links allow the Automaton t.0 travel further from the 

compu t,er room. 

The first visual subsyst.em was designed to specialize in the planar-surfaced environment 

of our 1aborat.ory and office building. The objects in this environment are specially 

constructed rect.angular parallelepipeds and wedges. The use of only the regularly spaced 

overhead fluorescent, lights as well as light colored walls and floor allows us to essentially 

eliminate shadows and to limit the illumination to a 2-112 to 1 range in the computer 

room. 

The surfaces of the objects used are uniformly coated with red, grey, or white paint. 

Originally black was used to insure high contrast between adjacent surfaces. However, 

the range-finclcr relies on reflected light. Red replaced black because it is relatively dark 

t,o the TV camera and returns enough light to  the range-finder. Thus, not only are the 

objects opaque, but also have non-specular surfaces. Furthermore no two-dimensional 

markings were put on the object surfaces. The floor tile was chosen so as not to have any 

(let-ect.able markings. The only two-dimensional marking purposely applied was a dark 

wall molding at the floor level. The floor has about the same reflectivity as the walls. 

There were verticle molding strips on one wall which were specular.* 

B. Hardware Associated with the Vehicle 

A n  excerpt  f r o m  [5] describes some of t h e  interface hardware between the  

vehicle and the SWS computer. Much of t h i s  hardware remained 

unchanged when w e  substituted a PDP-10 computer for the  SDS-940. 

Figure 3 shows a block diagram of the hardware system. The system  consist,^ of a 

stationary part interfacing with the SDS 940 computer and the mobile vehicle which is 

remotely controlled from t,he fixed equipment via a full duplex radio link. (The data 

communications interface was described in an Appendix of [4].) 

Commands to the vehicle are transmitted in digital form preceded by a module address 

referring to the module on the vehicle that is expected to act. Each module is equipped 

- - - - 

'From [S], pages 19-20. 



wit. hits () \\ n rebistrf. The register holds bits specifying information on desired direction

of mot, ion. spced, requested distance , and other special functions. When action is

fcquet;teu, the action tarts and continues until completed or interrupted by other control

funct ions in the system. End-of-action or other control interrupts are transmitted back to

the \t,ationary equipment in coded form , where they are decoded and sent as interrupts to

the t omputrr. Intrrrupts of a similar nature are ORed together to limit the number of

interrupt.s. St.atus regist.er are therefore provided on the vehicle so that status can be

interrogated from the computer any time the source of the interrupt is in question.

Special rcgist,ers for the sensors , such as the range finder, bumpers , etc. , are available and

can be interrogate by a read operation in the same manner as reading from the module

register.

The hardware for the visual system uses the same interface to the computer. The power

for the TV camera and the special transmitter for the videodata is controlled from the

power-cont.rol register on the vehicle. The rest of the visual system is quite independent.

The TV camera consists of one control unit mounted on the platform of the vehicle and

one camera head mounted on a pedestal in the center of the vehicle. The camera can be

turned :: 180 degrees around a vertical centerline, and it can be titled +60 degrees and

45 degrees around a horizontal axis located below and perpendicular to the optical axis of

the camera. The camera is equipped with a manually replaceable lens. The lens mounts

in a mechanism wit.h two motors for control of iris and focus. The control of all degrees

of freedom of the camera and its lens system is accomplished by stepping motors. The

rotation of the camera around the vertical shaft is under control of a servo similar to that

used for the wheels of the vehicle. The control from the computer is in the form of LEFT

or RIGHT commands of a given number of steps. The camera has one left-rotational
terminal switch at + 180 degrees rotation and one right-rotational terminal switch at - 180

degrees rotation. \Vhen these switches close, the rotation in the direction in process 

interrupted. The switches also signal the emergency circuit , causing an interrupt signal at
the computer. Associated with the shaft rotation, there is also a pan distance counter.

The content of the counter can be transmitted to the computer. The tilt of the camera is

controlled by a stepping motor operated at a constant step rate. The motor reacts to a
TILT UP or TILT DOWN command for a given number of steps. The tilt mechanism has

limiting switches up and down. The limit switches stop the tilt and signal the interrupt
circuits in the computer. The content of the tilt counter can be transmitted to the
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comput.er. A brake mechanism locks the camera in its tilt position hen power is

removed from t.he motor.

Only one lens is presently used. Focus is controlled by one stepping motors and iris by

another. The rotation is limited by limit switches. The limit switches preset the counters

at maximum focus and minimum iris associated with the stepping motors.

The control logic has an up-down counter ror distance and direction.

C. The Computer System

The Artificial Intellgence Group computer complex consists or the rollowing parts:

. PDP- I0 computer and peripherals

. PDP-15 computer and peripherals (including the robot)

. An int.erprocessor burrer to connect the two computers.

These are interconnected as shown in Figure 4.

The PDP- IO 8Jstem has 192K (K 1024) words or 36-bit memory. 32K is DEC MDI0
memory. The rest is Ampex RGI0 memory, consisting or one 32K memory with interface
and one 128K memory interface and rour modules or 32K each. All memory has rour
ports. These are occupied by:

. PDP- l: cent.ral processor

. DFIO data channel

. Bryant drum controller

. DA25C interface.

The Bryant drum is a high-speed autolift drum which has a 1.5-milion-word capacity. 

is planned that it wil be used ror swapping and some system files. The drum controller
interfaces directly into the memory rather than going through a data channel.

* From /5/, pages 29-82.



The DF10 data channel is used to handle 110 from two peripherals: the disk pack drives 

and the TV AID converter. 

The interface between the disk pack drives and the DF10 data channel was built by 

Interactive Data Systems, Inc. 

The disk pack drives are manufactured by Century Data Systems and handle the 20- 

surface disk packs. This means that each disk pack has a 5-million-word capacity. The 

packs themselves are manufactured by Caelus Inc. The disk pack system is used as 

secondary storage. 

Currently, we are also using one disk pack drive as a swapping device for the time-sharing 

system. 

The TV AID converter is an SRI-designed and -built device. I t  handles data from the 

robot TV camera at  a rate of one word every 1.5 microseconds. It is capable of processing 

either 120X120 or 240x240 pictures with 32 levels of gray scale. 

The DA25C is the PDP-10 side of the interprocessor buffer. I t  handles data at  one 36-bit 

word every 8 microseconds. We have programmed it such that the PDP-10 is always in 

cont,rol and can interrupt any transmission in order to initiate one of its own. 

The DA25D is the PDP-15 side of the interprocessor buffer. Each PDP-10 word is split 

into two PDP-15 words (18 bits each). I t  also does the reverse operation. It operates on 

the PDP-15 I/O bus as a single-cycle device; however, its internal logic uses three cycles 

per word. 

The PDP-15 has 12K of core memory and an 110 processor. All devices are "daisy 

chained" on the 110 bus. These include an Adage display, paper tape, DEC tape, AID 

convertler, D/A converter, ARPA network IMP, and the SRI robot. 

The Adage display provides a high-speed graphics capability. I t  will be refreshed from the 

PDP-15 core. The display lists will be prepared in the PDP-10 and executed from the 

PDP-15. Capabilities include incremental mode, print mode, dotted lines, and intensity 

control.* 

A special software interface w a s  also wr i t t en  for use o n  the  PDP-10 

'From 191, pa.ges 15-16. 
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CHAPER THREE

Sha.ke, s Model 01 the WOf'ld

A. The Robot's World Model

As a result of our experience with the previous robot system (i.e., the one using the

SDS 940) and our desire to expand the robot' s experimental environment to include

several rooms with their connecting hallways, we have adopted new conventions ror

represent.ing t.he robot' s model or the world. In particular, whereas the previous system

had the burden or maintaining two separate world models (i. , a map-like grid model and
an axiom model), t.he new system uses a single model for all its operations (an axiom

model); also , in the new system conventions have been established for representing doors

wall faces, rooms, objects, and the robot's status.

The model in the new system is a collection of predicate calculus statements stored 

prenexed clauses in an indexed data structure. The storage format allows the model to be
used without modification as the axiom set for STRIPS' planning operations (Chapter

Seven) and for QA3. s theorem-proving activities (14, 15).

Although t.he system allows any predicate calculus statement to be included in the model

most or the model wil consist or unit clauses (i.e., consisting of a single literal) as shown

in Table 1. Nonunit clauses typically occur in the model to represent disjunctions (e.

box2 is either in room K2 or room K4) and to state general properties of the world (e.

for all locations locI and loc2 and for all objects obi, if obi is at location loci and loci is
not the same location as loc2 , then obI is not at location loc2).

We have defined for the model the following five classes of entities: doors , wall races

rooms , objects , and the robot. For each of these classes we have defined a set of

primitive predicates which are to be used to describe these entities in the model. Table 1
lists these primitive predicates and indicates how they will appear in the model. All
distances and locations are given in feet and all angles are given in degrees. These
quantities are measured with respect to a rectangular coordinate system oriented so that
all wall faces are parallel to one of the X- Y axes. The NAME predicate associated with



each entity anows a person to use names natural to him (e.g. , halldoor , leftface , K2090

etc.) rather than the less- intuitive system-generated names (e. , dl , f203 , r4450 , etc.

Figure 5 shows a sample environment and a portion of the corresponding world model.

Rooms are defined as any rectangular area, and therefore, the hallway on the left is

modeled as a room. There is associated with each room a grid structure that indicates

which portions of the room s noor area have not yet been explored by the robot. During

route planning the grid is employed to help determine if a proposed path is known

blocked, known clear, or unknown.

Four wall faces are modeled in Figue 5. The F ACELOC model entry for each face

indicates t.he face s location on either the X or Y coordinate depending on the face

orientation. There is associated with each face a grid structure to indicate which portions

of the wall face have not yet been explored by the robot. This grid is used in searching

wall faces for doors and signs.

Two doors are modeled in Figure 5. The DOORLOC model entry for each door indicates

t.he locations of the door s boundaries on either the X or Y coordinate , depending on the

orientation of the wall in which the door lies. Any opening between adjoining rooms is

modeled as a door, so that the complete model of the environment diagrammed in Figure

5 would have a door connecting rooms Rl and R3. This door coincides with the south

face of room R3 and wil always have the status "open.

The RADIUS and AT model entries for the object modeled in Figure 5 define a circle

circumscribing the object. These entries simplify the route-planning routines by allowing

each object to be considered circular in shape. Our current set of primitive predicates for

describing objects is purposely incomplete; we will add new predicates to the set as the

need for them arises in our experiments.

We do not wish to restrict the model to only statements containing primitive predicates.

The motivation for defining such a predicate class is to restrict the domain or model

entries that the robot action routines have responsibilty for updating. That is , it is clear
that the action routine that moves the robot must update the robot's location in the

model , but what else should it have to update! The model may contain many other

entries whose validity depends on the robot' s previous location (e. , a statement

indicating that the robot is next to some object), and the system must be able to

determine that these statements may no longer be valid after the robot's location has

changed.



\Ve have responded t.o this problem by assigning to the action routines (discussed in

Chapters Four and Five) the responsibility for updating only those model statements

which are unit. clauses and contain a primitive predicate. All other statements in the

model will have associated with them the primitive predicate unit clauses on which their

validity depends. \Vhen such a nonprimitive statement is fetched from the model , a test

will be made to determine whether each of the primitive statements on which it depends is
still in the model; if not , then the nonprimitive statement is considered invalid and is

deleted from t.he model. This scheme ensures that new predicates can be easily added to

t.h(' system and that existing action routines produce valid models when they are executed.

Be Model-Manipulating Functions

vVe have designed and programmed a set or LISP runctions for interacting with the world

model. These functions are used both by the experimenter (as he defines and interrogates
the model) and by other routines in the system to modify the model. To the experimenter
at a teletype , these functions are accessible as a set or commands. A brief description of
these commands follows.

ASSERT

FETCH

This is the basic command ror entering new axioms into the model. The
user follows the word ASSERT by either CUR or ALL to .indicate
whether the entries are to be ror the current model or are to be
considered part or all models. The system then prompts the user for
predicate calculus statements to be typed in using the QA3.5 expression
input language. After each statement is entered , the system responds
with "OK" and requests the next statement. To exit the ASSERT
mode the user types "

This is the basic command ror model queries. The user follows the word
FETCH by an atom rorm , and the system types out a list of all unit
clauses in the model that match the rorm. Each term in an atom form
is either a constant or a dollar sign. The dollar sign indicates an "
don t care" term and will match anything. The last term or an atom
form can also be the characters "S." to indicate an arbitrary number of

I don t care" terms. For example , the atom fOfm "(AT ROBOT $*
wil fetch the location or the robot , and the atom fOfm "(INROOM $
Rl)" wil fetch a list of model entries indicating each of the objects in
room Rl.



DELETE

REPLACE

This is the basic command (or removing statements (rom the model.

The user (ollows the word DELETE by an atom (orm , and the system

deletes all unit clauses in the model that match the (orm. Atom (orms

have the same syntax and semantics (or the DELETE command as

described above (or the FETCH command.

This is a hybrid command combining the operations o( DELETE and

ASSERT. The user follows the word REPLACE by an atom form and

by a predicate calculus statement. The system first deletes all unit

clauses in the model matching the atom form and then enters the
statement into the model. This command is useful for operations such

as changing the robot' s position in the model, indicating in the model

that a previously closed door is now open, and so forth.

From 110f, pages 9-15.



PRIMITIVE PREDICATES FO THE ROBOT' S WORLD MODEL

Primi ti ve
Predicate

FACES

type
name
faceloc
grid
boundsroom

DORS

type
name
doorlocs
jOinsfaces
joi nsrooms
doorstatus

ROOMS

type
name
grid

OBJECTS

type
name

i nroom
shape
radius

ROBOT

type
name

theta
tll t

pan
\\"hiskers
iris
override
ra nge
tvmode
focus

Li teral Form

type( face face
name( face Dame)
faceloc( face number)

grid( face grid)
boundsroom( face room direction)

Example Literal

type( fl face)

name( fl leftface)
facelod fl 6.

grid( fl gl)

boundsroom( fl rl east)

type( door" door
Dame( door name)
doorlocs(door number number)

joinsfaces(door face face)
joinsrooms( door room room)
doorstatus( door status)

t ype( room" room

" )

name( room name)
grid( room grid)

type( object " object
Dame( object name)
at(object number number

inroom( object room)
shape( object shape)
radius( object number)

type(" robot robot
name( " robot name)
at( " robot" number number)
thet a(" robot ,. number)
til t( " robot number)
pane " robot number)
\\"hiskers("robot" integer)
iris( " robot" integer)
override( " robot" integer)
range( " robot" number)
tvmode( " robot" integer)
focus(" robot " number)

type( dl door)
name( dl halldoor)
doorlocs(dl 3. 1 6.
joinsfaces(dl fl f2)
joinsrooms( dl rl r2)

doorstatus( dl " open

type( rl room)
name( rl K29090)
grid( rl gl)

type( 01 object)
Dame( 01 boxl)
aUol 3. 1 5.
inroom( 01 rl)

shape( 01 wedge)
radius( 01 3.

type( robot robot)
name( robot shakey)
at(robot 4. 1 7
theta( robot 90 .
Ult( robot 15.

pane robot 45.

\\11i skers( robot 5)
iris( robot 
override( robot 0)

range( robot 30

tvmode( robot 0)

focus( robot 30.

Table 1: PRIMITIVE PREDICATES FOR THE ROBOT'S WORLD

MODEL*

* From /10J, Page 11.
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CHAPER FOUR

The Low-Level Actions

A. Introduction

The low- level act.ions , or "LLAs " define the interface between major robot software

packages and the bottom , hardware-oriented level of the system. The intermediate- level

act.ions (ILAs), to be described in Chapter Five , control the operation of these LLAs. The

LLAs , in t.urn , communicate with the PDP- 15 computer and the robot vehicle according

to the protocol described in Appendix G of (9).

I n this section we shall describe the upper face of the LLAs, i. , the face presented to

higher- level programs.

Since the robot moves very slowly, we have taken great pains to permit the user to view
the robot as behaving asynchronously to as great an extent as appropriate. Thus , the

user must t.ake cognizance of this asynchrony by confirming the completion of "settling

on any robot activity before doing anything that assumes that activity to have been

successful. This low- level software package provides the necessary interlocking in the

following manner. Communications between the user and the robot are separated into

two unidirectional channels: orders from the user to the robot are handled by calls on

LLAs (i.e. , the funct.ions in t.his package); the current state of the robot s world is

reflected in the robot s world model. Now , the functions by which the user can access

these part.icular entries in the robot s world model have special provisions to ensure that

an actjvity has settled before grant.ing access to any part of the model which that activity

might affed. For example , one might move the robot to a given location by first turning

it to face the t.arget spot and then rollng it straight forward by the required distance.

One could conceivably confirm the initial turn (by interrogating the proper part of the

model) before rollng ahead. The model-access function will then delay until the turn has

settled before reporting the bearing of the robot. On the other hand, the user wil not be

delayed for' completion of the roll until he interrogates the position of the robot. Thus 

have synchronization (between the user and the robot) whenever we need it but not

otherwise.



This sort of synchronization is effected in another circumstance having to do with

interlocks between activities. In particular, each activity has associated with it certain

conflicting activities. (For example , one cannot take a TV picture while the robot's head

is panning. ) A set of init.iation functions automatically take cognizance of all possible

conflicts: each ensures that all potentially connicting activities are settled before

initiating it.s own activity. For the purpose of programming actual use of the robot

however, one should note that settling of an activity does not necessarily mean its

successful completion. For example, a roll can terminate by the robot unexpectedly

bumping int.o some obstacle-this wil "settle" the roll, but the robot cannot be assumed

to have attained its destination.

B. Measurement and Control

Before procceding further, we shall define the precise robot capabilties that the LLAs

control. Shakey can move about the noor by turning his body and by rollng straight

forward or backward , and he can pan and tilt his head. He can take pictures and range-

finder readings , and he can adjust the focus and iris states of the TV camera s lens.

Finally, he can set some global parameters both for taking TV pictures and for rolling or

turning. These ten act.ivities wil be more fully explained below. First we shall describe

the measurement conventions in Shakey s environment.

Angles are measured in degrees , and we wil call the principal value of an angle that val 

between - 180 and +1800 . The bearing of the robot is a horizontal angle referred to the

positive direction of the global y-axis; thus the robot is parallel to the xeaxis in the

negative sense when its bearing is 90 o . The pan angle of the robot's head is a horizontal

angle referred to the robot's bearing, and the tilt angle of the robot s head is a vertical

angle measured from the horizontal plane. Thus , when the robot has its pan angle at zero

and the tilt angle at-45 0 , the range-finder and TV camera are pointed at the floor right

beCore its very wheels.

\Ve turn now to optical values. The iris of the TV camera is set in exposure value units

(EVs), which have a logarithmic relation to f-numbers: increasing the EV number by one

doubles the amount of light arriving at the inner regions of the TV camera. Focus values

and range-finder readings are distances in feet from the intersection of the axcs about

which the robot s head tilts and pans. That point in turn is about 4 feet 1- 1/2 inches

above the floor and 9 inches forward of the axis about which the robot turns , when the

robot is standing (or sitting or whatever it does) on a level flat floor.



Having covered the numeric quantities in the robot's world, we have but a few other items

to discuss. Perhaps the simplest of these to describe is a TV picture: it resides on a disk

file in FORTRAN binary format. Now TV pictures are digitized in square arrays of

picture elements; the size of the array is constant, but one can select two coarsenesses:

120 or 240 picture elements on a side. One can , however , alter the configuration of the

array for the sake of special stereo optics. These two options are combined into one

num her called the tvmode , as follows:

tvmode: 0 means 120 X 120 nonstereo

tvmode" 1 means 120 X 120 stereo

tvmode" 2 means 240 X 240 nonstereo

tvmode" 3 means 240 X 240 stereo.

To explain the last two quantities of this section, we must first explain the two main

tactile sensors of the robot and how they interact with the roll and turn activities. The
tactile sensors are seven catwhiskers and a pushbar; each catwhisker can signal

engagement with an obstacle , and the pushbar can signal each of two levels of pressure:

mere engagement and hard contact. All nine of these conditions are renected in a

quantity called the whiskerword; to a first approximation each of these conditions has its
own bit in the whiskerword , whose format is shown in the following table:

Bit No. Octal Code Meanini of H

040000

010000

002000

001000

000200

000100

000040

000004

000001

Pushbar is engaged and ready to push.

Left front whisker is engaged.

Front horizontal whisker is engaged.

Right front whisker is engaged.

Right rear whisker is engaged.

Encountered immovable object and backed off.

Rear whisker is engaged.

Left rear whisker is engaged.

Front vertical whisker is engaged.

The robot has a couple of motor renexes pertinent to this discussion: it wil stop moving
whenever the pushbar becomes disengaged, and it wil not move while a catwhisker is



engaged. Howeyer , these two reflexes can be overridden selectively; the corresponding

orders are sent to the PDP- 15 by means of the override activity and the override code

word , which has the following significance:

Code Word Push bar Catwhisker

Enabled Enabled

Enabled Overridden

Overridden Enabled

Overridden Overridden

c. The LLA Portion of Shakey . Model

\Ve wil now enumerate and define the 17 predicates by which the robot' s lowest- level

state is represent.ed in the axiomatic world model. They are:

Atom in Axiomatic Model

(AT ROBOT xfeet yfeet)
(DAT ROBOT dxfeet dyfeet)

(THETA ROBOT degreesleftofy)

(DTHETA ROBOT dthetadegrees)

(\VHISKERS ROBOT whiskerword)

(OVRID ROBOT overrides)

(TILT ROBOT degreesup)

(DTILT ROBOT ddegreesup)

(PAN ROBOT degreesleft)

(DP AN ROBOT ddegreesleft)

(IHIS ROBOT evs)

(DIRIS ROBOT devs)

(FOCUS ROBOT feet)

(DFOCUS ROBOT dfeet)

(RANGE ROBOT feet)

(TVMODE ROBOT tvmode)

(PICTURESTAKEN ROBOT :fpicturestaken)

Affected By

ROLL

ROLL

TURN

TURN

ROLL , TURN

OVRID

TILT

TILT

PAN

PAN

IRIS

IRIS

FOCUS

FOCUS

RANGE

TVMODE

SHOOT



The two predicates AT and THETA give the position and bearing of the robot itself in

the global coordinate system; the statistical uncertainties are given by the predicates DA 

and DTI lET A , which are separated from AT and THETA to faciltate planning. The

state of the w hiskerword is updated whenever a ROLL or TURN settles , and the OVRID

predicate rerlccts the state of the overrides in the robot.

The TILT and PAN predicates refer t.o the direction the robot' s head is pointed. DTILT

. and DP AN give corresponding error estimates. All three angles (tilt angle , pan angle , and

heading THETA) are stored as their principal values. RANGE gives the yalue resulting

from the mOllt recent range-finder reading. The PICTUREST AKEN predicate , which we

wil describe more fully in our discussion of the SHOOT activities, gives the approximate

Hum ber of pictures taken to date. The meanings of the rest of the predicates should be

clear from the previous discussion.

D. The LLAs

The predicates are the means by which the robot tells the user about its state; the LLAs

provide t.he means by which the user t.ells the robot to alter its state. One should

understand that this clean division is largely just formal; in practice an interrogation of a

predicate is intercepted by a function that ensures settling of any relevant robot activities

before proceeding to the actual access. Also, the initiation of an action does not guarantee

its completion; actions may terminate for a variety of reasons , such as engagement of limit

switches or malfunctions in the telemetry link. The state of the system after an action

may be det.ermined by investigating the model.

The following functions initiate fundamental low-level activities (whenever numeric

parameters are used, negative numbers are permissible and mean motion in the direction

opposite to that indicated):

TILT degreesup tilts the robot's head upward by "degreesup" degrees. The motion

can be prematurely terminated by a limit switch.

PAN degreeslelt pans the robot's head by "degreesleft" degrees to the left or far

enough to activate a limit switch.

FOCUS feetout the TV camera is initially focused on a plane removed by some focal

distance from the center of the head's gimbals; this function increases that distance 

feetout" feet. Of course the range of focal distances is limited by limit switches.



ffIS evs opens the robot s iris (on the TV camera) by "evs" EVs. Thus if Bevs" has

the value 1 , this form wil double the amount of light getting into the TV camera. There

are limits for this activity too.

OVRID overrides set the overrides as specified by the "overrides" code work.

TVMODE tvmode sets the TV mode as specified by the "tvmode" code word.

RAGE reads the robot's range-finder; this automatically includes turning on the

range-Cinder and waiting ror it to warm up.

SHOOT put.s a TV picture onto the disk file "TV.DAT." The picture is taken

according to the current TV mode. Assuming correct operation or hardware and

software, a subsequent examination or the PICTURESTAKEN atom (in the world model)

wil yield a positive integer giving the number of current pictures in a series (1 t 2 , 3,...

begun when the robot system was loaded or initialized. In the event of an unrecovered

system malfunction (e. , transmission 'error), the value stored with PICTURESTAKEN

will be the nE'gative of the serial number of the last successfully taken picture.

ROLL reet tells the robot to roll forward by "feet" reet. This activity has three

normal ways of prematurely terminating: the robot can come into contact with an

obstacle , engaging a catwhisker; it can lose contact with an object it is pushing,

disengaging the pushbar; or it can encounter an immovable object, causing the pushbar to

come on hard. The first two conditions cause the robot to stop by renex actions that can

be overridden; the last causes the robot to attempt to free itself using more complex

evasive actions in a reflex that cannot be overridden. When the robot encounters an

immovable object , it wil not only stop, but it will back away from it by some distance

urrent.ly a constant 6 inches. (Of course, the information in the model wil be correctly

maintained.) The whiskerword in the model is updated at the end of a ROLL or TURN;

it contains the description of the current state if the catwhiskers and pushbar are

ret.urned from the robot , but it has another bit for immovable objects-this bit showing

the history of an event rather than showing a current state. This bit is set only w hen the

hiskerword is updated the first time after hard contact.

TURN degreeslert tells the robot to turn to the leCt by "degreesleCt" degrees.

Otherwise the above description oC the ROLL activity applies excepting only the way

immovable objects are evaded. In this case , the robot turns back; currently it turns back

to its initial heading.



The functions discussed so Car that initiate motions have been incremental in Corm if not

in essence, However , even this level of robot software has a memor:y oC the various

aspects of the robot s position in the axiomatic model so dutiCully maintained by the

ett,ling funct. ions. Capitalizing on this circumstance, we have also provided some

functions to initiate motions to a given goal (rather than by a given amount). Although

these funct.ions are Cormally and conceptually outside the lowest LISP level of robot

software, they have suCficiently simple internal structure that it is convenient to describe

t.hem here rat.her than in the next (ILA) chapter. With one exception we expect their

meanings to be self-evident. These additional initiation functions are:

(TIL TO degreesup)

(P ANTO degreesleft)

(FOCUSTO reet)

(IHISTO evs)

(ROLLTO xfeet yfeet)

(TURNTO degreeslerttofy).

The exception is ROLL TO: it must first turn the robot to point toward its goal , so it

must do (and does) more than simple calling the corresponding incremental function with

he difference between the desired and curent position.

E. Summary

Table 2 is a summary of Shakey s low-level activities. Figure 6 sketches how these

activit.ies fit into the overall system control structure.

From (111, pages 25-99.
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INTERMEDIATE-LEVEL ACTIONS

1 1
ROLL TO TURNTO

!. 

TVMODE

FOCUSTO

BOTTOM LEVEL: MACHINE LANGUAGE AND HARDWARE
TA-8973-

Figure 6: CONTROL STRUCTURE OF LOW-LEVEL ACTIVITIES.

. From /11/, page 95.





CHAPTER FIVE 

The Int  ermediate-Level Actions 

The intermediate-level act ions (ILAs) are described i n  excerpts from t w o  

reports [I0 and 111. Each excerpt i t  more-or-less se l f  contained (and t h u s  

some redundant material  is reprinted), but both should be read for a 

complete picture. The first excerpt discusses early plans for t h e  ILAs: 

A. Introduct ion 

As with most programming tasks, the problem of programming robot actions is simplified 

when it is done in terms of well-defined subroutines. At the lowest level it is natural to  

define routines that have a direct correspondence with low-level robot actions-routines 

for rolling, turning, panning, taking a range reading, taking a television picture, and so 

forth. However, these routines are too primitive for high-level problem solving. Here it is 

desirable tJo assume the existence of programs that can carry out tasks such as going to  a 

specified pla.ce or pushing an object fromone place to another. These intermediate-level 

actions (ILAs) may possess some limited problem-solving capacity, such as the ability to  

plan routes and recover from certain errors, but the ILAs are basically specialized 

~ubrout~ines. None of these routines has as yet been written. However, considerable 

thought has been devoted to their design, and this section describes our plans for a set of 

ILAs t8hat. a.re suitable for use with the STRIPS problem-solving system. 

Perhaps tihe most difficult problem that confronts the designer of ILAs is the problem of 

detectping and recovering from errors. Sometimes errors are detected automatically, as 

when an interrupt from a touch sensor indicates the presence of an unexpected obstacle. 

Other times it is necessary to make explicit checks, such as checking to  be sure that a 

door is open before moving through it. When an error is detected, the problem of 

recovery arises. This problem can be very difficult, and is one aspect that distinguishes 

work in robotry from other work in artificial intelligence. 

It is natural to think of an intermediate-level action as a composition of somewhat lower- 

level actions, which in turn are compositions of lower-level actions. While this 



bicrarchical organization possesses many advantages (and it is in fact the organization

that. we use), it is not ideally suited for error recovery. Errors are made most frequently

at low levels by routines that are too primitive to cope with them. An error message may

have to be passed up through several levels of routines before reaching one possessing

sufficient knowledge of both the world and the goal to take corrective action. It any

routine can fail in several ways, this presents the highest-level routine with a bewildering

variety of error messages to analyze , and requires explicit coding for a large number or

contingencies.

To circumvent this problem, we have chosen to have the subroutines communicate

through the model. With a few special exceptions, neither answers nor error messages are

explicitly returned by subroutines. Instead, each routine uses the information it gains to

update the model. It is the responsibility of the callng routine to check the model to be

sure that conditions are correct before taking the next step in a sequence of actions.

Detection or an error causes returns through the sequence of callng programs until the

routine that is prepared to handle that kind of error is reached. In the following sections

we describe in more detail the formal mechanism by which this is done.

B. The Markov Algorithm Formalization

1. General Considerations

The formal structure of each ILA routine is basically that of a Markov algorithm. * Each

routine is a sequence of statements. Each statement consists of a statement label , a

predicate , an action, and a control label. When a routine is called, the predicates are

evaluated in sequence until one is found that is satisfied by the current model. Then the

corresponding action is executed. The control label indicates a transfer of control , either

to anot.her labeled statement or to the callng routine.

Table 3 gives a specific example of an ILA coded in this form. This routine , gotoadjroom

(rooml , door , room2), is intended to move the robot from room! to room2 through the

specified door. The first test made is a check to be sure that the robot is in room!. If it

is not , an error has occurred somewhere. Since this routine is not prepared to handle that

kind oC error , no action is taken, and control is returned to the calling routine. The

subroutine return is indicated by the "R" in the control field.

It also bears a close resemblance to Floyd-Evans productions.



Under normal circumstances , the first two predicates wil be raise. The third predicate is

always true , and the corresponding tion sets the value of a local variable " " to give the

status or the door. The function "doorstatus" computes this rrom the model , and
evaluates to either OPEN , CLOSED, or UNKNOWN. Rather than tracing through all or

the possibilities , let us consider a normal case in which the door is open but the robot is

neither in rront of nor near it. It this case, the action taken is the last one
n avto( nearpoint( room 1 ,door)). Here the function "nearpoint" computes a goal location
near the door. The function "navto" is another ILA that plans a route to the goal point
and eventually executes a series of turns and rolls to get the robot to that goal. Of
course , unexpected problems may prevent the robot from reaching that goal.
Nevertheless , whether navto succeeds or fails, when it returns to gotoadjroom the next

predicate checked wil be that of statement 4. If navto succeeds and the robot is actually
in front of the door, the bumblethru routine wil be called to get the robot into room2. If
navto had railed and the robot is not even near the door , navto wil be tried again.
Clearly, this exposes the danger of being trapped in rruitless infinite loops. We shall
describe some simple ways of circumventing this problem shortly.

SUB ROUT lNE GCYOADROOM (RooMl , DOR , ROOM2)

Label Predicate Action Control
- in(rooml)

in(room2)

setq(s , doorstatus(door))
infrontof (door) Aeq (s , OPEN) bumblethru(rooml , door , room2)

near(door) Neq(s OPEN) align(rooml , door , room2)

near(door) Neq(s , UNOWN) doorpic (door)

eq (s , CLOSED)

navto (nearpt (rooml , door))

Table 3: SUBROUTINE GOTOADJROOM (ROOMl DOOR ROO f2)



2. Predicates and Actions

The predicates used in the ILAs have the responsibilty of seeing t.hat preconditions for an

act.ion are satisfied. In general , the evaluation of predicates is based on information

contained in the model. If this information is incorrect , the resulting action wil usually

be inappropriate. However, the act of taking such an action wil rrequently expose errors

in the model. When the model is updated (which typically occurs after bumping into an

object or analyzing a picture), the values or predicates can and do change. . Thus , the

values of the predicates wil depend on the way the execution or the ILA proceeds, and

wil steer the routine into (hopefully) appropriate actions when errors are encountered.

The actions can 'be any executable program. The most common actions are to compute

the values of local variables, update the model , call picture-taking routines that update

the model , or call other ILAs. Only the first of these causes any answers to be returned

directly to the callng program. This constraint of communicat.ing through the model

occasionally leads to computational inefficiencies. For example , the very computation

used by one routine to determine that it has completed its job successfully may be

repeated by the callng routine to be sure that the job has been done. While some of

these inefficiencies could be eliminated with modest effort , they appear to be of minor

importance compared to the value of having a straightforward solution to the problem or

error recovery.

3. Loop Suppression

'rVe ment.ioned earlier that the failure of a lower- level ILA might result in no changes in

the model that are detected by the callng ILA. In this case , one can become trapped in

an infinite loop. There are a number of ways to circumvent this problem. Perhaps the

most satisfying way would be to have a monitor program that is aware or the complete

state of the system, and that could determine whether or not the actions being taken are

bringing the robot closer to the goal.

An alternative would be to have each ILA keep a record of whether or not its actions are

leading toward the solution oC its problem.

The simplest kind oC record Cor an ILA to keep is a count or the number of times it has

taken each action. In many cases , if an action has been taken once or twice before, and if



the predicates are callng' for it to be taken again , then the ILA can assume that no

progress is being made and return control to the callng program. This strategy can be

improved by computing a limit on the number of allowed repetitions , and making this

limit depend on the task. For example , ir the action is to take the next step in a plan , the

limit should obviously be related to the number of steps in the original plan. Both of

hese strategies can be criticized on the grounds that hey are indirect and possibly very

poor measures oC the progress being made. However , they constitute a frequently

effective , simple heuristic , and wil be used in our initial implementation of the ILAs.

4. Status and Implementation

As ment.ioned earlier , none of the ILAs has been implemented to date. However , some 15

have been sufficiently well defined to allow coding to begin. These are listed in Table 4

together with the ILAs that they call. The specification of the ILAs has also led to the

specification of a number of specialized planning and information-gathering routines. The

planning routines include programs for planning pushing sequences, tours from room to

room, and trips within a single room. These wil be developed along the lines of the

navigation routines that were one of our earliest efforts on this project. The information-

gat.hering rout.ines are primarily special-purpose programs for processing television

pictures. For example , PICLOC is a special-purpose routine that uses landmarks to

update the location of the robot, and CLEARPATH analyzes a picture to see whether or

not the path to the goal is clear. These routines are described in Chapter Six and

Appendix B.

One aspect of implementing the ILAs that has not yet been resolved concerns whether the

ILAs should be writ.en as ordinary LISP programs , or should be kept in tabular form as
dat.a for an interpreter. It is quite easy to go from a representation such as that in Table

3 to a LISP program realizat.ion; the basic structure is merely a COND within a PROG.

However , t.he use of an interpreter would simplify the implementation of the loop

suppressor , and would also simplify monitoring and the incorporation oC diagnostic

messages. In addition , the same program that interprets the ILAs might be used to

interpret the plans produced by STRIPS; if we can make these structures identical , the

same executive program wil be usable for both. Unirormity in program structure is also

important. for the plan generalization ideas (to be discussed in Chapter Eight).

* From /lOJ, pages 25-32.
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The second ezcerpt describes the fLAs as the, were implemented:

A. Introduction

The Int.ermediate-Level Actions (ILAs) are the action routines associated with the STRIPS

operators (sce Chapter Seven). Here we distinguish "action routines" from "opcrators

on the following basis: operators are used for planning, and the corresponding action

routines are invoked to actually move the robot. The ILAs are written in a language we

call I\1arkov because of its resemblance to Markov algorithms. There is a large body of

auxiliary LISP functions that accompanies the ILAs , but we wil confine the present
discussion t.o a brief description of the Markov language and a brief exposition of the

currcnt ILAs and the intraroom navigation algorithm.

B. The Markov Language

The central part of the Markov language is the Markov table , specifying actions to be

performed and the criteria for determining their sequence. The format of a 1arkov table

is an ordered collection of rows of identical format. Each row starts with a label, which is

followcd by a predicate , a sequence of actions to be performed, and finally the label of

some other line in the table. This last item (which we have been callng the "go-to ) can

optionally specify that execution of the table could cease, causing the callng routine

execution to resume in the conventional subroutine fashion. The characteristic execution

pattern is a sequent.ial scan through the table s rows, testing the predicates one by one
until a row is found whose predicate is true. Then the scan terminates and the actions (if

any) in that row are performed, and the go-to is followed; it wil either indicate

completion of the execution of the table, or it wil name a line in the table at which the
scan is to recommence. When the Markov table is first entered , the scan begins with the

first line in the table. Execution may be terminated in three ways: it can be completed

explicitly. by reaching a special go-to; the sequential scan can get to the bottom of the
tabJe wit.hout having found a line with a true predicate; and finally, an act.ion can be

fruitless , which wil cause a loop suppressor to terminate execution of the table. In all

three cases , there is only one form of return rrom a Markov table, and the calling routine

(or Table) is expected to test for the desired results. (This seemed much simpler than

trying to make the individual action routines guess what its caller had in mind.



The actions called Cor in an ILA may be LLAs , other ILAs , or arbitrary programs (usually

coded in LISP). Since the Markov interpreter is itself a LISP program , an ILA can call

itself recursively.

The Hgo-to " part oC a Markov table line is interpreted arter completion or the action part.

In its simplest case , the "go-to" consists of the label of a line at which to continue the

search for a true predicate. If several lines have the given label , one of the lines is

arbitrarily chosen; if no lines have the given label, one of the lines is arbitrarily chosen; if

no lines have it or ir it is NIL, execution is terminated. (NIL is our conventional explicit

return.) The other case involves "loop suppression" and wil be discussed below.

tarkov table is generally a sequence or actions that would transform an initial state

into a final "goal" state via a linear sequence of intermediate states. Whether an action is

applicable t.o a particular state can usually be tested by a relatively simple predicate-the

one heading the t.able line with the action. Since actions in the real world frequently Cail

to achieve their desired results , the Markov interpreter determines which action to execute

by t.(,st.ing t.he state predicates one by one, starting from the goal predicate (on the top

line) and working backward (i.e. , down the table) until a true predicate is found. Markov

operators typically rollow the execution of any component action by starting again with

t.he goal predicate. In its simplest form , each line of a Markov table would contain one of

the state predicates and the operator to be applied to that state; its "go-to" would specify

the first. line , which contained the goal predicate and an explicit return. Fallng off the

end of a Markov table thus corresponds either to a drastic failure of one of the component

act.ions or to an inappropriate application of the Markov operator. Of course , persistent

Cailure of a component action to achieve its desired effect, i.e. , to produce a state

satisfying a predicate higher in the table , would cause indefinite looping in such a Markov

t.ahle. To circumvent this possibilty without requiring specific consideration in each

'farkov t. able, we introduced " loop suppression" into the Markov interpreter. Whenever

the predicate of a line is found to be true, a counter is incremented and checked against a

limit before the line s action is executed; if the counter becomes greater than the limit

then interpretation of the table is terminated without execution oC the action. Thus , if

the limit for a line is three (this is the current default value) then the action(s) on that

line wil be executed a maximum of three times; if the line s predicate is found true a

fourth time , the table will return to the operator that invoked it. OC course , one can

specify a limit for a table line rather than accepting the default value. There is an



alternative form for the "go-to" just for this purpose: rather than being just a label , it

can be a two-element list. In this case , the first element is the label , and the second

elcment is the loop-suppression limit for that line; it is evaluated only once , at the time of

the first loop-suppression check for that line.

Table 5 ilustrates the Markov language by presenting the actual code Cor the lowest- level

ILA that pushes an object. Here , line 10 does some initialization; the action (I.e. , the

(SETQ XYT ARG ... )) is always perCormed because its predicate T is always true. Then

line 20's predicate checks whether the pushing operation is finished by means of its

(NEARENOUGH 08 XYTARG TOL) predicate; if this is the case, then no actions (i.e.

NIL) are performed , and control jumps to the label CLEANUP ror some post-processing

before exit.. Line 25's predicate similarly determines whether the object's position is

known closcly cnough to continue the pushing operation. (This may not be the case either

initially or as t.he result of the object dropping off the pushbar during a push.) Line 30

causes t.he table to exit (via CLEANUP) ir the object is past its target. Line 40'

predicat.e is t.rue if t.he robot has just pushed the object into a wall, and finally, line 50'

predicat.e is t.rue if the robot has proper contact with the object. Line 10 and the lines

starting with the label CLEANUP are representative of a more usual programming

language , with t.he normal execution being sequential. Lines 20 through 50 , however , have

the characteristic execution pattern of the ILAs: a loop testing ror the main goal and

various su bgoals and error conditions and recycling after any action is performed. This

particular ILA is designed to be especially simple because it is intended to be embedded in

several more layers of ILA before STRIPS becomes concerned with their robustness. Even

STRIPS-visible ILAs are called by PLANEX (see Chapter 8) from its execution tables , so

it is perfectly acceptable for this lowest-level pushing operator to rail as readily as it does.

c. The Actions

The following are brier descriptions of the present ILAs. The control relations among the

ILAs and between them and the rest of the system are shown in Figue 

ILAs that affect the state of the world have responsibilty for making corresponding

changes to Shakey s axiom model of the current world. Such changes are mentioned

below wherever relevant; "$" wil be used to denote unspecified or changing values in the

model.



GOTHRUDR(DOOR FROMRM TORM) moves the robot from room FROMRN

to room TORM via door DOOR. It assumes only that the robot is in FROMRM; it uses

NA VTO to get to the door and BUMBLETHRU to go through it.

BLOCK(DX RX BX) pushes box BX within room RX to a position blocking door DX.

This routine directly replaces the axiom (UNBLOCKED DX RX) by (BLOCKED OX RX

BX) in the model.

UNBLOCK(DX RX BX) pushes box BX within room RX to a position in which it

does not block door OX; it directly replaces the axiom (BLOCKED OX RX BX) by

(UNBLOCKED DX RX). This routine prefers to push the box to the far side of the door

(as viewed from t.he initial position or the robot), but it wil also consider the other push.

GOT02(X) moves the robot into the vicinity of X if X is a door; it directly updat.es

the (NEXTTO ROBOT $) axiom. A contemplated extension of GOT02 is to permit X to

be an object.

PUSIll(DIST OB TOL) is the lowest- level push; as such, it maintains OD's position

and deletes t.he (NEXTO OB $) and (NEXTTO $ OB) axioms from the model. It pushes

OB forward by DIST feet (within TOL feet); it assumes that the rront horizontal

cat.w hisker is on when it is entered, and it exits under any of the following conditions:

(1) It is unnecessary to push 08 forward, i.e.

(a) OB is within TOL of the implied goal point; or

(b) OB is past the goal point in the current heading.

(2) The pushbar comes on hard.

(3) The front horizontal catwhisker is off.

In any of these cases , the robot backs up 2 feet in an attempt to free its catwhiskers for

normal navigation. The last argument TOL is optional and is defaulted to 1 foot if not

supplied.

ROLL2(DIST TOL) is the lowest-level free-floor roll; as such it deletes the (NEXTTO

ROBOT $) axiom from the model. It moves the robot forward by DIST feet (within TOL

feet); if it engages a front catwhisker it asserts the (JUSTBUMPED ROBOT T) axiom and



backs away in an attempt to free the catwhisker. TOL is an optional parameter defaulted

to 1 foot if not supplied; DIST may be negative.

BUMLETHRU(FROMRM DOOR TORM) moves the robot from room

FROt\1RM to room TORM through door DOOR. It assumes t.hat the robot is init.ially in

FROMRM and in front of door. It heads for the corresponding position in TOR 1 and

uses the catwhiskers (if necessary) to help it negotiate the door. It updates the (INROOrvl

ROBOT $) and (NEXTTO ROBOT $) axioms in the model , and it is the most basic door-

negotiating routine in the system. It uses the vision routine CLEARP A TH before entering

an unknown room.

PUSH(OBJECT GOAL TOL) is the highest-level ILA for pushing a box. Its three

arguments are the name of aD object , the goal coordinates to be pushed to , aDd the

allowable tolerance. The tolerance argument may be omitted, in which case its value

defaults to 2.0 feet.

The only precondition for PUSH is that Shakey and the OBJECT are in the same room.

The routine calls FINDPATH (described below) to plan a path to GOAL from the current

object location. PUSH wil fail if any of the rollowing conditions are true:

(1) OBJECT is not in a pushable location.

(2) No path of width W (W=MAX(WIDTH(OBJECT),WIDTH(ROBOT)))

can be found from the current position of OBJECT to GOAL.

(3) No path can be found from the curent position of the robot to the

pushplace" of OBJECT , I.e. , Shakey cannot get behind OBJECT.

PUSH2(OBJECT GOAL TOL) is a straight-line push, envoked by PUSH to move

OBJECT along successive legs of the planned path. PUSH2 attends to updating the

posit.ions of ROBOT and OBJECT. It the uncertainties -in position exceed TOL, PICLOC

updates the position of ROBOT or OBLOC the position of OBJECT (PICLOC and

OBLOC are described in Chapter Six.

A PUSH2 is accomplished in three basic stages:

(1) The robot navigates to the "pushplace" of OBJECT.

(2) The robot rolls forward and makes contact with the object with a front
catwhisker , by using ROLLBUMP.



(3) PUSHl is called , which turns on the overrides and causes the robot to

roll Corward the required distance.

NAVTO(GOAL TOL) wil maneuver the robot to withinTOL feet or the point

GOAL. Like the PUSH ILA , it uses FINDPATH to plan the journey to GOAL. NA VTO

wil fail if no path is found; ir a path exists, it uses POINT AND GOTO 1 for each leg of

the journey.

POINT(THETA TOL) attempts to turn the robot to within TOL degrees of bearing

THETA. If necessary, the vision routine PICTHETA (Chapter Six) wil be used to

determine the bearing of the robot. A catwhisker engaged during the turn wil cause the

robot to turD back to its original bearing and then attempt to locate the object with

PICBUMPED (Chapter Six).

GOTOl(GOAL TOL) moves the robot forward in a straight line t.o wit.hin TOL feet

of GOAL. It wil use ROLL2 to actually move the robot, or it wil use vision under the

following conditions:

(1) If the robot's location is uncertain ( TOL), it will update its position

using PICLOC.

(2) If moving in an unknown room, it wil use CLEARPATH.

(3) If the result or CLEARPATH is BLOCKED, it wil use PICDETECTOB

(Chapter Six) to enter information about the obstacle in the model.

(4) If the robot unexpectedly engages a catwhisker while rollng,
PICBUMPED wil locate the object and update the model.

ROLLBUM(DIST TOL OBJECT) moves the robot forward DIST feet to engage a

front catwhisker on the object OBJECT. It updates the (NEXTTO ROBOT $)

predicate(s) in the model. If an object is not encountered within TOL Ceet of DIST

ROLLBUMP fails.

D. The Pathfinding Algorithm

FINDPATH(ROB G JOURN) is the routine to plan an intraroom path Cram ROB to

G. The arguments ROB and G are each a list of X , Y coordinate pairs. JOURN is the

type of journey to be undertaken , either ROLL or PUSH. If JOURN is ROLL, the
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MACROPS AND PLANEX

tt- t---
UNBLOCK QQ GOTHRUDR

ROLLBUMP BUMBLETHRU

!--!-- 

t----

!--

LOW-LEVEL ACTIVITIES
TA-8973-9

Figure 7: CONTROL STRUCTURE OF THE INTERMEDIATE LEVEL

Cunct.ion returns a path along which the robot can navigate from ROB to G. If JOURN is

PUSH, t.he returned value is a path by which the robot can move a box at ROB to point
G. In this case global variables PUSHOBNAME (name or the box) and OBRAD (radius 

the box) are set , so that in computing a pushing path the box radius and the ability of the
robot to get behind the box are taken into account.

The returned value rrom FINDP A TH is a list of subgoal points to be arrived at in order:

((X l y 1 )(X Y 2) ... (X l Y n- )G). If a direct- line path exists from ROB to G , the value or
FIND PATH is just (G); if no path exists , the value is NIL.



The pathfinding algorithm is a breadth-first search of the tree or predecessors to G. At

each node of the tree , FINDP A TH tests for a direct- line path between ROB and the

currcnt node , say PN. If it exists , the path from PN to G is returned. Otherwise , the

tree is grown one level deeper from PN by computing predecessors to that point. If no

predecessors exist , the path Crom PN to G is removed from the tree , thus reducing the

search space.

The predecessors to node PN are defined as the intersections of the tangent lines from ON

and ROB around the first obstructing object in the straightline path connecting them.

Thus , each point has at most two predecessors. Figure 8 ilustrates one possible

configurat.ion that would generate the tree in Figure 9.

Before a computed predecessor is added to the tree, it is tested to determine whether it is

within the room or within the region of another obstacle. It either condition is true (as

for P0 in Figure 8), a shorter path (P5 P4) is computed using the tangents that generated

PO. If eit.her of t.hese points is unacceptable under the criterion just described , the entire

search in that. direction is abandoned, and the next node (in this case P3) is considered. A

predecessor that is acceptable under this criterion is added to the tree if a straightline

pa.t.h exist.s between it and its parent node. Otherwise, predecessors are sought recursively

to find a path from the parent node to its computed predecessor.

The searching in FINDPATH terminates , then, when either a path has been found or

w hen the search tree is reduced to NIL. Thus, the path that is chosen (assuming at least

one exists) is the first one found, that is , the one with the smallest number or legs in the

journey. This criterion was chosen over a minimum-distance criterion to reduce the

amount of subsequent thinking and execution time for the robot. 

* From /11/, pages 87-49.



TA-8973-10

Figure 8: AN OBSTACLE CONFIGURATION FOR FINDPATH*

TA-8973-

Figure 9: SEARCH TREE FOR CONFIGURATION OF FIGURE 

. From 111 J, page 48.



CHAFER SIX

Vision Routines

We first present an overview of the main vision routines from fll).

A. In trod uction

The current robot. executive program never calls for a general visual scene analysis.

Instead, undcr appropriate circumstances various or the intermediate- level actions (ILAs)

call specific vision routines to answer certain specific questions. These specialized vision

programs perform three basic tasks: locating and orienting the robot , detecting the

presence of objects , and locating objects.

A sum m ary of the six vision routines currently used by the ILAs is given below in Section

C. PICLOC is described in Appendix B, and CLEARPATH is described briefly later.

l\'fost of the other routines make use of LOBLOC , which uses vision to locate accurately

an object whose position is only roughly known.

The following section describes the operation of this routine in some detail.

B. Object Location

Given t.he approximate floor location of an object, LOBLOC takes a television picture of

the object , analyzes the picture to find the exact coordinates , and enters this information

in t.he robot s world model. This specialized task can be done more rapidly and with less

chance for error by a special program than by performing a complete scene analysis and

then ext.racting the desired answer from the resulting description. However, certain

precondit.ions must be satisfied for LOBLOC to function properly. These are as Collows:

(1) The approximate location must be sufficiently accurate and the object

must be sufficiently small and unoccluded that at least two, and
preferably three , lower corners of the object are in view.

(2) The object and the robot must be in the same room.



(3) The location or the robot with respect to the walls must be known to

within approximately one foot.

The first action that LOBLOC performs is to pan and tilt the television camera so that

the nominal noor position image is in the center or the picture. The resulting picture is

taken at 60-line resolution to speed subsequent region analysis operations. However

before region analysis is begun, the program accesses the model to compute the image of

the wall-rloor boundary. Everything in the picture above this boundary is erased , thereby

eliminating baseboards, door jambs, and other possible sources of confusion.

The resulting picture is then subjected to region analysis. That is, it is partitioned into

elementary regions, and these regions are merged using the phagocyte and weakness

heuristics (16). The following regions are automatically deleted from the resulting region

list:

( 1) The region above the wall-noor boundary.

(2) All regions smaller than some threshold I. (Currently 4 cells.

The next. major step is to identiry the noor region. This is done by scoring each region.

The features or properties that enter into this score are the area A, the ratio R of

perimet.er-squared to area, the average brightness B, and the lowest coordinate Z of th

ext.ernal contour. Letting Amax be the largest area, Rmax the largest ratio , Bmax the
highest brightness , and Zmin the smallest coordinate , we compute the scoring function by

D2 = .2 

2 + 

1- 

2 + 2 + 
Z - Zmin

max Rmax Bmax 

The region ror which 02 is minimum is declared to be the noor.

The next major step is to inspect the n neighbors of the noor to find the ones that are

most likely to be the faces of the object in question. Special tests are made to treat the
simple cases where n happens to be 0 , 1 , or 2. In general , for each region neighboring the



floor we compute its area A and a quantity X which is a simple measure of the horizontal

displacement. of the region from the center of the picture. These features are combined in

a scoring funct.ion:

D2 = 1- 

2 + 

minmax 

aDd the region for which D2 is minimum is declared to be one face of the object. The

same criterion is used to select the other visible face from the neighbors or both the floor

and t.he first. face.

The major problem remaining is to identiry the vertices where the corners of the object

meet. t.he floor. This is done by processing the common boundary between the face regions

and the floor region. After simple straight-line connections are made between endpoints

of any gaps , this common boundary consists of a chain of points along the lower edge of

the object. The lowest point on this chain is taken to be the central vertex , and the

corners on either side are found by the method or iterative end-point fits (17). Once these

t.hree image points are determined, the support hypothesis is used to locate the

corresponding points on the rloor. The resulting coordinates can then be entered in the

model under the name of a new object if the status of the room is unknown , or under the

name of t.he nearest object if the status is known.

c. ILA Vision Routines

The following is a summary or the intermediate-level routines related to Shakey s visual

system:

CLEARPATH (X Y) decides whether the path from (AT ROBOT $* ) to (X Y) is

clear. In analyzing pictures , it inspects only the image of the path to be traversed, and it

uses the range finder to detect large , close objects. The value returned is either CLEAR

UNKNOWN , or (BLOCKED XO YO), where (XO YO) roughly locates an obstacle.

OBLOC (OB) uses the model information about the location of object OB and the

routine LOBLOC to update (AT OB $* ) and (OAT OB $*



PICBUMED (X Y) is called when a bump occurs at (X Y). If Shakcy is in a. room or

known status , PICBUMPED calls PICLOC; otherwise it calls PICDETECTOB (X Y).

PICDETECTOB (X Y) uses LOBLOC to locate the object near (X Y). IC Shakey 

in a room or known status , and if OB is the nearest object , (AT OB $* ) and (DAT OB$*

are updated; otherwise a new object is entered in the model.

PICLOC uses the landmark routine (Appendix B) to update (AT ROBOT $* ), (OAT

ROBOT $* ), (THETA ROBOT $), and (DTHET A ROBOT $).

PICT TA updates (THETA ROBOT $) and (DTHETA ROBOT $). Intended to be

used before a long, straight-line journey, PICTHET A currently calls PICLOC. 

Additional material about Shake, s vision. s,stem was reported in. 110/.

Vision Programs ror Intermediate-Level Actions

The special-purpose vision programs basically perform only three functions: orienting and

locating the robot , detecting the presence of objects, and locating objects. We shall

consider each of these functions in turn.

\Vhen the environment of the robot is represented accurately and completely in the

model , the chief role of vision is to provide feedback to update the robot's position and

orientation. Angular orientation information is often needed in advance of a rela.tively

long trip down a corridor , where a small angular error might be significant. The simplest

way to obtain orientation feedback is to find the floor/wall boundary in the picture

project it onto the floor, and compare this result with the known wall location in the

model; any observed angular discrepancy can be used to correct the stored value or the

robot' s orientation.

For maneuvers such as going through a doorway, both the robot' s position and orientation

must be accurately known. This information can be obtained from a picture of a known

From /11/, pages 51-54.



point and line on the floor. Such distinguished points and lines are called landmarks , and

include doorways , concave corners , and convex corners. The basic program for finding

such landmarks is described in Appendix B. The program has undergone several

refinements and improvements , and now works with the modcl described in Chapter

Three. Execution time is essentially the time required to pan , tilt , and turn on the

camera. * Concurrently, the accuracy is limited by mechanical factors to between 5 and 

percent in range and 5 degrees in angle. Increased accuracy, if needed , can be obtained by

improving the pan and tilt mechanism ror the camera.

Before t.he robot starts a straight-line journey, it may be desirable to check that the path

is indeed clear. A simple way to do this is to find the image of the path in the picture

and examine that trapezoidal-shaped region ror changes in brightness that might indicate

the presence of an obstructing object. This is a simple visual task , and a program

implementing it has been written. In its current form the program uses the Roberts-cross

operator t.o det.ect. brightness changes. When we first ran the program , we were surprised

to discover that at steep camera angles the texture in the tile noor can be detected and

give rise to false alarms. This is an instance or a major shortcoming or special-purpose

vision routines , namely, the failure of simple criteria to cope with the variety of

circumstances that can arise. This particular problem can be solved by requiring a certain

minimum run- length of gradient. However, shadows and renections can stil cause false

alarms , and the only solution to some or these problems is to do more thorough scene

analysis. * 

Since the camera , television control unit , and television transmitter draw a large amount of
power from the batteries , they are normally oCC. Approximately ten seconds is required Crom the
time these units are turned on to the time that a picture can be taken.

** 

From /10J, pages 41-49.





CHAPTER SEVEN 

STRIPS 

Sha.key used a planning s y s t e m  called STRIPS (an  acronym based o n  

S T a n  ford Research Ins t i tu te  Problem Solver) t o  cha in  together I L A s  t h a t  

would accomplish speci f ic  goals. STRIPS w a s  one  of  t h e  impor tan t  early 

, problem-soluing sys tems.  T h e  original version of t h i s  program is 

described in detail in a paper [IS]; a somewhat  modi f i ed  story appears in 

[19]. More recent hierarchical p lanning sys tems,  such a s  NOAH [SO] a n d  

SIPE [21], would n o w  be more  appropriate t h a n  STRIPS for robot 

planning.  T h e  following excerpt ia  a s u m m a r y  of  STRIPS t h a t  appeared 

in a paper and  a n  SRI AX Center  Technical  Note  [22] about learning and  

executing plans. 

Description 

Because STRIPS is basic to our discussion, let us briefly outline its operation. The 

primitive actions available to the robot vehicle are preceded in a set of action routines. 

For example, execution of the routine GOTHRU(Dl,Rl,R2) causes the robot vehicle 

act,ually to go through the doorway, Dl,  from room R l  to  room R2. The robot system 

keeps track of where the robot vehicle is and stores its other knowledge of the world in a 

model composed of well-formed formulas (wffs) in the predicate calculus. Thus, the 

system knows that there is a doorway Dl between rooms Rl  and R2 by the presence of 

(.he w f f  CONNECTSROOMS(D1 ,R2,R2) in the model. 

Tasks are given to the system in the form of predicate calculus wffs. To direct the robot 

t.o go t:o room R2, we pose for it the goal wff INROOM(ROBOT,R2). The planning 

system, STRIPS, then attempts to  find a sequence of primitive actions that would change 

the world in such a way that the goal wff is true in the correspondingly changed model. 

In order t.0 generate a plan of actions, STRIPS needs to know about the effects of these 

actions; that is, STRIPS must have a model of each action. The model actions are called 

operators and, just as the actions change the world, the operators transform one model 



into another. By applying a sequence or operators to the initial world model , STRIPS can

produce a sequence of models (representing hypothetical worlds) ultimately ending in a

model in which the goal wfr is true. Presumably the , execution of the sequence of actions

corresponding to these operators would change the world to accomplish the task.

Each STRIPS operator must be described in some convenient way. \Ve characterize each

operator in the repertoire by three entities: an add function delete function and a

precondition wff. The meanings of these entities are straightforward. An operator is

applicable t.o a given model only if its precondition wfr is satisfied in that model. The

effect of applying an (assumed applicable) operator to a given model is to delete from the

model all t.hose clauses specified by the delete function and to add to the model all those

clauses specified by the add function. Hence, the add and delete functions prescribe how

an operator t.ransrorms one state into another; the add and delete functions are defined

simply by lists or clauses that should be added and deleted.

\Vithin t.his basic framework STRIPS operates in a GPS- like manner (23). First , it tries to

est.ablish t.hat a goal wrr is satisfied by a model. (STRIPS uses the QA3 resolution-based

t.heorem prover (15) in its attempts to prove goal wrrs.) If the goal wrf cannot be proved

STRIPS selects a "relevant" operator that is likely to produce a model in which the goal

wfr is "more nearly" satisfied. In order to apply a selected operator, the precondition wff

or that operator must of course be satisfied: This precondition becomes a new subgoal

and the process is repeated. At some point we expect to find that the precondition of a

relevant operator is already satisfied in the current model. When this happens the

operator is applied; the initial model is transformed on the basis of the add and delete

funct.ions or the operator, and the model thus created is treated in effect as a new initial

model of the world.

To complete our re,.iew or STRIPS we must indicate how relevant operators are selected.

An operator is needed only if a subgoal cannot be proved from the wfrs defining a model.

In this case the operators are scanned to find one whose effects would allow the proof

attempt to continue. Specifically, STRIPS searches for an operator whose add Cunction

specifies clauses that would allow the proof to be successfully continued (if not completed).

\Vhen an add function is found whose clauses do in Cact permit an adequate continuation

of the proof, then the associated operator is declared relevant; moreover , the substitutions

used in the proof continuation serve to instantiate at least partially the arguments of the

operator. Typically, more than one relevant operator instance wil be Cound. Thus , the



ent ire STRIPS planning process takes the form oC a tree search so that the consequences

of considering different relevant operators can be explored. In summary, the "inner loop
of STRIPS works as follows:

(1) Sclect a subgoal and try to establish that it is true in the appropriate
model. If it is , go to Step 4. Otherwise

(2) Choose as a relevant operator one whose add function specifies clauses

that allow the incomplete proof of Step 1 to be continued.

(3) The appropriately instantiated precondition wrf of the selected operator
constitutes a new subgoal. Go to Step 

(4) If the subgoal is the main goal, terminate. Otherwise , create a new

model by applying the operator whose precondition is the subgoal just

established. Go to Step 

The final out.put of STRIPS , then, is a list of instantiated operators whose corresponding

act.ions will achieve the goal.

An Example

An understanding of STRIPS is greatly aided by an elementary example. The following

example considers the simple task of retching a box from an adjacent room. Let us

suppose that the initial state of the world is as shown below:

Room Rl Room R2

Door

OOXl
ROBOT

Door I
I D2 

Room R3



Initial Model

Mo: INROOM(ROBOT Rl)

CO NNECTS( D 1 , R 1 ,R2)

CONNECTS(D2 R2,R3)

BOX(BOXl)

INROOM(BOXl,R2)

(Vx Vy Vz)(CONNECTS(x,y, z) CONNECTS (x

y))

Goal wrr

Go: (3x) (BOX(x) 1\ INROOM(x Rl))

\Ve assume for this example that models can be transformed by two operators GOTHRU

and PUSHTHRU, having the descriptions given below. Each description specifies an

operator 8chema indexed by schema variables. We wil call schema variables parameter8

and denote them by strings beginning with lower-case letters. A particular member of an

. operator schema is obtained by instantiating all the parameters in its description to

const.ants. It is a straightforward matter to modify a resolution theorem prover to handle

wfCs cont.aining parameters (18), but for present purposes we need only know that the

modification ensures that each parameter can be bound only to one constant; hence , the

operator arguments (which may be parameters) can assume unique values. (In all of the

following we denote constants by strings beginning with capital letters and quantified

yariables by x , y, or z):

GOTHRU(d,rl,r2)

(Robot goes through Door d rrom Room rl into Room r2.

Precondition wrr

INROOM(ROBOT rl) 1\ CONNECTS(d r2)



Delete List

INROOM(ROBOT

Our convention here is to delete any clause containing
a predicate of the form INROOM(ROBOT $) for any value

of $.

Add List

INROOM(ROBOT ,r2)

PUSHTHRU(b, rl,r2)

(Robot pushes Object b through Door d from Room rl
into Room r2.

Precondition wrt

INROOM(b rl) 1\ INROOM(ROBOT rl) 1\ CONNECTS(d rl,r2)

Delete List

INROOM(ROBOT ,

INROOM(B,

Add List

INROOM(ROBOT r2)

INROOM(b r2).

\\'

hen STRIPS is given the problem it first attempts to prove the goal GO from the initial
ll0del Mo. This proof cannot be completed; however , were the model to contain other
clauses , such as INROOM(BOX1 Rl), the proof attempt could continue. STRIPS



det( rmines that the operator PUSHTHRU can provide the desired clause; in particular

he partial instance PUSHTHRU(BOXl RI) provides the wff INROOM(BOXl Rl).

The precondition a for this instance of PUSHTHRU is

: INROOM(BOXl rl)
A INROOM(ROBOT rl)
A CONNECTS(d,rl,Rl).

This precondition is set up as a subgoal and STRIPS tries to prove it from M

Alt.hough no proof ror can be found, STRIPS determines that if rl = R2 and d = Dl

then the prooC of could continue were the model to contain INROOM(ROBOT,R2).

Again STRIPS checks operators for one whose effects could continue the proof and settles

on the instance aOTHRU(d R2). Its precondition is the next subgoal , namely:

2: INROOM(ROBOT,r1)

A CO NNEqTS( d r 1 ,R2).

STRIPS is able to prove a rrom MO' using the substitutions rl 
= Rl and d= 01. It

therefore applies GOTHRU(Dl RI,R2) to M
O to

yield:

: INROOM(ROBOT,R2)

CONNECTS(D1 R2)

CONNECTS(D2 R3)

BOX(BOXI)

INROOM(BOXl R2)

('Ix Vy Vz)(CONNECTS(x, z) CONNECTS(x

y)).

Now STRIPS attempts to prove the subgoal a from the new model M I. The prooC 

successful with the instantiations rl = R2, d Dl. These substitutions yield the

operator instance PUSHTHRU(BOXl Rl), which applied to M
l yields



r-1 2: INROOM(ROBOT RI)
CONNECTS(OI ,RI ,R2)

CONNECTS(01 R3)

BOX(BOXl)

INROOM(BOXI ,Rl)

(Vx Vy Vz) (CONNECTS(x,

y)).

Next , STRIPS attempts to prove the original goal , GO' from M2. This attempt 

su(' cessful and the final operator sequence is

GOTHRU(Dl,Rl,R2)

PUSHTHRU(BOXI ,01 ,R2,Rl).

* From (22f, pages 11 of Technical Note.





CHAPTER EIGHT 

LEARNING AND EXECUTING PLANS 

O n c e  a plan t o  accomplish a goal h a s  been constructed, t h e  robot executive 

sys tem,  called PLANEX, executes it. I f  problems arise during execution,  

PLANEX m u s t  also decide h o w  t o  m o d i f y  t h e  plan it i s  executing or 

whether t o  construct a n e w  plan. T h e  Shakey  s y s t e m  also w a s  able t o  

learn  generalized versions o f  t h e  plans it constructed t h a t  could be used t o  

help accomplish subsequent tasks .  These  capabilities were described in a 

paper [22] and  summar i zed  in one  o f  t h e  Shakey  technical  reports [11]m 

T h e  following excerpt is f rom t h a t  report: 

A. Introduction 

The basic problem-solving system used by Shakey is STRIPS, a system that makes use of 

a combination of heuristic search and formal deductive techniques. However, STRIPS in 

its original form is limited to constructing a plan for solving a specific problem. In this 

section we describe new: 

(1) Procedures for constructing "generalized" plans that are applicable to a 

large family of problems (in addition to the specific problem that 

motivated the planning process). 

(2)  Methods for storing, selecting, and monitoring the use of generalized 

plans while a task is actually being carried out. 

The recently developed methods for storing and using generalized plans allow us: 

(1) To store a generalized plan as a sequence of, say, n parameterized 

operators. 

(2) To use as a single operator in a subsequent planning process many of 

the legal subsequences among the 2Â - 1 subsequences of the original 

sequence of n operators. 



(3) To identify for monitoring purposes exactly those effects of a selected

subsequence that are necessary for the success oC the new plan.

As a rough ilustration of the use of these capabilities , suppose that we already have a

gcncralized plan for closing a door and turning orf a light. We are now given the task of

just turning off some particular light. The methods to be described wil extract from the

original plan the appropriate subsequence of operators needed to turn off the light.

Suppose now that the s bsequence of operators, or subplan for turning off the light also

has the effect of leaving the robot pointing in a specified direction. If this effect is a 

legitimate side-effect-that is, if the successful execution of the plan does not require the

robot to be pointing in a specified direction-then the methods described wil identiry this

fact and the final robot orientation wil not be monitored during plan execution. Hence

the plan execution mechanism will not reject as "unsuccessful" an executi n that has

failed only in a detail irrelevant to the task at hand.

The processes for storing a generalized plan begin with the creation by STRIPS of a

generalized plan, or macro operator-that is, a sequence of n operators whose arguments

are parameters. During the creation of this plan, STRIPS performed proofs

demonstrating that each operator was in fact applicable at the time it was used. We

assume throughout this section the availabilty or both the STRIPS plan and certain

information about the structure of the proofs performed by STRIPS to generate the plan.

We also assume the availabilty of descriptions or each operator used in the plan. 

operator description consists of three things: precondition formula, which must be

provable from a model ir the operator is to be applied to that model; an add-list

speciCying clauses added to the model; and a delete function (represented as a list of

literals), which maps a set or clauses into a subset of itself that remains true aCtcr the

operator has been applied.

B. Storage or a Generalized Plan

\Ve store a generalized plan in the the form or a triangular table* as shown in figure 10.

The colJlmns of the table, with the exception or column 0, are labeled with the names of

the operators of the plan, in this example OP l' ... OP 4. For each column i , i = 1

, ...

, we

place in the top cell the add- list Ai of operator OPi. Going down the ith column , we place

The late John h1unson of the SRI Artificial Intelligence Center orz ginally suggested thz
tabular format.



- IA

- IA

- (A

D 4
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Figure 10: TYPICAL MACROP

in consecut.ive cells the portion or Ai that survives the application of subsequent operators.

This is indicat.ed by the delete function D i' i = 2, 3, 4 , that maps an add-list into the

subset of it.self remaining true aCter the application of OPi. (The delete function D
t of

OP 1 is applied to the model in which MACROP is applied , and not to any of the add-

lists.) Thus , cell (2, 1) contains D ), which is the portion oC t stil true aCter OP2 is
applied. Cell (3 1) contains D )) =D ), which is the subset. of A l that
sun'ives the application of both OP 2 and OP

\Ve can now interpret the content or the ith row of the table , excluding the first column.

Since each cell in the ith row (excluding the first) contains statements added by one or the

first i operators and not deleted by any of the first i operators , we see that the union or

the cells in the ith row (excluding the first cell) specified the add- list obtained by applying

in sequence OP l' ... i. We denote by A

, ..

i the add-list achieved by the first i

operators applied in sequence. The union of the cells in the bottom row or a triangle table

specified the add- list of the complete macro operator.



Let us now consider the first column of the triangle table , which we have so far ignored.

Loosely, the statements in row oC column zero are involved with the precondition

formula PC i+t of OPi+l. To be more specific , cell (i O) contains clauses needed to prove

i+l but not contained in A I, ... i. We wil call the set of clauses (axioms) used to prove

a formula the 8upport of that formula. The clauses in cell (i O) are thererore the portion

of the support or PCi+1 that 
was true in the initial state. (In Figure 10 , we have used the

not.at.ion PC "--A I, ..., i to indicate the contents or cell (i O).) The remaining part of the

support of PC i is supplied by applying in sequence OP l' ..., i. The ith row of the table

then, contains the complete support of the precondition of OP i+ I. It is convenient to flag

the clauses in row i that are the support of PCi+ I' and hereafter speak or marked clauses;

by const.ruct.ion, obviously, all clauses in column zero are marked.

c. Planning with Generalized Plans

1. General Approach

In the preceding section, we described the construction of triangle tables for storing

generalized plans. Now let us consider how a generalized plan wil be used by STRIPS

during a subsequent planning process.

The first thing to emphasize is that the ith row of a triangle table (excluding its first cell)

represents the add- list A l,...,i; an n-row table presents STRIPS with n alternative add-
lists , anyone of which can be used to reduce a difference encountered by STRIPS during

it.s normal planning process. STRIPS selects a particular add- list in the usual fashion by

testing the relevance or that add- list with respect to the difference currently being

considered. Suppose for a moment that STRIPS selects the ith add- list. A

,...

i' i 

Since t.his add- list is achieved by applying in sequence OP I ,... i' we wil obviously not
be int.erested in the application of OPi+l ,... OP n' and wil therefore not be interested in

establishing any of the preconditions PC i+I'''. Now in general , some steps of a plan

are needed only to establish preconditions for subsequent steps. If we lose interest in the

tail of a plan-that is, in the last (n - i) operators-then we may be able to achieve some

economies by omitting those operators among the first i whose sale purpose is to establish

preconditions for the tail. Concept,ually, then , we can think of a single triangle table as

representing a family of generalized operators. Upon the selection by STRIPS of a

relevant add- list , we must extract from this family an economical parameterized operator
achieving the add-list. STRIPS must then be provided with a complete



description-precondition wCf, add- list , and delete function-of the extracted operator so
that it can be used during the planning process.

In the following paragraphs , we wil explain by means of an example aD algorithm for

accomplishing this task of operator extraction.

2. The Operator Extraction Algorithm

Consider t.he illustrative triangle table shown in Figure 11. Each or the numbers within

cells represents a single clause. The circled clauses are "marked" in the sense described

earlier; that is , they are used to prove the precondition of the operator whose name

appears on t.he same row. A summary of the structure of this plan is shown below , where

I" refers t.o t.he initial state and "F" to the final state:

Precondition Support Precondition Support

erator lied B lied To

7' F

6' F

Suppose now that STRIPS selects A l ,... 6 as the desired add-list and, in particular , selects

clause 16 and clause 25 as the particular members of the add-list that are relevant to

reducing the difference of immediate interest. These clauses have been marked on the

t.able with a dot. The operator extraction algorithm proceeds by examining the table 

determine what effects of individual operators are not needed to produce clauses 16 and

25. First , OP7 is obviously not needed; we can therefore remove all circle marks from row
, since those marks indicate the support of PC We now inspect the columns, beginning

with column 6 and going from right to left, to find the first column with no marks of
either kind. Column 4 is the first such column. The absence of marked clauses in column



4 means that the clauses added by OP 4 are not needed to reduce t.he difference and are

not required to prove the precondition of any subsequent operator; hence we delete OP 

from the plan and unmark all clauses in row 3. Continuing our right- to-Ieft scan of the

columns , we note that column 3 contains no marked clauses. (Recall that we have already

unmarked clause 18. We therefore delete OP3 from the plan and unmark all clauses in

row 2. Continuing the scan, we note that column 1 cont ins no marked entries (we have

already unmarked clause 11), and therefore delete OP 1 and the marked entries in row o.

11,

0). 15.
19.

19.

21.

21,

TA-8973-

Figure 11: MACROP WITH MARKED CLAUSES



The result or the table-editing process just described is shown in Figure 12. (The question

mark in cell (2 1) wil be explained momentarily.) A summary or the structure or this

plan is shown below:

TA-8973-

Figure 12: MACROP AFTER EDITING

Operator

Precondition Support

Supplied By

Precondition Support

Supplied To

OP 2

OP 5

OP 5,

We have thus reduced the seven-step generalized plan we started with to a compact three-
step plan that specifically produces an add- list containing the relevant clauses.

Now that an operator achieving a desired add-list has been extracted, we must provide

STRIPS with its description. The precondition wrr is obvious; it consists or the



conj unct.ion or all clauses in column o. The computation or the add- list and delete

function of t.he new operator is a little more complicat d. First , notice in Figure 11 that

clauses 14, 15 , and 16 are added by OP2. Clause 14 
is evidently deleted by OP3 since it

docs not appcar in cell (3.2). The extracted plan, however, does not include OP 3' and we
cannot tell whether clause 14 would survive the application of OPS or OP6 in the
extracted plan-hence the question mark in Figure 12. Furthermore , cell (3, 1) may

contain more clauses than shown. This example ilustrates the necessity of computing a

new add- list and delete function for the extracted operator.

The computation of a new add-list and delete function for a macro operator is based on

the add- lists and delete functions of the component operators. Suppose the macro

operator of Figure 12 is applied to some state Si (in which we assume that clauses 3, 7 , 8,

and 9 are true). Since STRIPS does deletions before additions, we can write the resulting

state S
f as:

f = D i) + A ) + A ) + A

where we have used u " to mean set union. Now it is not difficult to show that delete

functions distribute over set union, that is, to show for any set A and B and any delete

function D that

D(A + B) D(A) + D(B)

Hence, we can write the final state S
r as:

f = D i) + D ) + D ) + A

Since this has the form Sr = D(S ) + A , we see that the delete function of the macro

operator is the composed (unction

and that its add- list is

) + D ) + A



It is interesting to note that this add- list is precisely the last row or the triangle table

constructed as described in the previous section , the plan OP 2. OPS' OP 6. 
In general , we

can say that the add- list or a macro operator is given by the last row of its triangle table

representation , and that its delete function is given by the composition of the component

delcte functions.

3. Refinements

In the previous paragraphs, we outlined an algorithm for extracting from a generalized

plan a subsequence of operators that add particular clauses to a model. We would now

like to describe two refinements: one needed to avoid certain inconsist.encies that could

otherwise occur , and one for achieving further economies when more than one level or

t.riangle tables are involved.

&. Add-List Refinement

Consider a simple generalized plan consisting of two consecutive PUSH operators , each of

which pushes a (parameterized) object to a (parameterized) place. The triangle table for

this plan might be as shown in Figure 13 where for simplicity we have assumed that the

PUSH operator has no precondition and hence column 0 is empty. Because the clause

A T( 081 ,PI ) appears in cell (2 1), we know that this clause was not deleted by the second

push operator. Suppose now that STRIPS selects row 2 as an add-list. By instantiating

081 and OB2 to the same object name, and instantiating PI and P2 to distinct locations

we evidently have a plan for achieving a state in which the same object is simultaneously

at two different places! The source of this embarrassment lies in the delete mechanism

used by STRIPS , which we now examine in some detail.



PUSH (081 . PH

AT C081, P1) PUSH (082. P2)

AT (081 , PU AT (082, P2)
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Figure 13: GENERALIZED PLAN FOR TWO-PUSH MACROP

The delete function of an arbitrary STRIPS operator is specified by a delete- list consisting

or a set of literals. If the operator is applied to a state S , then STRIPS deletes rrom S

every clause containing a literal unifying (without regard to sign) with any member or the

delete-list. If a potential unification involves parameters, as it orten does , then the
unification can be made only ir it does not contradict any existing bindings or the

parameters to constants. To continue our example , suppose the second push operator is

applied to the parameterized state 

AT(OB1, PI)

AT(OB2, P3).

The delete- list of the second push operator, we assume, contains the single literal

AT(OB2, $), where U$" unified with anYthing. If there were no existing bindings of

parameters to constants, then both clauses in S would be deleted. From figue 13 , to the
contrary, we see that AT(OBI , PI) was not deleted; hence , it must have been the case

that OBI and OB2 represented distinct objects in the unparameterized problem ror which

the plan was originally created. If in a subsequent attempt to use this plan we set OBI 
OB2 , then we are violating the constraint responsible ror the occurrence or AT(OBI, PI)



in the final state. Accordingly, we replace the entry in cell (2 1) of Figure 13 by the new

entry:

(OAI :1 082) :) AT(OB1 Pl)

By t.hi means we indicat.e t.hat row 2, and cell (2,1) in particular , produces the litcral

AT( on 1, PI) only under the condition that OBI and OB2 are not instantiated to the
same const.ant.

The prcyious cxample ilustrates how a literal can be allowed to survive the application of
a dclet.(' funct.ion only under some condition of the bindings of its argumcnts. 

introduced this notion in the context of maintaining the validity of a triangle table, but it
is more broadly applicable within the general framework of STRIPS. Although it is an
enlargement on our main theme or storing and using generalized plans , let us briefly

consider how the notion of conditional 8urvival of a literal can be exploited.

During the planning process , STRIPS frequently permits a delete function to delete true

clauses from a state description. To overcome this tendency toward excessive deletions

we make use of the notion of conditional survival as defined by the following algorithm.

Let L(PI) be a literal in a parameterized state description , and suppose that the deletion
of the clause containing this literal depends on binding parameter PI to another
parameter P2. Then:

If PI or P2 has no constant binding then replace L(Pl) by PI :F P2 :)
L( PI). (I n "standard" STRIPS this clause would sim ply be dclet.ed.

If PI and P2 both represent the same constant in the original problem
then delet.e the clause containing L(PI). (This is what STRIPS does as a
standard operation.) In the appropriate cell of the triangle table , place PI

:1 P2 :) L(PI). (This generalizes the triangle table beyond the planning

states used by STRIPS.) If PI and P2 represent distinct constants in the
original problem , then replace L(Pl) by PI :F P2 :) L(PI). (This is the
case ilustrated by our previous example.

We should note that the inclusion in a table of such clauses as, say, PI :F P2 :) L(Pl)
leads to certain complications. Suppose , in a subsequent problem, that STRIPS uses such

a clause in the proof of some precondition. Often, the proof wil produce the unit clause



PI = P2. In this case , we consider the proof completed by assuming PI 7' P2 (providing

the assumpt.ion contradicts no existing bindings). However , we must record this

sullption by placing PI 7' P2 in column 0 of the table being constructed; it is , after all

now a hypot.hesis of t. lle theorem. Moreover , all subsequent. proors in the new plan must

not violat.e this hypothesis. As a bookkeeping procedure, we can conjoin the assumption

(viz. , PI 7' P2) to cach new precondition that STRIPS attempts to prove; this has the

efrect of prevcnting violations of our assumption.

b. Relaxing Preconditions in Nested Tables

Consider t.he situation shown in Figures 14(a) and (b), where we have shown a macro

operator 10P whose ith operator is itself the macro operator OPi. As always, 
cell (i, i) of

IOP cont.ains the complete add-list of OP i' while the marked entries of Row (i - I)

const.itut.e t.he support of the proor of the preconditions or OPi. During the planning
process , suppose STRIPS selects from one or the rows of MOP certain clauses it would like

to add to the current state or the world. Suppose further that some , but not all , or the

clauses in cell (i, i) of Figure 14(a) are marked. We can therefore mark in Figure 14(b)

those ' clauses in Ai that are needed, and exercise the operator extraction algorithm on

table OPi' As 
we saw earlier, this wil at times result in the deletion or some or the

clauses from PC i' Suppose , then, that some of the clauses of PCi are in fact deleted by
the operator extraction algorithm. This raises the possibilty or deleting some of the

clauses in the support or PC i since they now need to support only a weaker theorem. 
the support of PC i can be weakened-that is , if some of the clauses in row (i - I) can 

unma.rked-than in general we may be able to delete more steps from 10P and/or obtain

weaker , more easily established, preconditions for MOP.

In order for this scheme or precondition relaxation to be feasible , we necd an economical

solut.ion to the following abstractly stated problem: Given that a set of clauses C l' ".,

implies a theorem T ... nT m' which C s can be deleted from the prcmises if a selected

subset. or the T s are deleted from the theorem? Fortunately, it is possible to solve this

problem by appropriately labeling literals during the refutation proof of the theorem. 

will not elaborate here on the details of this bookkeeping procedure. In terms of the

example of Figures 14(a) and (b) the important point is that the bookkeeping need be

done only once, namely, when PC i is shown to be a consequence of its support.

Thereafter , it is a straightforward matter to compute , without recourse to theorem

proving, the appropriate relaxation of the support of PC i given a relaxation of PC i itself.
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The ability to relax preconditions leads to an obvious refinement or the operator

extraction algorithm described earlier. Previously, we unmarked clauses only w hen a

component operator was deleted from a macro operator, in which case the entire support

of the precondition or that operator was unmarked. Now we can also unmark a subset of

the support of a component operator still retained in the macro operator. Finally, we

remark that although Figure 14 shows only two levels of tables , the procedure for relaxing

preconditions can be implemented recursively; hence; nested tables to arbitrary depth can

be rcadily processed.

D. Monitoring the Execution ot Plaos

In this section we outline an algorithm for using triangle tables to monitor the real-world

execution or gcneralized plans. An important feature or the algorithm is that it monitors

only those cffccts of operators , and only those aspects of the world, relevant to the

problem solut.ion. Additionally, the algorithm embodies a modest replanning capacity in

the form of an ability to reinstantiate parameters or operators.

The plan execut.ion algorithm rests on the observation that a triangle table contains

complet.e information about the internal structure or the plan it represents. More

specifica.lly, a triangle table specifies exactly what each operator accomplishes in terms of

providing support ror the preconditions of subsequent operators or the goal statement.

Equivalently, a triangle table also specifies the conditions that must obtain in order for a

component operator to be applicable. * The plan execution algorithm to be described uses

this information in a straight-forward manner.

Important information about the internal structure or a plan is embodied in the kernels 

a triangle table. The ith kernel of a triangle table for an n-step plan is the largest

rectangular subarray containing cells (n,O) and cell (i- i-I). In Figure 10 , by way of an

example , we have outlined the second kernel or MACROP. The importance of the ith

kernel stems from the fact that it contains the support or the preconditions for the tail of

the plan-t.hat. is, the the operator sequence OP i ,.. OP n ' This should be clear , since row

j of the ith kernel contains that portion or the support or PC
j+l that must already be

true when OPi is executed. To continue with the example or Figure 10 , cells (2 0) and

Strictly speaking, a triangle table specifies the support Cor the particular proof of a precondition

found by STRIPS. In general , there are many possible supports Cor a given precondition , but we
would not expect a plan execution algorithm to be cognizant oC them.



(2. l) cont.ain those axioms in PC3 that are 
presumably true before OP 2 is cxecuted. 

any of the e axioms are Calse , then even perfect execution of OP 2 wil not result in a state
in which OP3 is applicable. Roughly speaking, then , a reasonable plan execution

a.lgorithm should find the highest indexed kernel with all true entries and execute the

corresponding component operator.

Such an algorithm would reflect the heuristic that it is best to exccute the " legal"

operat.or least rcmoved from the goal.

An import.ant refinement of the rough execution algorithm outlincd above can be obtained

hy not.i ng that the ith kernel contains in general not only those clauses supporting proofs

of precondit.ions but many additional clauses as well. These additional clauses are

irrelevant to the problem at hand, and we would certainly want our execution algorithm

t.o ignore them. The identification of relevant clauses is easily accomplished using the

operator extraction algorithm previously described. The final row or the table

representing a plan to be executed contains the support of the goal formula, and the

support.ing clauses are marked as before. The operator extraction algorithm then

produces a new operator for achieving those clauses. (We dispense with the computation

of precondit.ion formula, add-list , and delete function.) Typically, but not necessarily, all

the component operators wil be retained. More importantly, only some or the table

entries wil be marked, and these are the only portions of the kernels that need be

monitorr.d.

The t.ask of finding an efficient algorithm for finding the "highest true kernel" that is

t.he highest. indexed kernel with all marked clauses true-is of some interest in itself. Our

algorit.hm for Cinding the highest true kernel involves a cell-by-cell scan of the triangle

table. Each cell examined is evaluated as either True (i.e. , all the marked clauses are true

in t.he current model) or False. The interest of the algorithm stems from the order in

which cells are examined. Let us call a kernel "potentially true" at some stage in the scaD

if all evaluated cells of the kernel are true. The scan algorithm can then be succinctly

stated as:

Among all unevaluated cells in the highest-indexed potentially true

kernel , evaluate the left-most. Break " left-most ties" arbitrarily.

The reader call verify that , roughly speaking, this table-scanning rule results in a left-to-

right , bottom-to-top scan of the table. However , the table is never scanned to the right 



any cell already evaluated as false. An equivalent statement or the algorithm is "Among

all unevaluated cells , evaluate the cell common to the largest number of potentially true

kernels. Break ties arbitrarily." We conjecture that this scanning algorithm is optimal in

the sense that it evaluates, on the average , rewer cells than any other scan guaranteed

always t.o find the highest true kernel. A proof of this conjecture has not been found.

The plan execution algorithm described above is embodied in a computer program named

PLANEX (24). When PLANEX is called to execute a table, it executes the comp nent

operator associated with the highest true kernel. Typically, but not necessarily, this will

be OP 1. \Vhen OP 1 completes its action, PLANEX rescans the table to find the highest

current.ly true kernel. Typically, but not necessarily, this wil be Kernel 2 , in which case

OP 2 is executed, and so forth, until the goal kernel is reached. We emphasize, however

that after each operator execution PLANEX may either call an earlier operator (perhaps

to rectify an error) or skip to a later operator (perhaps a stroke of luck rendered some

operat.ors unnecessary). Furthermore, many arguments or predicates in the table are

parameters; PLANEX is free to instantiate these parameters in order to find a true

inst.ance of the predicate. Thus , PLANEX is really searching for the highest-indexed

kernel an inst.ance of which is satisfied by the current state of the world. This abilty of

PLANEX t.o instantiate-and reinstantiate-arguments provides a modest replanning

capacity. If the turn of world events produces a situation in which a solution has the

same form as a tail of the original plan, PLANEX will find it. If no tail of the plan is

applicable, t.hen no kernel will be true, and PLANEX returns control to STRIPS to

replan. *

* From fll1, pages 55- 73.



CHAPTER NINE 

Experiments W i t h  Shakey 

In this final chapter we illustrate the  capabilities described so far by 

giving Shakey some specific tasks .  The material reprinted below ( from 

[Ill]) i s  a description of planned experiments tha t  were later carried out 

and recorded i n  a f i lm and videotape available from SRI [25]. 

Experiments 

In tohis section we shall describe some experiments now being planned that will illustrate 

several features of tohe robot system, which we call, informally, "Shakey." Specifically 

these will show how Shakey generates a plan to  perform a task, and how it then uses part 

of this plan later as a component of a plan for performing another task. Saving plans for 

later use might be regarded as a form of learning. The experiments also show how the 

various levels in Shakey's hierarchical control structure function to enable Shakey to 

recover gracefully from several kinds of unexpected failures. 

1. Shakey's World and Model 

We must. first describe the environment in which Shakey operates and Shakey's model of 

this environment. In Figure 15, we show a floor plan of some rooms and doorways in 

which our experiments with Shakey will be conducted. We can place several large boxes 

and wedge-shaped objects in these rooms; three boxes are depicted in room RCLK of 

Figure [Is]. Initially Shakey is in room RUNI. The doorways all have mnemonic names 

inclicatJi ng the rooms they connect; e.g., DMYSPDP connects RMYS and RPDP. Shakey 's 

model of this environment is represented by a set of formulas or axioms in the first-order 

predicate calculus. The rooms, doorways, boxes, walls, and other entities occur as terms 

in formulas that describe important properties of the environment. The axiom model 

representing the environment for the planned experiments is listed in Table 6. The room 

names are mnemomics for properties of the physical environment: 



RHAL Hallway

RRIL = Rila s office

RCLK = Room with the clock on the wall

RRAM = Room with ramp to hallway

RPDT = PDP l0 room

RUNI Unimate room

RMYS Mystery room, i.e. , room with unknown contents.

The meanings of most of the predicate symbols are obvious. AT gives coordinate location

informat.ion referenced to the coordinate system of Figue 15. DAT gives information

about the probable error in this coordinate information. The RADIUS predicate is used

to give rough size information. THETA and DTHET A give information about Shakey

heading and probable heading error, respectively. The UNBLOCKED predicate tells

which doorways are unblocked (i.e. , free of obstructing objects such as boxes). The

predicate ROOMSTATUS is used to tell whether the contents or a room are known or

unknown. The model listed in Table 6 indicates that the contents or all rooms are

assumed to be known except for RMYS. By this we mean that Shakey knows that he wil

never encounter any new objects except perhaps in RMYS. This knowledge is used to

guide certain picture-taking behavior, as we shall see later. The LANDMARKS predicate

gives the locations or various landmarks such as corners and doorjambs that Shakey can

take pictures of to update its position. The axioms at the end of the model in Table 6

(beginning with the predicate WHISKERS) give information about the status of various

lower- level motor and sensing activities, e. , the status of the catwhisker switches and

camera control settings. (These were explained in Chapter Four.

Altoget.her t.here are 170 axioms in the model initially, which makes this model quite large

in comparison with those used by any previous automatic problem-solving systems.

2. Shakey s Action Repertoire

In order to perform the tasks described below , Shakey has available a repertoire or ILAs.

(The operation or these ILAs is described in Chapter Five.) The problem-solving system,

STRIPS , must be aware of the properties of the available ILAs. Therefore each ILA is

represented for STRIPS by an operator with specified preconditions and effects. These

operators and their descriptions are given in Table 7 using the add and delete lists

employed by STRIPS.
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AT(ROBO , 7 ,

DAT(ROBOT , 0.
INROOM( ROBO , RUN I)

AT( BOXO , 34 32)
INROM( BOO RCLK)

AT(BOX1 22)
INRO( BOl RCLK)

AT( BOX2 , 26. 27)
INROO( BOX2 , RCLK)

SHAPE( BOXO , BOX)

SHAPE( BOX 1 , BOX)

SHAPE( BOX2 , BOX)

RADIUS( BOO , 1.
RADIUS( BOl , 1 .

RADIUS( BOX2 , 1 .
DAT( BOX 0 , 0.

DAT( BOX 1 , 0 .

DAT(BOX2 , 0 .
THrfA( ROBO , -90)
MHrfA( ROBO , 1)
PUSHABL( BO 1)
PUSHABL( BOX2)

UYLOED( DRAIlL , RHAL)

UNBLED( DRAMHL, RRAM)
UNBL( DCRIL , RRIL)
UN BLED ( DCRIL, RCLK)

UNBLED( DRACL , RCLK)

UNBLOED ( DRAMCL , RRA)
UNBLOED( DMYSRA , RlS)
UNBED ( DMSRA , RRA)
tJBLED( DMSCL , RCLK)

UNBLOCED( DMCLK , RMS)
UNBL( OPOPC , RCLK)

UHBLD( DPDPCLK , RPDP)

UNLOED( DMPDP , RPDP)
UNBLOCED( DMYSPDP , RMYS)

UNBLOCD( DUN IIIS , RMYS)

UNBLOED( DUN IIIS , RUt)
BONDSROC( FSRA RR SOU)
BONDS RO ( FER RR EAST)
BONDROO( FW RRAM WET)
BONDSRO(FNCL RCLK NORT)
BOUNDSROO( FSCL RCL SOOH)
BOUNDSROO( FECLK RCL EAST)
BONDROO( FWCL RCL WEST)

BOUNDRO( FN RMS NORT)
BONDSROM( FSIIS RMYS SOTH)
BOS RO ( FDlS RM EAST)

BONDSROOM( FWYS RMS WEST)

BOUNDSROO( FNDP RPDP NORT)
BONDSROO( FSPDP RPDP SOUTH)
BONDRO( FEPDP RPDP EA)
BONDSRoa( FWDP RPDP WEST)
BONDROO( FNU I RUNI NORTH)
BONDSRO(FSUNI RUN I scxrnl)
BODSROO( FEU I RUN I EAST)
BOUNDS RO ( FWN I RUN I WET)
FACELO(FNHL 50.
FACEL( FSIIL 35.
FACEL(FEHL 18. 200000)
FACEL( FWL 11.200000)
FACEL( FNRIL 49.

Table 8: AXIOM MODEL



FACEL(FSRIL 35. 400000)
FACEL( FERIL 36. 800000)
FA CELO ( FWRIL 18. 799998)
FACELO(FNRAM 35.
FACEL( FSRAM 24.
FACELOC(FERAM 18. 200000)
FACEL(FWM 0.
FACEL( FNCLK 35.
FACEL(FSCLK 15. 200000)
FACELO( FECL 36. 800000)
FACELO( FWCL 18 . 599997)
FACEL( FNMYS 23. 599997)
FACELOC(FSMYS 7.6000000)
FACEL( FEMYS 18. 200000)
FACEL(FWMYS 0.
FACEL( FNPDP 14.799998)
FACELC(FSPDP 8. 2000000)
FACELO(FEPDP 36. 800000)
FACEL(FWDP 18.600000)
FACEL(FNUNI 7. 1999999)
FACEL(FSUNI 2. 199999
FACEL(FEUNI 17. 200000)
FACEL(nl1NI 0.
JOINSROO(DRAL RRAM RHL)
JOINSR (DHAMCLK RRAM RCLK)

JOINSROMS(DCLKRIL RCLK RRIL)
JOINSROOS(DRAL RHAL RHAM)
JOINSROOMS(DHAMCL RCLK RRM)
JOINSRQ(DCRIL RRIL RCLK)
TYE( BOXl OBJECI)

TVPE( BOX2 OBJECI)
TVPE( BOO OBJEC)
TVPE( RHL Roa)
TVPE(RRIL RO)
TVPE( RHAM ROOM)

TVPE( RCL RO)
TVPE( RMYS RO)
TYE( RPDP ROO)
TVPE( RUNI ROO)
TYE( DRAL DOR)
TYE( DHAMCLK DOR)
TYE(DCLKRIL DOR)
TVPE(DMYSRA DOR)
TYE(DMYSCLK DO)
TVPE( DMYSPDP DOR)
TVPE( DPDPCLK DOR)
TVPE(DUNIMY DO)
BONDSRoa(FNHLL RHL NOR')
BONDROO( FSHAL RHL SOUT)
BONDSROO( FERL RHL EAST)

BONDS ROO ( n1fL RHL "'ET)
BONDSROO( FNRIL RRIL NORTH)

BONDS ROO ( FSRIL RRIL SOL

BONDSROO(FERIL RRIL EAST)

BONDSROU" "RIL RRIL WEST)

BQNDSROC( FNRA RRM NORT)
JOINSROOMS( DMSRA RNYS RRM)
JOINSROOMS(DMYSCLK RMYS RCL)
JOINSROOMS(DMYSPDP RMS RPDP)

JOINSROO(DPDPCLK RPDP RCL)
JOINSROOS(DUNIMYS RUNI RMS)
JOINSFACES( DRAL FNRAM FSHAL)

JOINSFACES(DRACLK FERM FWCLK)

TABLE: 6 , continued



JOINSFACES(DCLKRIL FNCLK FSRIL)
JOINSFACES(DMYSRAM FNMS FSRA)
JOINSFACES(DMYSCLK FEMYS FWCLK)

JOINSFACES( DMYSPDP FEMYS FWPDP)

JOINSFACES(DPDPCLK FNPDP FSCL)
JOINSFACES(DUNIJIYS FNUNI FSMYS)

DORLS(DRAL 11.200000 18. 200000)
DORLOS(DRACL 26.799998 32.
DORLS(DCLXRIL 21. 700000 24.799998)
DORLS(DMYSRA 10.0 15.200000)
DORLS (DMYSCLX 16. 200000 20.799998)
DORL(DMYSRDP 9.7000000 14. 799998)

DORLS(DPDPC 25.799998 30.799998)
DORLS(DUNIMYS 10. 799998 16.
ROCA'IS( RHL KNOWN)

RoaTA'nS( RRIL KNOWN)

ROSTA'IS( KR KNOWN)

ROTA'IS( RCL KNOWN)

ROA'IS( AMS UNOWN)
ROA'IS( RPDP KNOWN)
ROA'IS( RUN I KNOWN)
LANDRX(RHL (COORD (4. 11.20000 35. 5 0.

)))

LANDMARJ( RRIL
(CORD (4. 21.700000 35.400000 -1.

(3. 24.799998 35.400000 -1.
(2. 18 79999 49.0 4.
(2. 36.80000 49 0 3.

(2. 36.80000 35.400000 2.
(2. 18.799998 35 400000 1.

)))

LANDRJ( RMN
(CORDS (4. 18.200000 26 799998 0.

(3. 18.200000 32.0 0.
(1. 11.200000 35. 5 2.
(4. 10.0 24.0 -1.)
(3. 15.200000 24.0 -1.
(2. 0.0 35.5 4.

(2. 18.200000 24.0 2.
(2. 0.0 24.0 1.

)))

JOINSRO(DMYSRA KR JUS)
JOINSRO(DMYSCLI RC DlS)
JOINSROMS(DMYPDP RPP RJS)
JOINSROMS(DPDPC RPDP RCL)
JOINSROS( DUNIJlS RUI RJ)
LANDRK ( 

(COORD (4. 24.79999835.0 -1.
(3. 21.700000 35.0 -1.
(4. 25.799998 15.200000 -1.
(3. 30.799998 15.200000 -1.
(4. 18.599997 20.799998 0.
(3. 18. 599997 16 200000 0.

(4. 18.599997 32.0 0.
(3. 18.599997 26.799998 0.
(2. 18.599997 35.0 4.
(2. 36.800000 35.0 3.
(1. 36.800000 15.200000 2.
(2. 18.599997 15.200000 1.

)))

LANDRK ( RMS
(CORD (4.

(4.
(3.
(4.
(3.

18 .200000 9.7000000 4.
18. 200000 14. 799998 1.
18.200000 16.200000 0.
18. 200000 20.799998 0.
15 .20000 3 .599997 -1.

10.0 23.599997 -1.

TABLE 6 , continued



(4. 10.7999987.6000000 -1.
(3. 16.000000 7 6000000 -1.

(2. 023. 5999974
(2. 18.200000 23. 599997 3.
(2. 18.200000 7 6000000 2.
(2. 0 7.bOOOOOO 1.

)))

LARKS ( RPDP

(CORDS (4.
(3.
(4.
(3.
(2.
( 2.

30.799998 14.799998 -1.
25.799998 14 799998 -1.

18.200000 14.799998 -1.
18.600000 9.7000000 0.
36. 800000 14. 799998 3.
36. 800000 8.2000000 2.

)))

LAMARKS ( Rt
( CooRDS (4. 16.000000 7. 1999999 -1.

(3. 10.799998 7. 1999999 -1.
(2. 16.0 7. 1999999 3.

(2. 17.200000 2. 1999998 2.
(2. 0.0 2. 1999998 1.

)))

WHIsKERS(ROBO ,
IRIs(ROBOT , 1)
OVERIDE(ROBO ,
RAGE(ROBO , 30)
TVDE(ROBO ,
FOS ( ROBOT , 30)

(ROBO ,
TILT(ROBO ,
DPAN(ROBO 12)
MILT(ROBO
DIRIs(ROBO ,
DFOS(ROBO ,
PICTRESAKE( ROBO , 0)
JUSTBUED( ROBO , NIL)

TABLE 6 , concluded



\Ve shall now describe the planned experiments that wil use the modt'l or Table 6 and the

operators shown in Table 7. The description wil be in terms of the expccted rcsults or

these experiment.s.

a. Task 1

Start.ing wit.h t.he configuration or Figure 15 (represented by the model in Table 6),

Shakey wil perform two tasks. Each of these tasks is stated in English and entered into

the system via teletype. The first task is stated as UUSE BOX 2 TO BLOCK DOOR

DPDPCLK FROM ROOM RCLK." This statement is converted by the English language

syst.em ENGROB (26) to a goal expressed by a well-formed rormula (wff) of the first-order

predicate calculus: BLOCKED(DPDPCLK,RCLK,BOX2). The STRIPS problem-solving

system is t.hen called to compose a sequence of operators whose execution wil create a

world model in which this goal wrr is true. In terms of the operators in Table 7 we can

show that the following sequence would solve this problem:

GOT02(DUNIMYS),GOTHRUDR(DUNIMYS,RUNI,RMYS ),

GOT02(DMYSCLK),

GOTHRUD R(D MYSCLK RMYS RCLK),

BLOCK(D PD PCLK ,RCLK BOX2)

Rather than generating this specific solution, STRIPS generates a generalized plan that

involves going rrom an arbitrary initial room through an intermediate room , and into a

third room and then blocking a doorway in the third room. The rooms , doorways , and

blocking object in this generalized plan are represented by parameter.lJ. The generalized

plan is thus a subroutine whose arguments are the parameters. These arguments are

bound to specific constants only when the plan is executed. The value or the generalized

subroutine is that it can be stored away (or "learned") and then used again in other

sit.uations perhaps as part or a plan (or a more complex task.



BLOCK ( DX . R.'\ , BX)

Precondi t ions:

INROOM( ROBO , R.'\) " INROOM( BoX , R.'\)

" PUSHABLE( BoX) " UNBLOCKED( DX , RX)

/\ 

(3RY)JOINSROOS(DX , RX , RY)

Delete List:

AT (ROBOT , $2)
AT(ax, S2)
UNBLOCKED( DX , RX)

NEXTTO( ROBOT , S 1 )

NEXTTO( 8.'\ , S 1 )

NEXTTO(Sl 8.,\)

Add List:

- BLOKE ( DX , R.X , 8.X)

NEXTTO( ROBO , ax)

Blocks door DX with an object ax by pushing BX to a place in room RX directly in

front of door DX.

UNBLOK (DX , RX . ax)

Precond i ti ons :

BLKED ( DX , RX , 8."\) /\ INRO( ROBOT , RX) " PUSHABLE( ax)

Delete List:

AT(ROBO , $2)
BLKE( DX , RX , ax)
AT(BX S2)
NEXTTO( ROBOT , S 1)

NEXO( ax , S 1)
NEXTTO( S 1 , BX)

Add List:

-UNLOCKE ( DX , RX)

NEXO(ROBO , ax)

Unblocks door DX by pushing object ax away from its place in room RX directly in

front of door DX.

GORUDR ( DX , R.X . RY)

Precondi t ions:

NEXTTO(ROBOT ,DX) " INROOCROBO , R.X)

/\ JOINSROOMSCDX RY) " UNBLOKE(DX RX)

" L'NLOCKE( DX , RY)

Delete List:

AT(ROBO , 52)
NEX'MO( ROBO , $1)
INROO( ROBO , $1 )

Table 7: STRIPS OPERATORS



Add List:

* INROOM( ROBOT , RY)

NEXTT( ROBO , DX)

Takes Shnkey through door DX from room RX into roomRY.

002( 

Precondi tions :

(3R) (INRY(ROBO R.'U 1\ INROOM(X RX))
" (:iRX RY) (INRO(ROBO RX)
1\ JOI:iSROMS(X RY) 1\ UNBLOCKE(X RX))

Delete List:

AT( ROBO , 52)
NEXO( ROBO , 51)

Add List:

*NEO( ROBO ,

Takes Shakey from any point in a room to a location next to any object or doorway, X

1n the same room. (Shakey w111 nav1gate around obstacles that might be 1n the way of
a direct pnth.

PUSH(OB, , Y)

Precond1 t1ons:

(:lRX) (INRM(ROBO , RX) 

INROM(OB RX) 1\ LOINROM(X , Y , RX))
1\ PUSHABLE( OB)

Delete List:

AT(ROBO , $1, $2)
NETlO( ROBO , $1)
AT(OB S2)

(OB Sl)
NEXT1( S 1 , OB)

Add L1st:

*AT(OB , Y)

NE( ROBO , OB)

Pushes object OB from one po1nt in a room to a coordinate location (X , Y) in the same room.
(Shakey must initially be in the same room as OB and (X Y), but w111 push OB around obstacles

that might be in the way of a direct path.

NAVTO(X , Y)

Precondi tions:

C!RX) (INROM(ROBOT , RX)

1\ LOINROM(X , Y , RX))

TABLE 7 , continued



Delete List:

AT( ROBO , $1 , $2)
NEXTTO( ROBOT , $1)

Add List:

.AT( ROBO , , Y)

Takes Shakey from any point in a room to the coordinate location (X Y) in the same room.

(Shakey wi 11 navigate around obstacles that might be in the way of a direct path.

POINT( DIRECTION)

Precond it ions:

none

Delete List:

THETA(ROBOT , $1)

Add List:

*THETA(ROBO , DIRECTION)

Turns Shakey so that its heading is DIRECTION.

PUSH3(OB

Precondi tions:

PUSHABLE(OB) A 3(RX)(INRO(ROBO RX) " INROO(OB RX)

'" (INRO(X RX) V 3(RY)JOINSRO(X , RX RY)))

Delete List:

AT(ROBOT , $2)
NE( ROBO , $1)
AT(OB $2)
NE0( OS , $1 )

NETI: $1 , OS)

Add List:

.NEXTO( OS ,
NEX( ROBO ,OB)

Pushes object OB from one point in a room to a location next to any object or doorway X

in the same room. (Shakey will push OS around obstacles that might be in the way of a
direct path.

Note: An asterisk(.) in front of an add-list clause indicates that this clause is one of
the "primary effects" of the operator.

TABLE 7, concluded**

* *

From fll1, pages 18-15.



The task in question elicits the following generalized plan from STRIPS:

GOT02(P AR6),GOTHRUDR(P AR6 P AR7 ,PARS

GOTO(P AR4),GOTHRUDR(P AR4 P ARS P AR2),

BLOCK(P AR 1 ,P AR2,P AR3)

This plan is stored away as the macro operator:

MACROPl(P AR3 P ARI ,P AR2 P AR4 P AR5 P AR7 ,P AR6)

STRIPS creates a triangle table representation of MACROPI. This table compactly

stores information vital to monitoring the execution of MACROPI and inrormation

needed to use MACROPI (or parts or it) as a component of a future plan. \Ve show this

triangle table representation of MACROPI in Table 8* and rerer the reader to Chapter

Eight for a discussion or triangle tables and their uses.

After the creation of the triangle table representation or MACROP1, STRIPS prepares a

version of it that wil solve the given task , namely, to "Use BOX2 to block door DPDCLK

from room RCLK." This version is obtained from MACROPI by replacing those

parameters standing for constants in the goal wff by those constants. That is , in this

case , we replace PARI by DPDPCLK, P AR2 by RCLK , and P AR3 by BOX2 throughout

the MACROPI triangle table. This instantiated table is then given to PLANEX for

execution.

PLANEX is a program that supervises the execution of those ILAs corresponding to the

operat.ors in the plan. For a discussion of the operation of PLANEX , see the last part of

Chapt.er Eight. PLANEX takes as input a partially instantiated MACROP in triangle

table form. (This MACROP may have some parameters remaining after those occurring

in t.he goal wrr have been instantiated.) The PLANEX algorithm looks for a specific , rully

instantiated subsequence or the operators in the MACROP that can be executed in the

present situation to achieve the goal. The ILA corresponding to the first opcrator is then

executed. In the case of the task we are considering the first ILA to be executed is

GOT02(DUNIMYS), which causes the robot to go to the door named DUNIMYS.

Note: For all triangle tables , an asterisk (* ) berore a clause indicates that this clause was used to
prove the preconditions or the operator named at the right or the row in which the clause
appears.



The PLANEX algorithm then determines that the next ILA to be executed should be

GOTHRUDR(DUNIMYS,RUNI RMYS). Execution of this ILA begins by calling the vision

rout.ine CLEARP A TH, which takes a TV picture through the doorway to determine

whether the path in RMYS is clear (since the contents or RMYS are unknown). The path
is in fact clear, so Shakey proceeds through the doorway.

Next PLANEX calls tor the execution or GOT02(DMYSCLK). Since the contents or
1YS are unknown to Shakey, GOTO calls CLEARP A TH again. To illustrate how

Shakey can deal with unroreseen difficulties, we now place a box directly in Shakey s path
in rront or the door DMYSCLK. As Figue 15 and Table 6 show, Shakey does not know
or the existence or this box. CLEARP A TH determines that the path is blocked and notes
the approximate location ot the blocking object. Since Shakey expects that it might
encounter unknown objects in room RMYS, GOTO next calls a vision routine called
OBLOC. This routine calculates the size and exact location or the object, gives it a name,
BOX3, and adds this inrormation to the model. (it also assumes, perhaps optimistically,
that t,he new box is pushable. OBLOC also notes that BOX3 is blocking door
DMYSCLK, so it adds the wrr BLOCKED(DMYSCLK,RMYS,BOX3) to the model. Since
the conditions for continuing the execution or GOTO(DMYSCLK) are no longer satisfied
control returns to PLANEX. Our interest in this experiment is to show how Shakey can

gracerully recover rrom such an unexpected tailure or ita plan.

PLANEX, as usual, attempts to find a tully instantiated version ot the parameterized
'fACROPl that can be executed in the present situation to achieve the goal. In this case

PLANEX finds another instantiation ot MACROPI that works. The operators in this
instantiation are:

OT02(D MYSPD P), GOTHRUD R(D MYSPD P ,RMYS ,RPD P),
GOT02(DPDPCLK),

OTHR UD R(D PD PCLK,RPD P ,RCLK)
BLOCK(D PD PCLK,RCLK,BOX2).

Here we see one or the advantages or constructing parameterized plans. To perform the
original task, we first constructed a parameterized plan having an instance that solves the
problem. Later in the task execution we find that after an unexpected difficulty, another
instance or the same parameterized plan can be used to achieve the goal. We expect that
this method of error recovery will be quite valuable in robot problems. (Ir PLANEX could
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find no applicable instance of MACROPI that would achicve t.he goal , then STRIPS

would be asked to produce another plan and MACROP.

Aft.er finding this new instance of MACROP1 , PLANEX calls for the cxecution of the first

operator GOT02(DMYSPDP). Shakey thus moves to door D 1YSPDP. PLANEX next

calls for going through the door , and the process continues until finally Shakey enters

room RCLK. Then PLANEX calls for t.he execution of

BLOCK(DPDPCLK RCLK BOX2). Running this ILA calls ror going to BOX2 and

pushing it around BOXl and then to door DPDPCLK (a "hyo-Ieg" push). The local

planning necded to accomplish this push operation is done ent.irely within t.he PUSH ILA

called by BLOCK. With this operation complete, Shakey has accomplished the first task

in spite of the unforeseen difficulty. We also note that fACROPI has been filcd away

and can be used as an operator in future problem solving.

b. Task 2

The state of t.hings in Shakey s world is now as shown in Figure 16. V"le now test

Shakey s ability to learn by giving it a task that can be solved by using part 

tvtACROPl. The statement of the task given to the system, in English, is "UNBLOCK

DOOR DYMSCLK FROM ROOM RMYS." That is, we want Shakcy to move away the

object (BOX3) that it discovered to be blocking DMYSCLK.

Again, t.he English statement is converted into a predicate calculus wrf:

UNBLOCKED(D MYSCLK ,RMYS).

STRIPS now attempts to find a sequence of operators that wil make the wfr true , but

now it has 1ACROPI available in its operator repertoire (in addition to the operators

corresponding to ILAs). STRIPS first decides that it should try to apply the operator

UNBLOCK(DMYSCLK RMYS,BOX3). To do so , Shakey must be in room RMYS , so

STRIPS looks for operators that wil achieve INROOM(ROBOT RMYS).

STRIPS determines that an instance of the GOTHRUDR operator wil work , but so also

wil subsequences or MACROP!. One subsequence consists of the first two operators in

NIACROPI and the other consists of the first four. (For a discussion of how STRIPS

makes selections of MACROP subsequences , see Chapter Eight.) Since an instance of 

sequence of the first four operators in MACROPI is both applicable in Shakey s present



RHAL
RRIL

BOXO 

RRAM DRAMCLK

RCLK

BOX1 

tHAKEY
BOX3 DMYSCLK

BOX2

RMYS

DMYSPOP

RPOP

RUNI

feet
TA-8973-

Figure 16: MAP OF SHAKEY' S WORLD AFTER COMPLETION OF THE FIRST

TASK*

From /11/, page 21



situation lnd . achieves the condition INROOM(ROBOT RMYS), STRIPS is quickly able to

sC'ttlr on t.his instance and produce a plan ror Task 2. Let us dcnote by 1ACROPI ' the

subsequence of MACROPI selected by STRIPS. MACROP1' stil contains free

parametcrs that are left to be bound at execution time. Its definition in tcrms or the

operators comprising it is:

MACROPl' (PAR2, AR7,PAR6

GOT02(PAR6)

GOTHRUDR(P AR6 P AR7 ,P AR5)

GOT02(P AR4)

GOTHRUDR(P AR5 P AR2)

The rom pJete generalized plan for the second ask is:

MACROP1' (PAR2 PAR4,PARS PAR7 PAR6)

UNBLOCK(P ARI ,P AR2,P AR3)

This generalized plan is given the name MACROP2 and is saved for possible later use.

The t.riangle t.able representation of MACROP2 is shown in Table 8.

After creat.ing the general version of MACROP2, STRIPS prepares a version of it for

PLANEX by instantiating it with those constants appearing in the task descript.ion.

Namely, DMYSCLK is substituted for PARI and RMYS for PAR2. It t.hen givcs this

partially instantiated version to PLANEX to be executed. PLANEX finds that the

following instantiation of the plan wil achieve the goal:

MACROPl' (RMYS DMYSRAM,RRAM,RCLK,DRA 1CLK)

UNBLOCK(D MYSCLK,RMYS ,BOX3)

Next , PLANEX calls ror execution of MACROPI ' . This execution is accomplished by

PLANEX itself. The abilty to handle Unested" triangle tables is one of the features or

our system. PLANEX discovers that the first ILA to be executed in MACROPl' is

GOTO(DRAMCLK). In a similar manner, PLANEX ultimately executes the entire string

of ILAs in MACROPI' and then the UNBLOCK ILA to accomplish the second task.
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\Vhen these experiments are actually conducted, it is probable that the system may decide

to cxcrcise another one of our error-recovery capabilties. Recall that the model contains

information about the probable error in Shakey s location stored in the predicate DAT.

Model-maintenance programs automatically increase the estimate of error aftcr every

robot motion. During execution of ILAs such as GOT02, this probablc error is checked to

see whether it is stil less than some specific tolerable error. Whenever the error estimate

eXfccds thc tolerance , a visual program called LANDMARK is called. LANDMARK takes

it picture of some nearby feature (such as a joorjamb), calculates from this picture the

robot, s actuallucation , and enters this updated location into the model. It also resets the

DA T predicate to the error estimate appropriate after having just taken a picture.

Several fcatures of the system are ilustrated in these experiments. Most important or

these arc the ability to learn generalized plans and the abilty to recover from various

types of failures. The system or ILAs is designed to be robust in the sense that each ILA

does w hat it can locally to correct any errors. When the appropriate recovery procedures

are beyond a specific fLA's knowledge and abilties, there are several higher levels where

recovcry can occur , namely, at higher level ILAs, in PLANEX , or in STR.IPS.

From /11/, pages 5-24.
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Appendix A

Mechnical Developm nt of th Automaton Vehicl

By Vladimir Li slcovslcy

The following note from IS) by Vladimir Lieslcovslcy described the robot
vehicle in some detail:

MECHACAL DEVELOPMENT OF THE AUTOMATON VEInCLE

A. General Arrangement of the Vehicle

At. t.he beginning of the project , only very sketchy information was available about specific

requirements for the vehicle. The general requirements given were that the vehicle should
be able to maneuver on a linoleum-tiled laboratory noor , move on ramps that had up to a
ten percent. slope , be not wider than a doorway, weigh not more than approximately 200
Ibs , move under radio-transmitted digital-computer control , and be energized by an on-

board power source. It was further specified that the vehicle should bc able to turn
around it.s own vertical centerline in either direction and be able to move both forward
and backward.

Accordingly, with this prescription we began with a rectangular platform 3 ft in length
and 2 ft in width , with the corners cut off at an angle. The platform was equipped with
four wheels mounted in a diamond pattern: two 8-in diameter rubber cast.or wheels , one

. front. of t.he platform and one at the back; and two 8-in diameter rubber wheels

coaxially mounted , one at either side of the platform. The coaxially-mounted wheels were
to be drivcn independently. One of the castor wheels was mounted on a spring- loaded
flange , which allowed that wheel to deflect, under load, out of the plane determined by
the other three wheels. In this way we achieved the compliance necessary to negotiate
slopes. The platform stands about 10 inches above the noor level. The space provided
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between the wheels accommodates the main drive motors , and for a low center of gravity,

the batteries.

A 4- in vertical distance above the platform was reserved ror proposed manipulator arms.

A standard 19- in electronic rack , supported at three points, was located above this

reserved space. A video camera and range finder combination was mounted atop the

rack.

B. Details or the Physical Arrangement

1. Power Supply and Drive

One of the first decisions to be made was the selection of the form of energy to be used

for drive purposes. Among those considered were hydraulic , pneumatic , and eventually,

electric drives. Since electrical power had to be made available for the electronics , electric

drive was ultimately selected. The choice between secondary batteries and fuel cells was

dict.ated mainly by price and delivery figures in favor or the batteries. Two 12-volt

batteries in series were used to establish the operational , nominal voltage at 24 Vdc. The
choice between drive motors was reduced to either a straight de motor, an inverter and ac
motor combination, or stepping motors. Complexity and control considerations of the

digital commands ruled out the inverter/ac combination. Direct current motors , although

elect.rically noisy, were attractive due to their high power density and good torque

characteristics. Manufacturer s quotes were uniformly forbidding: six months for delivery

and a price in excess of several thousand dollars for each motor. The units would have

had st.andard clutches , brakes , and position readout capability for feedback information.

St.epping motors , although they surfer from low power density, are excellently suited for

digital control , and they were immediately available and were low in price (not more than

about $200.00 each). Therefore , the decision was made to use stepping motors exclusively

for prime movers. Not all or the motors selected were rated at 24 Vdc, but they wcre

easily converted by using dropping resistors.

In order not to lose count or the steps in the drive train between the motor and the drive
wheel , the speed reduction between the motor and the wheels had to be one without

slippage , that is , positive. The reduction was necessary to increase available torque from
the motors and to reduce the amount or translation per incremental step of the motor to
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1/32nd of an inch measured at the periphery of the wheel. For evcry control pulse , the

stepping motor executes a rapid change in its angular position. Depending on the incrtia

of the driven load and the damping of the drive trains , oscilations may develop. These

oscillations were reduced by limiting the incremental stcpsize , i. , tbc gencrated

amplitude. A coggcd belt , or timing belt arrangement was sclected for the drive train.

This was to give the necessary positive drive, while also introducing damping. As 

turned out , the belt proved to be a secondary source of oscilations , since bending

vibrat.ions were generated in the belt when the stepping motor was operated. Increasing

t he belt. tension reduced the oscilations to an acceptable level.

2. Closing the Minor Loop Through the Motor

The stepping motor operates in an open loop mode. Completion or any step dcpends on

t.he inertial load coupled to the motor, and not unlike a synchronous motor , the stepping

mot.or also can "fall out of phase " so to say, when it is overloaded. This condition is

largely a function of the stepping rate. Therefore, closing the loop in the operation of the

main drive motors seemed to be warranted. Fortunately, similar considerations led

Fredrikson (27) to synthesize, build, and describe a closed-loop stepping motor scheme.

By using his results , we were able to adhere to the ground rule of no novel detail

development. We closed the minor loop through the motor in the following way: a disk

cont.aining fifty appropriate holes on a circle, was mounted on the motor shaft. Four light

source and photocell pairs placed along the circle , and shifted by one-fourth of the hole

pat.tern pit.ch , were mounted on the motor housing. This arrangement proyided for 200

positions for every revolution , which is also the step-pattern of the motor. \Ve used the

simple schematic , described in (27) to complete the feedback loop. In operat.ion , no step

command can be given until after the information from the position feed-back disk

indicat.es that the previous step has been completed. Simply, the motor cannot miss a

step.

3. Wheels

The rubber wheels presented another problem: due to their finite elasticity, transient

motions generated either by the vehicle itself, or by its environment , resulted in disturbing

oscilations of the whole vehicle in pitch and roll modes with a time constant of about 2

seconds. This amount of settling time was judged to be unacceptable because no picture

taking with the TV camera could be initiated during that time. Since friction on the

driving wheels had to be maintained, but elasticity minimized , a properly-stiffened rubber
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driving rim on a metal wheel proved to be an acceptable solution. Since the castor

w heels , however , could remain relatively compliant, but required reduced friction on the

floor, they were capped with a metallc rim and gave good results.

The originally configured , independently-suspended castor wheel design gave way to a

schcme that provided easy handling of the batteries. The supply batterics are now

containcd in a subcarriage, supported at three points. At one end or the subcarriage , one

ball-bearing is located at each of the two corners while at the other end is located the

vehicle s previously independently-suspended castor wheel. The batteries in the

subcarriage can be conveniently wheeled to and from a recharging station. When the

subcarriage is wheeled back to the vehicle, the ball-bearings are received by corresponding

ramps, which lift up the ball-bearings and lock them into proper position. The bearings

now act as pivots around which the subcarriage swings in a vertical plane. This freedom
of movement provides for independent suspension of one of the four wheels. The

distribution of the load on the vehicle is such that when the subcarriage is removed , the

rest of the vehicle is stil statically stable on its remaining three wheels.

4. TV Camera and Range Finder Mount

Although it is possible to scan with a TV camera which is rigidly mounted on a yehicle

that is capable of turning around its own vertical axis , it seemed expedient to provide for

an indepcndent panning capabilty. Thus, the TV-range finder combination is mounted

on a yoke that can be rotated by a vertically-mounted stepping motor. The yoke
accommodates a transverse , horizontal axis, around which the TV camera can be tilted.

The tilt drive train incorporates a worm drive and another stepping motor. The worm

drive is necessary to cope with the excessive tipping moments originating from a revised

version of the range finder. When the stepping motor is not in operation , the worm drive

provides a self- locking feature as an added bonus. In the pan mode , limit switches and
stops are provided as well as an electromagnetic detent, acting on a 20Q-tooth gear,
mounted on the shaft of a 200-step/revolution stepping motor. The yoke was designed for

these functions only. The shaft or the pan motor is coaxially mounted with the vertical

centerline of the vehicle; that is , if equal and opposite commands are given to the driven

w heels , the location of the pan motor shaft does not change. The TV camera is located in

such a fashion that the photosensitive surface of its vidicon tube is exactly at the

intersection of the vertical pan axis and the tilt axis. Turning the vehiclc about its
vertical axis , panning the camera , and tilting it , does not affect the location of the vidicon

surface , only its direction.
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It also seemed expedient to attach the range finder directly to the TV camera. In this
way, the distance of an object , viewed by the optical centerline or the TV camera, from

the range- finder can be measured.

A scparate arrangement or the TV camera and the range finder was similarly logical:

dist.ance-mapping or the surroundings could be accomplished while the TV camera could

digest" and recognize a particular scene. However, the kinematic complexity of this

arrangement seemed prohibitive when compared to the possible advantages.

Stepping motors were mounted onto the TV camera lens housing for computer controlled

adjustment of the focus and the iris. Since these motors operate in the open loop mode

step count may be lost. Therefore, separate limit switches for both focus and iris

functions and at both ends or their range are provided. Whenever the limit switches are

actuat.ed , the counters are reset accordingly. This is also the scheme utilzed in the pan
and tilt modes.

5. Tactile Sensors

Tactile sensors are mounted at the front and back and on both sides or the vehicle to

provide protection against damage to the vehicle and to its surroundings and to provide

t.ouch information. These sensors were selected from commercially available

microswitches , and are actuated by a nexible coil spring approximately 6 inches long.

Piano wire whiskers or extensions may be added to the end of the coil springs to provide

longcr reach. The guiding principle has been to sense the presence of a solid object within
the braking distance or the vehicle when it is traveling at top speed. Addit.ional

appropriately placed sensors protect the TV camera against collsion in the translational

and the rotational modes. The actuation or any sensor wil inhibit the corresponding
action , while override is also made available.

As further protection against collsions , heavy rubber bumperstrips are mounted on all

protruding edges of the vehicle. If the performance capacity of the main drive motors
permits , these bumpers wil be used to move objects around the environmental room. 

From (3)) pages 40-45.
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Appendix B

Some Current Techniques For Scene Ana.lysis

For completeness we reprint below a.n SRI AI Center Technica.l Note 

Richard Duda f1l8) that describes some of the vision routines used 

Shakey.

Some Current Techniques ror Scene Analysis

Richard o. Duda

I. Introduction

The purpose of the visual system is to provide the automaton with important information

about its environment , information about the location and identity of walls , doorways

and various objects of interest. By adding new information to the model , the visual

system gives the automaton a more complete and accurate representation of its world.

The role of vision is not independent of the state of the model. If the automaton has

entered a previously unexplored area, the visual scene must be analyzed to add

information about the new part of the environment to the model. In this situation , the

model can provide so little assistance that it is ofter not referenced at all. On the other

hand , if t.he automaton is in a thoroughly known area, the role of vision changes to one of

providing visual feedback to correct small errors and verify that nothing unexpected has

happened. In this situation, the model plays a much more important role in assisting and

actually guiding the analysis.

Until recently our attention has been directed primarily at the general scene-analysis

problem. Every picture was viewed as a totally new scene exposing a completely unknown

area. More recently we have addressed the problem of using a complete , prespecified map

of the rIoor area to update the automaton s position and help in tasks such as going

through a doorway. Another use of this kind of visual feedback would be the monitoring

of objects being pushed.
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In trying to solve these problems , we have tended to take one or the other of two extreme

approaches. Either we tried to develop general methods that can cope with any possible

situation in the automaton s world, or we tried to exploit rather special facts that allow

an efficient special-purpose solution. The first approach involves the more interesting

problems in artificial intellgence, but it provides more capabilities than are needed in

many situations , and provides them at the cost of relatively long computation times. The

second approach provides fast and effective solutions when certain (usually implicit)

preconditions are satisfied, though it can fail badly if these conditions are not met.

Eventually, of course , some combination of these two approaches wil be needed , since the

automaton actually operates in a partially known world, rather than one that is

completely unknown or completely known. However, we have decided to concentrate on

these two extreme situations before addressing the intermediate case. The remainder of

this note describes the current status of our work in these areas. 

IT. Region Analysis

A. The Merging Procedure

Our work in general scene analysis is based on dividing the picture into regions

representing walls , fioors , faces of objects, etc. The basic approach has been described in

detail elsewhere (16), and only a brief summary wil be given here. The procedure begins

by partitioning the digitized image into elementary regions of constant brightness. This

usually produces many small, irregularly shaped regions that are fragments of more

meaningful regions. Two heuristics are used to merge these smaller regions together.

Both of these heuristics operate on the basis of fairly local information , the difference in

brightness along the common boundary between two neighboring regions. The heuristics

are not infallble; they can merge regions that should have been kept distinct , and they

can fail to merge regions that should been merged. However, they reduce the picture to a
small number or large regions corresponding to major parts or the picture , together with a
larger number of very small regions that can usually be ignored.

The effect of applying these heuristics is best described through the use or examples.

Figure B-1 shows television monitor views of three typical corridor scenes. Figure B-2

Our earlier work in scene analysis is described in (7). Additional inCormation on more recent
work is contained in (8), (16), (29), and (30).
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shows the results or appiying the merging heuristics to digitizcd vcrsions or these pictures.

The boundaries of the regions in these pictures are directed contours , and can be traced

using the correspondences shown in Table 8-1. Generally spcaking, important rcgions can

be separated from unimportant regions purely on the basis of size. Figure B- , for

example , contains four large , important regions. Three of them arc directly meaningful

(the door , the wall to the right , and the baseboard), and the fourth is the union or two

important regions (the floor and the wall to the left). An inspection of Figure B-2b shows

similar results. Figure B-2c shows the result of applying the technique to a complicated

scene; while some userul inrormation can be obtained, the resolution available severely

limits the usefulness or the results.

Our only complete scene-analysis program is oriented toward identifying boxes and

wedges , objects with triangular or rectangular faces , in a simple room environment (16).

For this task , we begin by fitting the boundaries of the major regions by straight lines.

Regions are identified as being part of the fioor, walls , baseboards , and faces of objects by

such properties as shape. brightness, and position in the picture. Objects are identified by

grouping neighboring races satisfying some of the simpler criteria used by Guzman (31).

In the process , certain errors caused by incorrect merging are detected and corrected. We

have yet to complete a similar analysis program for the conditions encountered in corridor

scenes. However , we have investigated the problem of obtaining a scene description that

is internally consistent; the next section describes the analysis approach for this problem.

B. A Procedure for Scene Analysis

If we assume temporarily that the merging heuristics have succeeded in the sense that all
of the large regions are meaningful areas , then the only basic problem remaining is the

proper identification of each region. Examination of the corridor pictures indicates the

need to be able to identify a number of different region types , including the following:
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Figure 1: THREE CORRIDOR SCENES
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CONF IGURA TION CHARACTER CONFIGURATION CHARACTER

'f 4.2158-24

Table 1: CORRESPONDENCE BET\VEEN BOUNDARY SEGMENT

CONFIGURATIONS AND CHARACTERS USED IN PRINTOUT
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( 1 ) Floor

(2) Wall

(3) Door

( 4)

( 5)

(6)

(7)

Door jamb

Object race

Baseboard

Base board renection

(8) Sign

(9) Window

(10) Clock

(11) Doorknob

(12) Thermostat

(13) Power outlet

(14) Automaton.

Ea.ch of these regions has certain properties which tend to characterize it uniqucly. For
example , the noor region is usually large, bright, and near the bottom of the picture.

Howcver , most regions can be identified with greater confidence if the nature or t.heir

neighbors is considered as well. Thus , the presence of a baseboard or baseboard renection

at the top of a region almost guarantees that the region is the noor; conversely, the
presence or wall area immediately above a region guarantees that it can not be a
baseboard renection. If regions are identified without regard to how that choice affects

the oyer all scene description , the chance for error is increased. Moreover , the resulting

description can be nonsensical.

r.1any, though by no means all , of the relations between types of regions relate to
neighboring regions. Table B-2 indicates those types of regions that can and cannot be

legal neighbors. We can easily add to this further restrictions, such as the fact that the
baseboard must have the wall as a neighbor along its top edge. These are some of the
important known facts about the general nature of the automaton s environment. The
problem is to use facts such as these to aid in the analysis of the scene.

One approach to solving this problem is to use these facts as constraints to eliminate

impossible choices. Suppose that each significantly large region in the picture is
t.ent.atively classified on the basis of the attributes of that region alone. Suppose further
that a score is computed (or each region that measures the degree to which it resembles

each region type. ** For any selection of names for regions, we can define the score for the
resulting description as the sum of the individual scores. Then, we can analyze the scene

By "sign " we mean a dark vertical bar on the wall used , as ilustrated in Figure B- , to iden tify

an office.

This score might be interpreted as the logarithm of the probabilty that the given region is of
the indicated type.
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by trying to find highest scoring legal selection of region names. With no loss in
generality and some gain in convenience , we can work with the losses incurred by selccting

other than the highest scoring choice. In terms of losses, we want the legal description

having t.hc smallest overall loss.

This problem is basically a tree-searching problem. The start node of the tree

. corresponds to the first region selected for naming. The branches emanating from that

node correspond to the possible choices of names for that region. A path through the trce
corresponds to a unique labeling of the picture. Thus, if there are N possible region

names and R regions , there are potentially. NR possible paths through the tree. Each path
passes t.hrough R+ 1 nodes from the start node to the terminal node. Every terminal node
has a loss value, which is the sum of the losses incurred for the choices along the path to

that node. A goal node is a terminal node corresponding to a complete, legal scene

description. We seek the goal node with the smallest overall loss.

This is a standard problem in tree searching, and optimum search procedures are known.

Assume that some choices have been made for some of the regions so that we have a
partially expanded tree. Using the Hart-Nilsson-Raphael terminology (32), some of the

t.erminal nodes of this tree are open nodes , candidates for further expansion. Each open
node has an associated loss g, the sum of the losses from the start node to that node. 
wc assume that there is no reason to believe that zero-loss choices cannot be made from

that node on, then the optimal search strategy is to expand that open node having the

minimum g.

To expand a node, we must select a region not previously considered and examine the

possible choice for that region, ruling out any choices that are not legal. Different

strat.egies can be used for selecting the next region. It seems advantageous to ask it to be
a neighbor of the regions selected previously, since this maximizes the chance of detecting
illegalities. In general , we wil have several neighbors for candidate successors. Of these
it seems reasonable to select the one having the highest score, under the assumption that
the first choice name ror this region is most likely to be correct.

After a region has been selected, it is necessary to examine the choices one can make ror

its name to see which ones are legal. If we limit ourselves to pairwise relations between

neighboring regions , we need merely compare each choice with previously made choices on
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the path to this point and test each for legality. * The node expanded is remo,'ed rrom the

list of open nodes , the resulting new nodes are added , and the process is repeated until the

algorithm selects a goal node for further expansion. This is our final result , a legal scene

description having the minimum loss.

c. Examples

The rollowing examples serve to ilustrate the action of this scene-analysis procedure.

Consider first the simple scene shown in Figure B-3. For simplicity, we assume that there

are only five t.ypes of allowed regions-noor, wall, door, baseboard, and sign. Consider

Region 1. On the basis of its brightness, size, vertical right boundary, and possession or a

hole, it should receiye a high score as wall, and lower scores as noor, door , sign , and

baseboard , Region 2 might , perhaps, score highest as a door, and so on. Thus , the

following table or scores , although purely imaginary, is not unreasonable. Missing entries

correspond to scores too low to be seriously considered.

Base-
Ree:ion Floor Wall Door board Sisrn

*\Vhen an ilegality is found, that choice is deleted. One can argue that few relations are 
strong as to be absolutely ilegal , and an alternative approach would be to introduce various
additional losses for the dirferent observed relations.
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The following table gives equivalent information in terms of the losses associated with

cac II choice.

Base- Max
Reg ion Floor Wall Door board Sign Score

Let. us use our t.ree-searching algorithm to obtain the minimum-loss, legal description of

tbis scene. Initially the successor function is unconstrained by neighbor restrictions , and

selects R('gion 2 merely because it has the highest core. At this point, all of the choices

for Region 2 are legal, and the tree has three open nodes; the numbers shown next to each

node gi,'e the loss accum ulated in reaching that par of the tree.

The search algorithm requires that the open node having the least loss be expanded next

w hie h corresponds to tentatively callng Region 2 a door. The successor function finds

only one neighbor to choose from, Region 1, and considers its alternatives: wall , noor,

and door. None of these choices is a legal neighbor surrounding Region 1 , and hence all

are rejected. Thus , this open node has no successors.

123



T A-8259-

Figure 3: A SIMPLE SCENE
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Ret.urning to the choices for open nodes, Region 2 is tentatively called a sign. The

successor function again selects Region 1, and this time finds one legal successor , the

wall.. The loss associated with this choice is 0, and the overall loss is 2. The list of open

nodes stil cont.ains two members.

The search algorithm selects the open node with loss 2, and the successor function has

only Region 3 to select from. All of the choices for Region 3 are all legal with respect to

Note that our successor (unction wil always produce a tree with R+ 1 levels. At any level , the
same region wil always be selected by the successor function. The actual successors , however
wil be limited by the legality requirement.
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calling Region 2 a sign and Region 1 a wall. The least loss results from callng Region 3 a

door, and the scene analysis is completed.

A somewhat more realistic example involving 10 regions and 14 region types is ilustrated

in Figure B-4. Table 8-3 gives the hypothetical scores. Based on these scores alone , half

or the regions would be incorrectly identified. Figue 8-5 shows the tree produced by the

search algorit.hm. The development or this tree is too complicat.ed to describe in detail. It

should be noted, however, that considerable backtracking occurred because a low..scoring

t.hird choice was needed for Region 8 , the doorknob. Whether or not this can be

circumvented without causing other problems is not known.

D. Remarks

To date , t.his procedure has only been used on some hypothetical examples. We have

modified a general tree-searching program to adapt it to some special characteristics or

this problem. However , we have not started the important task of writing programs to

measure characteristics of regions and to use these characteristics to produce recognition

scores.

In addition , we have not implemented any legality conditions beyond the simple conditions

given in Table B-2.
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Figure 4: A MORE COMPLICATED SCENE
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REGION
TYPE

FLOOR

WALL

DOOR

DOOR JAMB

OBJECT FACE

BASEBOARD

BASEBOARD
REFLECTION

SIGN

WINDOW

CLOCK

DOORKNOB

THERMOSTAT

POWE R OUTLET

AUTOMA TON

TA-8259-29

Table 3: HYPOTHETICAL REGION SCORES
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Figure 5: THE ANALYSIS TREE
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This approach to scene analysis has several potential advantagcs. It is not nccessary to

identify every region correctly at the outset to obtain a corrcct analysis , provided that thc

syntactic " rules are sufficiently complete. By providing a limit on thc allowable loss , a

part.ial scenc description can be obtained that may be useful even though incomplct.e.

Perhaps most. important , the operations of merging, reature extraction , classification , and

analysis are clearly separated, allowing fairly independent modification and improvement.

In particular , the general knowledge about the environment can be expressed explicitly as

rules for legal scenes, and if the environment is changed it is possible to confine the

program changes to modifying these rules.

One of the major problems with this approach is the lack or an obvious way to detect

erroneous regions, regions that are fragments of or combinations of meaningful regions.

\Ve are currently working on this problem, since progress toward its solution is needed

before implementation or this system can be begun. Another problem is that it is not

clear how specific inrormation contained in the model caD be used to guide the analysis.

This problem of working in a world that is neither completely known nor completely

unknown is one of the major unsolved problems in visual scene analysis.

m. Landmark Identincation

\Vhen the environment is completely known, the visual system can provide feedback to

updat.e the automaton s position and orientation. The x-y location or the automaton and

it.s orientation can be determined uniquely from a picture or a known point and line

lying in t.he floor. * Such distinguished points and lines serve as landmarks for the

automaton. This section describes our present program that uses concave corners , convex

corners , and doorways as landmarks to update position and orientation.

A flowchart outlining the basic operations or this program is shown in Figure B-6. The

program begins by selecting a landmark from the model that should be visi ble from the

automaton s present position; if more than one candidate exists , one is selected on the

basis of range and the amount of panning of the camera required. * The camera is then

panned and tilted the amount needed to bring the landmark into the center of the field of

IC no landmark is in view , a suitable message is returned together with a suggested vantage point
from which a landmark can be seen. This is one of several "error" returns that can be obtained
from the program. The program can also be asked to select a specific landmark , or a landmark
differ nt from the ones previously selected. 
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view , and a picture is taken. The baseboard-tracking routine described previously (8) is

used to find the segments of baseboard in the picture and t.o fit them with long straight

lines.

Exactly wbat happens next depends on the landmark type. For a door, the long line

nearest the center of the picture is selected, and the true image of the landmark is

assumed t.o be the endpoint of the baseboard segment on that line and nearest the center
or the picture. An additional check is made to see that the gap from that point to the
next segment is long enough to be a passageway. A convex corner viewed from an angle

suc h that only one side is visible is treated as if it were a door. Otherwise, the
intersection or long lines nearest the center or the picture is assumed to be the true image

of the landmark, and a check is made to see that the baseboard segments near this point

have the right geometrical configuation. The location of the landmark in the picture

gives the information needed to compute corrections for the automaton s position and

orientation.

The operat.ion of this program is ilustrated in Figue B-7. In this experiment , the

automat.on was approximately 7.5 reet away from a wall along which there were four

landmarks. both sides of a doorway, a convex corner, and a concave corner. The pictures

in Figure B-7. show how closely the panning and tilting brought the landmarks to the
center of tbe pict.ures. For scenes as clear as these, the program operates very reliably.

Presentl). , we can use this routine to locate the robot with an accuracy of between 5

percent a.nd 10 percent of the range, and to fix its orientation to within 5 degrees. Since
the errors are random , the accuracy can be improved further by sighting a second

landmark. Furt.her increases in accuracy, ir needed, will have to be obtained by

improving t.he t.ilt and pan mechanism for the camera.

From /28/, pages 1-
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Figure 6: BASIC FLOWCHART FOR LAND 1ARK PROGRA
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(8) RIGHT DOOR

Cc) CONVEX CORNER

Cb) LEFT DOOR

. Cd) CONCAVE CORNER
T A-8259-

Figure 7: LANDMARKS
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