]

SHAKEY THE ROBOT

Technical Note 323

April 1984

Edited by: Nils J. Nilsson, Director

Artificial Intelligence Center
Computer Science and Technology Division

U Infernetional

~

Approved:

Donald L. Nielson, Acting Director
Computer Science and Technology Division

27T
/77 [N N

SR

International

NN VA
SIS ®

CERTUM QUOD FACTUM

Giambattista Vico — Iialian philosopher and jurist (1668-1744)

CONTENTS

LIST OF ILLUSTRATIONS i

LIST OF TABLES i i i it i i e

ABSTRACT ..

..

CHAPTER ONE: Introductionceiuimeeenneennnneens

CHAPTER TWO: The Robot Vehicle, The Computers,
and Other Hardwaret iieinneneennnennns

CHAPTER THREE: Shakey's Model of the World

CHAPTER FOUR: The Low-Level Actionsccvvveeunn..

CHAPTER FIVE: The Intermedsate-Level Actsons

CHAPTER SIX: Viston Roultnescovoviinuenenennnennnnns

CHAPTER SEVEN: STRIPS0ttt

CHAPTER EIGHT: Learning and Ezecuting Plans

CHAPTER NINE: Ezperiments With Shakey

ACKNOWLEDGMENTS ittt i,

APPENDICES

A Mechnical Development of the Automaton Vehsele

B Some Current Techniques For Scene Analysis

REFERENCES

--

ii

vil

19

25

35

51

57

65

81

101

105

113

135

[=S V- B)

ILLUSTRATIONS

15
16

B-1
B-2
B-3
B-4
B-5

AUTOMATONVEHICLE0ouuunn... 10
AUTOMATON VEHICLE IN ITS ENVIRONMENT 11
AUTOMATON-SYSTEM BLOCK DIAGRAM 14
SRI ARTIFICIAL INTELLIGENCE GROUP

COMPUTERSYSTEMcoiiiiiiniiinninnnnnnnn. 17
EXAMPLEMODEL ...\ oiiiiiiii ittt 24
CONTROL STRUCTURE OF LOW-LEVEL ACTIVITIES .. 33
CONTROL STRUCTURE OF THE

INTERMEDIATELEVELcvvviunnnnn.. 48
AN OBSTACLE CONFIGURATION FOR FINDPATH 50
SEARCH TREE FOR CONFIGURATION OF

FIGURE 8 . ..i'iittiiieieeie i, 50
TYPICALMACROPiiiiiiinnnnn.. 67
MACROP WITH MARKED CLAUSES 70
MACROP AFTEREDITINGcc0vunn.. 71
GENERALIZED PLAN FOR TWO-PUSH MACROP 74
MOP: ANESTEDMACROPcovnvivnnnnnnn. 77
MAP OF SHAKEY'S EXPERIMENTAL ENVIRONMENT .. 83
MAP OF SHAKEY'S WORLD AFTER

COMPLETION OF THEFIRST TASKvvunn... 96
THREE CORRIDOR SCENESccovvvunnennnn. 116
RESULTS OF MERGING HEURISTICS 117
ASIMPLESCENE00iiiiiinennannnn 124
A MORE COMPLICATED SCENEcvvn.... 127

129

B-6
B-7

BASIC FLOWCHART FOR LANDMARK PROGRAM

LANDMARKS

vi

.....

.....

(L BN w [

B-1

B-2
B-3

TABLES

PRIMITIVE PREDICATES FOR THE ROBOT'S

WORLDMODEL i,

SUBROUTINE GOTOADJROOM (ROOM1,DOOR,ROOM2)
INTERMEDIATE LEVEL ACTIONS

MARKOV TABLE FOR THE LOWEST-LEVEL

PUSHINGILA i i i,

TRIANGLE TABLE FOR

MACROP1(PAR3,PAR1,PAR2,PAR4,PAR5 PAR7,PARS) . . .

TRIANGLE TABLE FOR

MACROP2(PAR3,PAR1,PARS,PAR7,PAR5,PAR4,PAR?) . ..

CORRESPONDENCE BETWEEN BOUNDARY
SEGMENT CONFIGURATIONS AND

CHARACTERS USED IN PRINTOUT

vii

23
32

40

47
84
89

93

ABSTRACT

From 1966 through 1972, the Artificial Intelligence Center at SRI
conducted research on a mobile robot system nicknamed ‘““Shakey.”
Endowed with a limited ability to perceive and model its environment,
Skakey could perform tasks that required planning, route-finding, and the
rearranging of simple objects. Although the Shakey project led to
numerous advances in Al technigques, many of which were reported tn the
literature, much spectfic tn formation that might be useful in current
robotics research appears only in a series of relatively inaccessible SRI
technical reports. Our purpose here, consequently, ts to make this
matertal more readily available by extracting and reprinting those
sections of the reports that seem particularly interesting, relevant and

tmportant.

CHAFTER ONE

Introduction

From 19668 through 1972, the Artificial Intelligence Center at SRI
conducted research on a mobtile robot system nicknamed ‘““Shakey.’’ This
research was sponsored by the Advanced Research Projects Agency under
a successton of contracts with the Rome Air Development Center, the
National Aeronautics and Space Admintstration, and the Army Research
Office. Two complete versions of Shakey were developed. In 1969 we
completed our first integrated robot system: a mobtile vehicle equipped
with a TV camera and other sensors—all radto-controlled by an SDS-940
computer. In 1971 we completed a more power ful robot system by making
substantial program improvements and by replacing the SDS-940
computer with a Digital Equipment Corporation PDP-10/PDP-15 facility.

Dramatic recent progress in reducing the size and cost of power ful
computer hardware makes the prospect of autonomous robots much more
realistic than it was fifteen years ago. There are several new robot
projects underway that might benefit from Shakey’s legacy. The Shakey
project led to several advances tn Al techniques, many of which were
reported tn the literature, but a great deal of specific in formation
nevertheless appears only in a series of relatively inaccessible SRI
technical reports [1-12]. Therefore, to make this material more readily
avatilable, we have decided to extract and reprint here what seem to be the
most relevant and important sections of these reports. Of particular
interest are (1) the techniques used in Shakey’s action routines that
enabled flexible recovery from inappropriately ezecuted actions, (2) the
method of integrating perception with action, and (8) the techniques for
planning and ezecuting complez sequences of actions. (The reader who
needs additional details can obtatn copies of the original reports from the
National Techntical In formation Service (NTIS). See the NTIS access

numbers tn the references at the end of this report.)

3

This report will describe only the second of the two Shakey systems
because it was far more advanced than tts predecessor. (A summary of
the first system appears in [5].) The material is reprinted in tts original
form, but with minor changes to make figure, chapter, and citation
numbers conststent. Whenever deemed advisable and help ful, the tezt ts
supplemented by occasional ezplanatory comments in ttalics. Unless
otherwise attributed, any chapter or section references included tn these

commentaries pertain to the present collection only.

We begin with an excerpt from the first report [1], tssued in 19686.

Major Goals and Objectives of this Program

It is the objective of this program to develop concepts and techniques in artificial
intelligence enabling an automaton to function independently in realistic environments.
These concepts shall be demonstrated by means of a breadboard, mobile vehicle
containing visual, tactile, and acoustic sensors, signal processing and pattern-recognition
equipment, and computer programming. Primary goals shall be the solution of
incompletely specified problems (requiring creation of intermediate strategies and goals)

and improvement of performance with training experience.

Some of the ground rules guiding our research were established immediately. First, it was
decided that the basic goal of this project was to design an integrated system consisting of
a mobile vehicle under the real-time control and supervision of a powerful digital
computer. The vehicle should be equipped with at least rudimentary manipulative
abilities, and with sensory and communication subsystems. Various automata have been
built which are controlled by relatively few, simple, onboard logic circuits, but the essence

of this project is real-time control by a full-scale, programmable, digital computer.

Second, we decided to minimize hardware complexities whenever possible to allow us to
focus primary attention on the problem of directing the automaton’s actions and planning
by means of a hierarchy of computer programs. For this project the mechanical
engineering problems of building a robot with articulated limbs and delicate grasping
abilities are irrelevant. One can face very tough problems in artificial intelligence directly

in attempting to write computer programs to control even a very simple vehicle. It is for

this reason also that we shall make no attempts here to design highly miniaturized
computers that can fit into the ‘head’” of an automaton. Technology will sooner or later
provide us with such small but powerful computers in any case; in the meantime, we shall
learn how to program their large and cumbersome ancestors to control an automaton

remotely via cable or radio link.

Third, we decided to conduct no extensive research on the subject of visual pattern
recognition in this project. This ground rule by no means should be taken as minimizing
the importance of the problem of visual perception. On the contrary, it is probably one of
the most important problems to be faced in designing automata. But we felt that the
perceptual abilities conferred by employing presently existing pattern-recognition methods
were more than adequate to permit the use of a real environment sufficiently rich to tax
our skills in developing control programs for that environment. In the meantime, research

on mechanizing perception could and should continue independently.

Fourth, we decided that the environment of the automaton should be large in extent. Its
components may be simple in quality in the beginning, but there should be a non-trivial,
extensive environment that the automation is expected to deal with. This ground rule
forces us immediately to consider only methods for ¢ fficient internal representations of

the world.*

The eleventh report [11] gave a concise summary of the organization of
the Shakey system which can also serve as an overview to the present

note:

The robot system is a hierarchical structure in which we shall identify five major levels.
Although some of these levels are much more clearly defined than others and some have
considerable substructure, the five levels described below constitute a useful division for
this exposition. Also, the effectiveness of the system is largely derived from the clear

specifications for these levels and their interconnections.

The bottom level of the system consists of the robot vehicle and its connection to the user
programs. This connection includes radio and microwave communication links, a PDP-15
peripheral computer and its software, and a communications channel, with its associated
software, between the PDP-15 and the PDP-10. This bottom level may be thought of as
defining the elementary physical capabilities of the system.

*From [1], pages 1-2.

The robot vehicle ts described tn Chapter Two and Appendiz A of the
present report, and the PDP-15/PDP-10 inter face ts described in Appendiz
G of [10].

The heart of the software that controls Shakey ts its “model’ of the
world it tnhabits. This model is a global data structure that can be
accessed and modified by the other routines. It ts described tn Chapter
Three.

Continuing with the excerpt from [11]:

The second level consists of what we call Low-Level Actions, or “LLAs.” These are the
lowest-level robot control programs available to user programs in the LISP language, our
principal programming tool. The LLAs are programatic handles on the robot’s physical
capabilities such as “ROLL" and “TILT.” They are described in detail in Chapter Four.

So that it can exhibit interesting behavior, our robot system has been equipped with a
library of Intermediate-Level Actions, or “ILAs.” These third-level elements are
preprogrammed packages of LLAs, embedded in a Markov table framework with various
perception, control and error-correction features. (Markov formalizations are explained in
Chapter Five, Section B.) Each ILA represents built-in expertise in some significant
physical capability, such as “PUSH” or “GO TO.” The ILAs might be thought of as
instinctive abilities of the robot, analogous to such built-in complex animal abilities as
“WALK” or “EAT.” Chapter Five contains a description of the present set of ILAs,
along with the conditions under which they are applicable and how they each can affect
the state of the world.

The principal sensor of the perceptual system is the TV camera. Programs for processing
picture data have been restricted to a few special ‘‘vision'’ routines, that orient the robot
and detect and locate objects. These programs are incorporated into the system at either
the ILA or LIA level. The algorithms in these routines are described in Chapter Six and
Appendix B.

Above the ILAs we have the fourth level, which is concerned with planning the solutions
to problems. The basic planning mechanism is STRIPS, described in Chapter Seven.
STRIPS constructs sequences of ILAs needed to carry out specified tasks. Such a

sequence, along with its expected effects, can be represented by a triangular table called a

MACROP (“‘macro operation”). Chapter Eight describes how such MACROPs can be
generated in generalized form, thereby enabling an interesting form of learning and plan

sclection to take place.

Finally, the fifth, or top, level of the system is the executive, the program that actually
invokes and monitors executions of the ILAs specified in a MACROP. The current
executive program, called PLANEX, is briefly described at the end of Chapter Eight.*

*From [11], pages 3-4.

CHAPTER TWO

The Robot Vehicle, The Computers, and Other Hardware

A. The Vehicle and its Environment

The robot, vehicle itself is shown in Figures 1 and 2. It is propelled by two stepping
motors independently driving a wheel on either side of the vehicle. It carries a vidicon
television camera and optical range-finder in a movable “‘head.” Control logic on board
the vehicle routes commands from the computer to the appropriate action sites on the
vehicle.. In addition to the drive motors, there are motors to control the camera focus and
iris settings and the tilt angle of the head. Other computer commands arm or disarm
interrupt logic, control power switches and request readings of the status of various
registers on the vehicle. Besides the television camera and range-finder sensors, several
‘‘cat-whisker”’ touch-sensors are attached to the vehicle's perimeter. These touch sensors
enable the vehicle to know when it bumps into something. Commands from the computer
to the vehicle and information from the vehicle to the computer are sent over two special
radio links, one for narrow-band telemetering and one for transmission of the TV video

from the vehicle to the computer.*

More detailed in formation about the vehicle can be found in Appendiz A
at the end of the present report.

The initial environment of the Automaton was real, but contrived. It has been sufficiently
simple to allow current visual capabilities to be useful to the Automaton, and sufficiently
complex to indicate the weaknesses of current methods and to suggest areas of further
research. Perhaps the most important result of our vision-research effort on the
Automaton project is an appreciation of the potential complexity of the problem of vision
when the real world is the subject matter, and a strong notion that the first step we have

taken towards a general capability is very small indeed.

*From [2], page 1.

ANTENNA FORJ
RADIO LINK

CAMERA
CONTRO

CASTER
WHEEL

Figure 1: AUTOMATON VEHICLE*

*From [5], page 2.

10

ITS ENVIRONMENT*

Figure 2: AUTOMATON VEHICLE IN

page 3.

*From [5],

11

The current Automaton is restricted by its method of locomotion to move only on nearly
flat surfaces. Initially its travel was limited by the length of cable connecting it and the
computer. The addition of the radio links allow the Automaton to travel further from the

computer room.

The first visual subsystem was designed to specialize in the planar-surfaced environment
of our laboratory and office building. The objects in this environment are specially
constructed roctangular parallelepipeds and wedges. The use of only the regularly spaced
overhead [luorescent lights as well as light colored walls and floor allows us to essentially
eliminate shadows and to limit the illumination to a 2-1/2 to 1 range in the computer

room.

The surfaces of the objects used are uniformly coated with red, grey, or white paint.
Originally black was used to insure high contrast between adjacent surfaces. However,
the range-finder relies on reflected light. Red replaced black because it is relatively dark
to the TV camera and returns enough light to the range-finder. Thus, not only are the
objects opaque, but also have non-specular surfaces. Furthermore no two-dimensional
markings were put on the object surfaces. The floor tile was chosen so as not to have any
detectable markings. The only two-dimensional marking purposely applied was a dark
wall molding at the floor level. The floor has about the same reflectivity as the walls.

There were verticle molding strips on one wall which were specular.*
B. Hardware Associated with the Vehicle

An ezcerpt from [5] describes some of the inter face hardware between the
vehicle and the SDS computer. Much of this hardware remained
unchanged when we substituted a PDP-10 computer for the SDS-940.

Figure 3 shows a block diagram of the hardware system. The system consists of a
stationary part interfacing with the SDS 940 computer and the mobile vehicle which is
remotely controlled from the fixed equipment via a full duplex radio link. (The data

communications interface was described in an Appendix of [4].)

Commands to the vehicle are transmitted in digital form preceded by a module address

referring to the module on the vehicle that is expected to act. Each module is equipped

*From [5], pages 19-20.

12

with its own register. The register holds bits specifying information on desired direction
of motion, speed, requested distance, and other special functions. When action is
requested, the action starts and continues until completed or interrupted by other control
functions in the system. End-of-action or other control interrupts are transmitted back to
the stationary equipment in coded form, where they are decoded and sent as interrupts to
the computer. Interrupts of a similar nature are ORed together to limit the number of
interrupts. Status registers are therefore provided on the vehicle so that status can be

interrogated from the computer any time the source of the interrupt is in question.

Special registers for the sensors, such as the range finder, bumpers, etc., are available and
can be interrogate by a read operation in the same manner as reading from the module

register.

The hardware for the visual system uses the same interface to the computer. The power
for the TV camera and the special transmitter for the videodata is controlled from the

power-control register on the vehicle. The rest of the visual system is quite independent.

The TV camera consists of one control unit mounted on the platform of the vehicle and
one camera head mounted on a pedestal in the center of the vehicle. The camera can be
turned + 180 degrees around a vertical centerline, and it can be titled +60 degrees and
-45 degrees around a horizontal axis located below and perpendicular to the optical axis of
the camera. The camera is equipped with a manually replaceable lens. The lens mounts
in a mechanism with two motors for control of iris and focus. The control of all degrees
of freedom of the camera and its lens system is accomplished by stepping motors. The
rotation of the camera around the vertical shaft is under control of a servo similar to that
used for the wheels of the vehicle. The control from the computer is in the form of LEFT
or RIGHT commands of a given number of steps. The camera has one left-rotational
terminal switch at +180 degrees rotation and one right-rotational terminal switch at -180
degrees rotation. When these switches close, the rotation in the direction in process is
interrupted. The switches also signal the emergency circuit, causing an interrupt signal at
the computer. Associated with the shaft rotation, there is also a pan distance counter.
The content of the counter can be transmitted to the computer. The tilt of the camera is
controlled by a stepping motor operated at a constant step rate. The motor reacts to a
TILT UP or TILT DOWN command for a given number of steps. The tilt mechanism has
limiting switches up and down. The limit switches stop the tilt and signal the interrupt

circuits in the computer. The content of the tilt counter can be transmitted to the

13

£5-1906-24

—

VIR0 W15 LINSHVL
AULJNIN3L BVIINIA

4]

weee Vi

NN

il

01003 VI

918300 IR

WOLREI VI I
wmul iy

001003 €34 fINsHVE)
AvL; ity

s

Y 2I3MIA w4

WUINGD 0/t AN} e

1105003 BOILY

[s

ANswn
w1 33N

stamunn
eI
sz nmn
V2SI
1041M
AN
X1
R
1m0
010
S
1hem 211N
L] L
[] °
L] ®
P
1nan
MM
1o U3
-
Nawn
$09L093 89NV
oy SI8I9%
10en 11NN
™ oue 1134V 00
v WIRe) 19WNes
) WIRNE 11NN

|—& s1mr 31N

mwe

(21 1]]

avpamNge amg

i N_,\\Ir\nnn\t P s

wosvn

i

i o

WSS120043W 83018

wny Lo ——— wmINg
NANM LB 0831004304 030N
001009
veInw Ag e
ﬁ (2011}
[T ::E. mn
03k TN
yanley * P:-:-c
s imsave — — = D yann
TR)

[——>nn
]

'

}

]

'

]

|

]

1

'

'

]

'

[

)

!

|

]

]

H)
m 10mN3101
[}

'

]

]

1]

1

]

[

T

v

“ e
|

|

|

]

[}

[}

)

'

'

'

'

'

)

'

'

'

L. _—ootes

Figure 3: AUTOMATON-SYSTEM BLOCK DIAGRAM*

*From [5], page 30.

14

computer. A brake mechanism locks the camera in its tilt position when power is

removed from the motor.

Only one lens is presently used. Focus is controlled by one stepping motors and iris by
another. The rotation is limited by limit switches. The limit switches preset the counters

at maximum focus and minimum iris associated with the stepping motors.
The control logic has an up-down counter for distance and direction.*
C. The Computer System

The Artificial Intelligence Group computer complex consists of the following parts:

e PDP-10 computer and peripherals
e PDP-15 computer and peripherals (including the robot)

e An interprocessor buffer to connect the two computers.
These are interconnected as shown in Figure 4.

The PDP-10 system has 192K (K == 1024) words of 36-bit memory. 32K is DEC MD10
memory. The rest is Ampex RG10 memory, consisting of one 32K memory with interface
and one 128K memory interface and four modules of 32K each. All memory has four

ports. These are occupied by:

e PDP-1: central processor
e DF10 data channel
e Bryant drum controller

e DA25C interface.

The Bryant drum is a high-speed autolift drum which has a 1.5-million-word capacity. It
is planned that it will be used for swapping and some system files. The drum controller

interfaces directly into the memory rather than going through a data channel.

*From [5], pages 29-82.

15

The DF10 data channel is used to handle I/O from two peripherals: the disk pack drives
and the TV A/D converter.

The interface between the disk pack drives and the DF10 data channel was built by

Interactive Data Systems, Inc.

The disk pack drives are manufactured by Century Data Systems and handle the 20-
surface disk packs. This means that each disk pack has a 5-million-word capacity. The
packs themselves are manufactured by Caelus Inc. The disk pack system is used as

secondary storage.

Currently, we are also using one disk pack drive as a swapping device for the time-sharing

system.

The TV A/D converter is an SRI-designed and -built device. It handles data from the
robot TV camera at a rate of one word every 1.5 microseconds. It is capable of processing
either 120X120 or 240X240 pictures with 32 levels of gray scale.

The DA25C is the PDP-10 side of the interprocessor buffer. It handles data at one 36-bit
word every 8 microseconds. We have programmed it such that the PDP-10 is always in

control and can interrupt any transmission in order to initiate one of its own.

The DA25D is the PDP-15 side of the interprocessor buffer. Each PDP-10 word is split
into two PDP-15 words (18 bits each). It also does the reverse operation. It operates on
the PDP-15 /O bus as a single-cycle device; however, its internal logic uses three cycles

per word.

The PDP-15 has 12K of core memory and an I/O processor. All devices are ‘‘daisy
chained” on the 1/O bus. These include an Adage display, paper tape, DEC tape, A/D
converter, D/A converter, ARPA network IMP, and the SRI robot.

The Adage display provides a high-speed graphics capability. It will be refreshed from the
PDP-15 core. The display lists will be prepared in the PDP-10 and executed from the
PDP-15. Capabilities include incremental mode, print mode, dotted lines, and intensity

control.*

A spectal software inter face was also written for use on the PDP-10

*From [9], pages 15-16.

16

‘05 #bvd ‘fo1] wosy,

L1

+NHLSAS HHLNdWNOD
dNOYD HONIDITTALNI TVIOIJILYYV IdS :¥ 24n314

Interprocessor Channel

POP-10
r m———
KAI:' ll‘(mn -—1' son '—-' “03;:‘ 0AZSC L DAZSD |y
ket KkTw0a | PAGER] 18 : |
AMPEX I |
K 1 ————— |
900 ne SAYANT BRAYANT | |
{ oRUM 1851024 L___.| DAZS r-_....l
AMPEX CONTROL DRUM
32K | I |
900 ns
AMPEX
2K = _@ ROBO
ENI
900 oF10 oce | Contury VEHIC
™1 cHANNEL DISK Disk Drives
AMPEX CONTAOL 0
1/0 BuSS 22K
900 ne
LPI0A
PRINTER AMPEX L—®
nK
900 m VIDE
)
P
r———t——
| oevice | oA
bcios l jMuLTieLexen | AAOS
| SO |
DCI0A Teletypes r ————— -J:-— T —-— E
F r———— '._....l__.' r———=a1
octos | rutume | 31 ruruse ruture | 1| crarac
| oevice T | Device | oevice | TABLE
bt b o1
ARPA
REMOT
NETWORK | __|
e HOST
TUSS
e H Drives Dectepe Drives

o

TUSS

"[67] us paqss083p 83 300fs33us e3yL
‘waysfis butyviado JSI'T 9y} 49PUN UNL 2Q 07 FUO0IPPUNS PUD S3UIINOLQNE

(OHOVIN 219310dW0d-NVHIYOA 40) NVHLY O mojo 03 493nduwiod

CHAFPTER THREE

Shakey’s Model of the World

A. The Robot’s World Model

As a result of our experience with the previous robot system (i.e., the one using the
$1)5-940) and our desire to expand the robot's experimental environment to include
several rooms with their connecting hallways, we have adopted new conventions for
representing the robot’s model of the world. In particular, whereas the previous system
had the burden of maintaining two separate world models (i.e., a2 map-like grid model and
an axiom model), the new system uses a single model for all its operations (an axiom
model); also, in the new system conventions have been established for representing doors,

wall faces, rooms, objects, and the robot’'s status.

The model in the new system is a collection of predicate calculus statements stored as
prenexed clauses in an indexed data structure. The storage format allows the model to be
used without modification as the axiom set for STRIPS’ planning operations (Chapter

Seven) and for QA3.5's theorem-proving activities [14, 15].

Although the system allows any predicate calculus statement to be included in the model,
most of the raodel will consist of unit clauses (i.e., consisting of a single literal) as shown
in Table 1. Nonunit clauses typically occui' in the model to represent disjunctions (e.g.,
box2 is either in room K2 or room K4) and to state general properties of the world (e.g.,
for all locations locl and loc2 and for all objects obl, if obl is at location locl and locl is

not the same location as loc2, then obl is not at location loc2).

We have defined for the model the following five classes of entities: doors, wall faces,
rooms, objects, and the robot. For each of these classes we have defined a set of
primitive predicates which are to be used to describe these entities in the model. Table 1
lists these primitive predicates and indicates how they will appear in the model. All
distances and locations are given in feet and all angles are given in degrees. These
quantities are measured with respect to a rectangular coordinate system oriented so that

all wall faces are parallel to one of the X-Y axes. The NAME predicate associated with

19

each entity allows a person to use names natural to him (e.g., halldoor, leftface, K2090,

etc.) rather than the less-intuitive system-generated names (e.g., d1, f203, r4450, etc.).

Figure 5 shows a sample environment and a portion of the corresponding world model.
2ooms are defined as any rectangular area, and therefore, the hallway on the left is
modeled as a room. There is associated with each room a grid structure that indicates
which portions of the room's floor area have not yet been explored by the robot. During
route planning the grid is employed to help determine if a proposed path is known

blocked, known clear, or unknown.

Four wall faces are modeled in Figure 5. The FACELOC model entry for each face
indicates the face's location on either the X or Y coordinate depending on the face’s
orientation. There is associated with each face a grid structure to indicate which portions
of the wall face have not yet been explored by the robot. This grid is used in searching

wall faces for doors and signs.

Two doors are modeled in Figure 5. The DOORLOC model .entry for each door indicates
the locations of the door’s boundaries on either the X or Y coordinate, depending on the
orientation of the wall in which the door lies. Any opening between adjoining rooms is
modeled as a door, so that the complete model of the environment diagrammed in Figure
5 would have a door connecting rooms R1 and R3. This door coincides with the south

face of room R3 and will always have the status ‘“open.”

The RADIUS and AT model entries for the object modeled in Figure 5 define a circle
circumscribing the object. These entries simplify the route-planning routines by allowing
each object to be considered circular in shape. Our current set of primitive predicates for
describing objects is purposely incomplete; we will add new predicates to the set as the

need for them arises in our experiments.

We do not wish to restrict the model to only statements containing primitive predicates.
The motivation for defining such a predicate class is to restrict the domain of model
entries that the robot action routines have responsibility for updating. That is, it is clear
that the action routine that moves the robot must update the robot’s location in the
model, but what else should it have to update? The model may contain many other
entries whose validity depends on the robot’s previous location (e.g., a statement
indicating that the robot is next to some object), and the system must be able to
determine that these statements may no longer be valid after the robot’s location has

changed.
20

We have responded to this problem by assigning to the action routines (discussed in
Chapters Four and Five) tae responsibility for updating only those model statements
which are unit clauses and contain a primitive predicate. All other statements in the
model will have associated with them the primitive predicate unit clauses on which their
validity depends. When such a nonprimitive statement is fetched from the model, a test
will be made to determine whether each of the primitive statements on which it depends is
still in the model; if not, then the nonprimitive statement is considered invalid and is
deleted from the model. This scheme ensures that new predicates can be easily added to

the system and that existing action routines produce valid models when they are executed.
B. Model-Manipulating Functions

We have designed and programmed a set of LISP functions for interacting with the world
model. These functions are used both by the experimenter (as he defines and interrogates
the model) and by other routines in the system to modify the model. To the experimenter
at a teletype, these functions are accessible as a set of commands. A brief description of

these commands follows.

ASSERT This is the basic command for entering new axioms into the model. The
user follows the word ASSERT by either CUR or ALL to indicate
whether the entries are to be for the current model or are to be
considered part of all models. The system then prompts the user for
predicate calculus statements to be typed in using the QA3.5 expression
input language. After each statement is entered, the system responds
with “OK" and requests the next statement. To exit the ASSERT
mode the user types *‘1.”

FETCH This is the basic command for model queries. The user follows the word
FETCH by an atom form, and the system types out a list of all unit
clauses in the model that match the form. Each term in an atom form
is either a constant or a dollar sign. The dollar sign indicates an *I
don’t care” term and will match anything. The last term of an atom
form can also be the characters “$*" to indicate an arbitrary number of
“I don’t care” terms. For example, the atom form “(AT ROBOT $*)"
will fetch the location of the robot, and the atom form “(INROOM $
R1)"” will fetch a list of model entries indicating each of the objects in
room R1.

21

DELETE

REPLACE

This is the basic command for removing statements from the model.
The user follows the word DELETE by an atom form, and the system
deletes all unit clauses in the model that match the form. Atom forms
have the same syntax and semantics for the DELETE command as
described above for the FETCH command.

This is a hybrid command combining the operations of DELETE and
ASSERT. The user follows the word REPLACE by an atom form and
by a predicate calculus statement. The system first deletes all unit
clauses in the model matching the atom form and then enters the
statement into the model. This command is useful for operations such
as changing the robot’s position in the model, indicating in the model

that a previously closed door is now open, and so forth.*

*From (10, pages 9-15.

22

PRIMITIVE PREDICATES FOR THE ROBOT'S WORLD MODEL

Primitive

Predicate Literal Form Example Literal
FACES

type type(face"face') type(£fl face)

name name(face name) name(fl leftface)
faceloc faceloc(face number) faceloc(fl 6.1)

grid grid(face grid) grid(fl gl)
boundsroom | boundsroom(face room direction) | boundsroom(fl rl east)
DOORS

type type(door''door") type(dl door)

name name(door name) name(dl halldoor)
doorlocs doorlocs(door number number) doorlocs(dl 3,1 6.2)
Jjoinsfaces | joinsfaces(door face face) joinsfaces(dl fl £2)
Joinsrooms | joinsrooms(door room room) Joinsrooms(dl rl r2)
doorstatus | doorstatus(door status) doorstatus(dl "open")
ROOMS

type type(room"room™) type(rl room)

name name(room name) name(rl K29090)

grid grid(room grid) grid(rl gl)

OBJECTS

type type(object”object™) type(ol object)

name name{(object name) name(ol boxl)

at at(object number number at(ol 3.1 5.2)
inroom inroom(object room) inroom(ol rl)

shape shape(object shape) shape(ol wedge)
radius radius(object number) radius(ol 3,1)
ROBOT

type type("robot"" " robot") type(robot robot)
name name("robot" name) name(robot shakey)
at at("robot" number number) at(robot 4.1 7.2)
theta theta("robot" number) theta(robot 90.1)
tilt tilt("robot" number) tilt(robot 15.2)
pan pan(''robot" number) pan(robot 45.3)
whiskers whiskers("robot"integer) whiskers(robot 5)
iris iris("robot" integer) iris(robot 1)
override override(''robot"integer) override(robot 0)
range range("' robot" number) range(robot 30,4)
tvmode tvmode('robot" integer) tvmode(robot 0)
focus focus("robot" number) focus(robot 30.7)

Table 1: PRIMITIVE PREDICATES FOR THE ROBOT'S WORLD

*From [10f, Page 11

MODEL*

23

Ve

‘&1 abod ‘fp1] wos,

+TIAON TTdWVXE :g 2anS1q

ROOMS

typeir! room)
namelr! meinroom)
gridirt gt)

FACES

typeltl face)

namelf1 nfrl)

faceloclf 15.0)

grid(f1 g4)
boundsroomif1 1 north)

DOOORS

typeldl door)
nameldt officedoor)
doorlocs{d! 10.0 12.5)
joinsfaces{dl f1 2)
joinsrooms(dt rt 52)
doorstatusid! open)

OBJECTS

type(o! object)
namelo! box)

at{ot 14.1 20.3)
inroomlol r2)
shape(ot rectangular).
radiustiol 1.5)

typelr2 room)
name(r2 office)
grid(r2 ¢2)

typelf2 face)

name(f2 sfr2)

faceloc(t2 15.5)

grid(f2 gs)
boundsroom(f2 r2 south)

typeld2 door)
name(d2 halldoor)
doorfocsid2 22.5 25.0)
joinsfaces(d2 ¢4 3)
joinsrooms{d? r3 r2)
doorstatus(d2 closed)

ROBOT

typelrobot robot)
namel(robot shakey)
at(robot 7.3 10.4)
theta(robot 90)

typeir3 room)
name(r3 hall)
gridir3 g3)

typelt3 face)

namel(f3 wir2)
facetoc(f3 5.0)

grid(f3 g6)
boundsroomif3 r2 west)

15

aq3 jo 1red sadoad oy SurpeSodsaul £q) Ty [l AY] WIUOI L[qBAISIUOD P[NOY 3UQ
*30ue)sip padinbal aq} £q plemdlo) Jq3iedys 41 3uljjod uayy pue jods jo8ae} ay) 208) 07 I
Sutuimg 9sd1j £q UO11RI0| UAAIS € 0} 10q0I Y3 sAa0owW 13t suo ‘sjdmexs Jof ‘103jje 1qdim
£91a190e 1BY) YoIgm [dpow oY) jo jaed Lue 03 ssadoe Suljueld a10jaq PojIIas sef L)AL UB
129} 2Insud 09 suoisiaoid [e1dads 9ARY |spoW PlIOA §,70q0d 94} Ul SN Jejnotpied asoy)
§5200€ U®D J3sh 3} Y2Igm £q SUOIPOUNJ 3Y) ‘MON ‘[9pPOW PjIoM §,90qod 3} Ui pajdajjal

81 PjIoM §,30Q0d 943 JO 91RIS JUALIND 943 {(o8eyded siy) Ul suolydunjy ayy “3'1) sy]

uo s[[ed £q pajpuey aJe j0q0l 94} 03 JISN 9} WOJJ SIOPI0 :S[PUURYD [RUOIIIIIIPIUN OM)
ojul pajeledas ale 10qOd 94} pue J3SN 9} UIIMISQ SUOIIRIIUNWWO,) "JoUURW SUIMO[[0]
a3 Ul SuIY20[Iqul AIessa02u 9y} saplaoad adeyded aIem)jos [9A5[-MmoO[SIYJ, ‘|nJssadons
U33q daeq 09 £31A1n0® e} sawnsse ey Sulgifue Sulop alojoq £)1Al1108 40qod UL UO
Sur13es,, Jo vonnddwod ayy Swmimayuod £q Luodgdukse sigy jo 20ueziuS00 9y} ISNW Josn
o) ‘sng], -9retidordde se juoixo ue jeaid se 0} L|snouoigoufse Suireyaq se 1040l 27}

MIIA 07 Jasn Y3} Nwdad 0 suied 2313 waye) ARy 9 ‘A[MO[s £IFA §3A0OW 10qOd oY) TG

‘smeiSoad [oas|-say3ig

01 pajuasald aoej 9y 9°1 ‘syTT 243 Jo 9oe) Jaddn 9y} 9qIIdSIP [[RYS am UOIIIS Sy U]

"[6] 30 © xipuaddy ur paqriosap jo20302d 33 07

SuipIoode 3[dIgaA j0qod ag) pue Jndwod g1-Jd 27 Y14 2)eAUNUWWOD ‘UIny ul ‘syry|
YL SV 9s9Y3 Jo uoijetado ag} [odyuod ‘aaly Isydeq)) ui paqidasop aq 0} ‘(sy7][) suoryse
[9A3[-29RIpaWIANUI 3], ‘WSS 39 JO [2A3] PIIUAII0-aIemple] ‘Woyj0q Y3 pur safeyoed

3IeM1jOs 10qO0J Jofem WIIMIaq 3IBJIANUI) AULIP ,,‘SYT],, IO ‘SUOIIOR [9A3]-MO] 9],

uoIdINpoIIU] 'Y

8UOIPY 1263T-MOT YL

4NOod HAIdVHO

This sort of synchronization is effected in another circumstance having to do with
interlocks between activities. In particular, each activity has associated with it certain
conflicting activities. (For example, one cannot take a TV picture while the robot’s head
is panning.) A set of initiation functions automatically take cognizance of all possible
conflicts: each ensures that all potentially conflicting activities are settled before
initiating its own activity. For the purpose of programming actual use of the robot,
however, one should note that settling of an activity does not necessarily mean its
successful completion. For example, a roll can terminate by the robot unexpectedly
bumping into some obstacle—this will ‘‘settle” the roll, but the robot cannot be assumed

to have attained its destination.
B. Measurement and Control

Before procceding further, we shall define the precise robot capabilities that the LLAs
control. Shakey can move about the floor by turning his body and by rolling straight
forward or backward, and he can pan and tilt his head. He can take pictures and range-
finder readings, and he can adjust the focus and iris states of the TV camera’s lens.
Finally, he can set some global parameters both for taking TV pictures and for rolling or
turning. These ten activities will be more fully explained below. First we shall describe

the measurement conventions in Shakey’s environment.

Angles are measured in degrees, and we will call the principal value of an angle that value
between -180° and +180°. The bearing of the robot is a horizontal angle referred to the
positive direction of the global y-axis; thus the robot is parallel to the x-axis in the
negative sense when its bearing is 90°. The pan angle of the robot’s head is a horizontal
angle referred to the robot’s bearing, and the tilt angle of the robot’s head is a vertical
angle measured from the horizontal plane. Thus, when the robot has its pan angle at zero
and the tilt angle at-45°, the range-finder and TV camera are pointed at the floor right

before its very wheels.

We turn now to optical values. The iris of the TV camera is set in exposure value units
(EVs), which have a logarithmic relation to f-numbers: increasing the EV number by one
doubles the amount of light arriving at the inner regions of the TV camera. Focus values
and range-finder readings are distances in feet from the intersection of the axes about
which the robot’s head tilts and pans. That point in turn is about 4 feet 1-1/2 inches
above the floor and 9 inches forward of the axis about which the robot turns, when the

robot is standing (or sitting or whatever it does) on a level flat floor.

26

Having covered the numeric quantities in the robot’s world, we have but a few other items
to discuss. Perhaps the simplest of these to describe is a TV picture: it resides on a disk
file in FORTRAN binary format. Now TV pictures are digitized in square arrays of
picture elements; the size of the array is constant, but one can select two coarsenesses:

120 or 240 picture elements on a side. One can, however, alter the configuration of the
array for the sake of special stereo optics. These two options are combined into one

number called the tvmmode, as follows:

“tvmode: 0 means 120 X 120 nonstereo
“tvmode’ 1 means 120 X 120 stereo
“tvmode’ 2 means 240 X 240 nonstereo

“tvmode’ 3 means 240 X 240 stereo.

To explain the last two quantities of this section, we must first explain the two main
tactile sensors of the robot and how they interact with the roll and turn activities. The
tactile sensors are seven catwhiskers and a pushbar; each catwhisker can signal
engagement with an obstacle, and the pushbar can signal each of two levels of pressure:
mere engagement and hard contact. All nine of these conditions are reflected in a
quantity called the whiskerword; to a first approximation each of these conditions has its

own bit in the whiskerword, whose format is shown in the following table:

Bit No. Octal Code Meaning of ‘1"
21 040000 Pushbar is engaged and ready to push.
23 010000 Left front whisker is engaged.
25 002000 Front horizontal whisker is engaged.
26 001000 Right front whisker is engaged.
28 000200 Right rear whisker is engaged.
29 000100 Encountered immovable object and backed off.
30 000040 Rear whisker is engaged.
33 000004 Left rear whisker is engaged.
35 000001 Front vertical whisker is engaged.

The robot has a couple of motor reflexes pertinent to this discussion: it will stop moving

whenever the pushbar becomes disengaged, and it will not move while a catwhisker is

27

engaged. Ilowever, these two reflexes can be overridden selectively; the corresponding
orders are sent to the PDP-15 by means of the override activity and the override code

word, which has the following significance:

Code Word Pushbar Catwhisker
0 Enabled Enabled
1 Enabled Overridden
2 Overridden Enabled
3 Overridden Overridden

C. The LLA Portion of Shakey’s Model

We will now enumerate and define the 17 predicates by which the robot’s lowest-level

state is represented in the axiomatic world model. They are:

Atom in Axiomatic Model

(AT ROBOT xfeet yfeet)

(DAT ROBOT dxfeet dyfeet)
(THETA ROBOT degreesleftofy)
(DTHETA ROBOT dthetadegrees)
(WHISKERS ROBOT whiskerword)
(OVRID ROBOT overrides)

(TILT ROBOT degreesup)

(DTILT ROBOT ddegreesup)

(PAN ROBOT degreesleft)

(DPAN ROBOT ddegreesleft)
(IRIS ROBOT evs)

(DIRIS ROBOT devs)

(FOCUS ROBOT feet)

(DFOCUS ROBOT dfeet)

(RANGE ROBOT feet)

(TVMODE ROBOT tvmode)
(PICTURESTAKEN ROBOT zpicturestaken)

28

Affected By

ROLL
ROLL
TURN
TURN
ROLL, TURN
OVRID
TILT
TILT
PAN
PAN

IRIS

IRIS
FOCUS
FOCUS
RANGE
TVMODE
SHOOT

The two predicates AT and THETA give the position and bearing of the robot itself in
the global coordinate system; the statistical uncertainties are given by the predicates DAT
and DTIETA, which are separated from AT and THETA to facilitate planning. The
state of the whiskerword is updated whenever a ROLL or TURN settles, and the OVRID

predicate reflects the state of the overrides in the robot.

The TILT and PAN predicates refer to the direction the robot’s head is pointed. DTILT
.and DPAN give corresponding error estimates. All three angles (tilt angle, pan angle, and
heading THETA) are stored as their principal values. RANGE gives the value resulting
from the most recent range-finder reading. The PICTURESTAKEN predicate, which we
will describe more fully in our discussion of the SHOOT activities, gives the approximate

number of pictures taken to date. The meanings of the rest of the predicates should be

clear from the previous discussion.
D. The LLAs

The predicates are the means by which the robot tells the user about its state; the LLAs
provide the means by which the user tells the robot to alter its state. One should
understand that this clean division is largely just formal; in practice an interrogation of a
predicate is intercepted by a function that ensures settling of any relevant robot activities
before proceeding to the actual access. Also, the initiation of an action does not guarantee
its completion; actions may terminate for a variety of reasons, such as engagement of limit
switches or malfunctions in the telemetry link. The state of the system after an action

may be determined by investigating the model.

The following functions initiate fundamental low-level activities (whenever numeric
parameters are used, negative numbers are permissible and mean motion in the direction

opposite to that indicated):

TILT degreesup tilts the robot’s head upward by ‘‘degreesup’’ degrees. The motion

can be prematurely terminated by a limit switch.

PAN degreesleft pans the robot’s head by ‘‘degreesleft’” degrees to the left or far

enough to activate a limit switch.

FOCUS feetout the TV camera is initially focused on a plane removed by some focal
distance from the center of the head’s gimbals; this function increases that distance by

“feetout’ feet. Of course the range of focal distances is limited by limit switches.

29

IRIS evs opens the robot’s iris (on the TV camera) by “evs” EVs. Thus if “‘evs” has
the value 1, this form will double the amount of light getting into the TV camera. There

are limits for this activity too.
OVRID overrides set the overrides as specified by the “overrides” code work.
TVMODE tvmode sets the TV mode as specified by the “tvmode’ code word.

RANGE reads the robot’s range-finder; this automatically includes turning on the

range-finder and waiting for it to warm up.

SHOOT puts a TV picture onto the disk file “TV.DAT.” The picture is taken
according to the current TV mode. Assuming correct operation of hardware and
software, a subsequent examination of the PICTURESTAKEN atom (in the world model)
will yield a positive integer giving the number of current pictures in a series (1, 2, 3,...)
begun when the robot system was loaded or initialized. In the event of an unrecovered
system malfunction (e.g., transmission error), the value stored with PICTURESTAKEN

will be the negative of the serial number of the last successfully taken picture.

ROLL feet tells the robot to roll forward by ‘‘feet” feet. This activity has three
normal ways of prematurely terminating: the robot can come into contact with an
obstacle, engaging a catwhisker; it can lose contact with an object it is pushing,
disengaging the pushbar; or it can encounter an immovable object, causing the pushbar to
come on hard. The first two conditions cause the robot to stop by reflex actions that can
be overridden; the last causes the robot to attempt to free itself using more complex
evasive actions in a reflex that cannot be overridden. When the robot encounters an
immovable object, it will not only stop, but it will back away from it by some distance,
currently a constant 6 inches. (Of course, the information in the model will be correctly
maintained.) The whiskerword in the model is updated at the end of a ROLL or TURN;
it contains the description of the current state if the catwhiskers and pushbar are
returned from the robot, but it has another bit for immovable objects—this bit showing
the history of an event rather than showing a current state. This bit is set only when the

whiskerword is updated the first time after hard contact.

TURN degreesleft tells the robot to turn to the left by “‘degreesleft’” degrees.
Otherwise the above description of the ROLL activity applies excepting only the way

immovable objects are evaded. In this case, the robot turns back; currently it turns back

to its initial heading.

30

The functions discussed so far that initiate motions have been incremental in form if not
in essence. Ilowever, even this level of robot software has a memory of the various
aspects of the robot’s position in the axiomatic model so dutifully maintained by the
settling functions. Capitalizing on this circumstance, we have also provided some
functions to initiate motions to a given goal (rather than by a given amount). Although
these functions are formally and conceptually outside the lowest LISP level of robot
software, they have sufficiently simple internal structure that it is convenient to describe
them here rather than in the next (ILA) chapter. With one exception we expect their

meanings to be self-evident. These additional initiation functions are:

(TILTO degreesup)
(PANTO degreesleft)
(FOCUSTO feet)
(IRISTO evs)

(ROLLTO xfeet yfeet)
(TURNTO degreeslefttofy).

The exception is ROLLTO: it must first turn the robot to point toward its goal, so it
must do (and does) more than simple calling the corresponding incremental function with

the difference between the desired and current position.
E. Summary

Table 2 is a summary of Shakey’s low-level activities. Figure 6 sketches how these

activities fit into the overall system control structure.*

*From [11], pages 25-83.

31

43

‘b5 abod [11] wody, .

+x»LOd0Y 40 SHILIALLOY THAHT-MOT % ®Iq®8L

Table 2%*

LOW-LEVEL ACTIVITIES OF ROBOT

Initiation Functions

immovable object-backed off

Primary Absolute Conflicts (+self) Terminating Conditions Needs f]
(TILT degreesup) (TILTO degreesup) RANGE , SHOOT upper limit (35°) TILT,DTIL
lower limit (-45°)
(PAN degreesleft) | (PANTO degreesleft) RANGE, SHOOT left timit (116°) PAN,DPAN
right limit (-107°)
(FOCUS feetout) (FOCUSTO feetout) SHoOOT near limit FOCUS , DFO(
far limit
(IRIS evs) (IRISTO evs) SHOOT open limit IRIS,DIRIS
closed limit
(OVRID overrides) - TURN, ROLL - -
(TVMODE tvmode) - SHOOT - ;
(RANGE) -- TURN, ROLL, TILT ,PAN - .
(SHOOT) - TVMODE, ROLL, TURN, - TVMODE, PI(
TILT,PAN, RIS ,FOCUS
(ROLL feet) (ROLLTO xfeet yfeet)* TURN, RANGE ,,OVRID, bump-ignored AT ,DAT, THI
SHOOT ,ROLL bump-stopped b
(TURN degreesleft)| (TURNTO degreesleft) drop object-stopped THETA ,DTHI

*
ROLLTO evokes the TURN activity,

8-£L68-VL

IYYMAHVH NV 3DOVNONVT INIHOVA T3A3T woLii08

!

Sidl SNO04

»/a

olsiyl

01SNJ04

3ONVH LOOHS 3QOWAL STy

vyt A

oLt

I

Nvd NYNL

A

!
a

OLNVd

OLNHNL

SNOILOV T3A3T-3LVIGIWHILNI

oL770d

>

t !

[\
a

CHAFPTER FIVE

The Intermediate-Level Actions

The intermediate-level actions (ILAs) are described in excerpts from two
reports [10 and 11]. Each exzcerpt is more-or-less self contained (and thus
some redundant material ts reprinted), but both should be read for a

complete picture. The first excerpt discusses early plans for the ILAs:
A. Introduction

As with most programming tasks, the problem of programming robot actions is simplified
when it is done in terms of well-defined subroutines. At the lowest level it is natural to
define routines that have a direct correspondence with low-level robot actions—routines
for rolling, turning, panning, taking a range reading, taking a television picture, and so
forth. However, these routines are too primitive for high-level problem solving. Here it is
desirable to assume the existence of programs that can carry out tasks such as going to a
specified place or pushing an object from one place to another. These intermediate-level
actions (ILAs) may possess some limited problem-solving capacity, such as the ability to
plan routes and recover from certain errors, but the ILAs are basically specialized
subroutines. None of these routines has as yet been written. However, considerable
thought has been devoted to their design, and this section describes our plans for a set of

ILAs that are suitable for use with the STRIPS problem-solving system.

Perhaps the most difficult problem that confronts the designer of ILAs is the problem of
detecting and recovering from errors. Sometimes errors are detected automatically, as
when an interrupt from a touch sensor indicates the presence of an unexpected obstacle.
Other times it is necessary to make explicit checks, such as checking to be sure that a
door is open before moving through it. When an error is detected, the problem of
recovery arises. This problem can be very difficult, and is one aspect that distinguishes

work in robotry from other work in artificial intelligence.

It is natural to think of an intermediate-level action as a composition of somewhat lower-

level actions, which in turn are compositions of lower-level actions. While this

35

bierarchical organization possesses many advantages (and it is in fact the organization
that we use), it is not ideally suited for error recovery. Errors are made most frequently
at low levels by routines that are too primitive to cope with them. An error message may
have to be passed up through several levels of routines before reaching one possessing
sufficient knowledge of both the world and the goal to take corrective action. If any
routine can fail in several ways, this presents the highest-level routine with a bewildering
variety of error messages to analyze, and requires explicit coding for a large number of

contingencies.

To circumvent this problem, we have chosen to have the subroutines communicate
through the model. With a few special exceptions, neither answers nor error messages are
explicitly returned by subroutines. Instead, each routine uses the information it gains to
update the model. It is the responsibility of the calling routine to check the model to be
sure that conditions are correct before taking the next step in a sequence of actions.
Detection of an error causes returns through the sequence of calling programs until the
routine that is prepared to handle that kind of error is reached. In the following sections

we describe in more detail the formal mechanism by which this is done.

B. The Markov Algorithm Formalization

1. General Considerations

The formal structure of each ILA routine is basically that of a Markov algorithm.* Each
routine is a sequence of statements. Each statement consists of a statement label, a
predicate, an action, and a control label. When a routine is called, the predicates are
evaluated in sequence until one is found that is satisfied by the current model. Then the
corresponding action is executed. The control label indicates a transfer of control, either

to another labeled statement or to the calling routine.

Table 3 gives a specific example of an ILA coded in this form. This routine, gotoadjroom
(room1, door, room2), is intended to move the robot from room1 to room2 through the
specified door. The first test made is a check to be sure that the robot is in rooml1. If it
is not, an error has occurred somewhere. Since this routine is not prepared to handle that
kind of error, no action is taken, and control is returned to the calling routine. The

subroutine return is indicated by the “‘R' in the control field.

*It also bears a close resemblance to Floyd-Evans productions.

36

Under normal circumstances, the first two predicates will be false. The third predicate is
always true, and the corresponding action sets the value of a local variable “s” to give the
status of the door. The function “doorstatus” computes this from the model, and
evaluates to either OPEN, CLOSED, or UNKNOWN. Rather than tracing through all of
the possibilities, let us consider a normal case in which the door is open but the robot is
neither in front of nor near it. It this case, the action taken is the last one,
navto(nearpoint(room1,door)). Here the function ‘“‘nearpoint” computes a goal location
near the door. The function “navto" is another ILA that plans a route to the goal point
and eventually executes a series of turns and rolls to get the robot to that goal. Of
course, unexpected problems may prevent the robot from reaching that goal.
Nevertheless, whether navto succeeds or fails, when it returns to gotoadjroom the next
predicate checked will be that of statement 4. If navto succeeds and the robot is actually
in front of the door, the bumblethru routine will be called to get the robot into room?2. If
navto had failed and the robot is not even near the door, navto will be tried again.
Clearly, this exposes the danger of being trapped in fruitless infinite loops. We shall

describe some simple ways of circumventing this problem shortly.

SUBROUTINE GOTOADJROOM(ROOM1,DOOR, ROOM2)

Label Predicate Action Control
1 |~ in(rooml) R
2 lin(room2) R
3 |T setq(s,doorstatus(door)) 4
4 |infrontof(door)Aeq(s,OPEN) |bumblethru(rooml,door, room2) 2
near(door) Aeq(s,OPEN) align(rooml,door, room2) 4
near(door) Aeq(s, UNKNOWN) doorpic(door) 3
eq(s,CLOSED) R
T navto(nearpt(rooml,door)) 4

Table 3: SUBROUTINE GOTOADJROOM (ROOM1,DOOR,ROOM?2)

37

2. Predicates and Actions

Thé predicates used in the ILAs have the responsibility of seeing that preconditions for an
action are satisfied. In general, the evaluation of predicates is based on information
contained in the model. If this information is incorrect, the resulting action will usually
be inappropriate. However, the act of taking such an action will frequently expose errors
in the model. When the model is updated (which typically occurs after bumping into an
object or analyzing a picture), the values of predicates can and do change.- Thus, the
values of the predicates will depend on the way the execution of the ILA proceeds, and

will steer the routine into (hopefully) appropriate actions when errors are encountered.

The actions can be any executable program. The most common actions are to compute
the values of local variables, update the model, call picture-taking routines that update
the model, or call other ILAs. Only the first of these causes any answers to be returned
directly to the calling program. This constraint of communicating through the model
occasionally leads to computational inefficiencies. For example, the very computation
used by one routine to determine that it has completed its job successfully may be
repeated by the calling routine to be sure that the job has been done. While some of
these inefficiencies could be eliminated with modest effort, they appear to be of minor
importance compared to the value of having a straightforward solution to the problem of

error recovery.

3. Loop Suppression

We mentioned earlier that the failure of a lower-level ILA might result in no changes in
the model that are detected by the calling ILA. In this case, one can become trapped in
an infinite loop. There are a number of ways to circumvent this problem. Perhaps the
most satisfying way would be to have a monitor program that is aware of the complete
state of the system, and that could determine whether or not the actions being taken are

bringing the robot closer to the goal.

An alternative would be to have each ILA keep a record of whether or not its actions are

leading toward the solution of its problem.

The simplest kind of record for an ILA to keep is a count of the number of times it has

taken each action. In many cases, if an action has been taken once or twice before, and if

38

the predicates are calling for it to be taken again, then the ILA can assume that no
progress is being made and return control to the calling program. This strategy can be
improved by computing a limit on the number of allowed repetitions, and making this
limit depend on the task. For example, if the action is to take the next step in a plan, the
limit should obviously be related to the number of steps in the original plan. Both of
these strategies can be criticized on the grounds that they are indirect and possibly very
poor measures of the progress being made. However, they constitute a frequently

cffective, simple heuristic, and will be used in our initial implementation of the 1LAs.

4. Status and Implementation

As mentioned earlier, none of the ILAs has been implemented to date. However, some 15
have been sufficiently well defined to allow coding to begin. These are listed in Table 4
together with the ILAs that they call. The specification of the ILAs has also led to the
specification of a number of specialized planning and information-gathering routines. The
planning routines include programs for planning pushing sequences, tours from room to
room, and trips within a single room. These will be developed along the lines of the
navigation routines that were one of our earliest efforts on this project. The information-
gathering routines are primarily special-purpose programs for processing television
pictures. For example, PICLOC is a special-purpose routine that uses landmarks to
update the location of the robot, and CLEARPATH analyzes a picture to see whether or
not the path to the goal is clear. These routines are described in Chapter Six and

Appendix B.

One aspect of implementing the ILAs that has not yet been resolved concerns whether the
ILAs should be written as ordinary LISP programs, or should be kept in tabular form as
data for an interpreter. It is quite easy to go from a representation such as that in Table
3 to a LISP program realization; the basic structure is merely a COND within a PROG.
Iowever, the use of an interpreter would simplify the implementation of the loop
suppressor, and would also simplify monitoring and the incorporation of diagnostic
messages. In addition, the same program that interprets the ILAs might be used to
interpret the plans produced by STRIPS; if we can make these structures identical, the
same executive program will be usable for both. Uniformity in program structure is also

important for the plan generalization ideas (to be discussed in Chapter Eight).*

*From [10], pages 25-32.

39

oy

‘1§ abod ‘fp1] wosg,

+*SNOILOV TIAUT ALVIAAWHILNI ¥ 9IqBL

INTERMEDIATE LEVEL ACTIONS.

ROUTINES MARKED BY ASTERISKS ARE VIEWED AS PRI]

ILA

Routines Called

Comment

PUSH3
PUSH2
PUSH1
GETTO
GOTOROOM
GOTOADJROOM
NAVTO
GOTO1
GOTO
POINT
TURN2
TURN 1
ROLL2
ROLL1

ROLLBUMP

PLANOBMOVE#*, PUSH2

PICLOC*, OBLOC*, NAVTO, ROLLBUMP, PUSH1
ROLL*

GOTOROOM, NAVTO

PLANTOUR*, GOTOADJROOM

DOORPIC*, ALIGN, NAVTO, BUMBLETHRU
PLANJOURNEY*, GOTOl

CLEARPATH*, PICDETECTOB*, GOTO
PICLOC*, POINT, ROLL2

PICTHETA*, TURN2

TURNBACK*, TURN1

TURN*

ROLLBACK*, ROLL1

ROLLx*

ROLLBACK*, ROLL1

Can plan and execute a se
Check if object being pusl
Basic push routine; assume
Highest level go-to routii
Can plan and execute a se:
Tailored for going throug
Can plan and execute a tr
Recovers from errors due

Executes single straight-
Orients robot toward goal
Responds to unexpected bu
Basic turn routine; expec
Responds to unexpected bu
Basic roll routine that e

Basic roll routine that e

IR L e LA S b DAl et A St Shannh Al St St haShe s LGRS |
Il U] "3[qe) 3g) jo uolNAXa jeuimsd} o} Jossarddns dooj e asneds [[im goIgm ‘sso[Ingj

9q ueo woloe ue ‘L||eulj pue ‘2jedipaid anij € YA 3uUl| € punoj Suiaey oYM I[qr)

9Y3 Jo wo330q 39 0} 198 Ued ueds [elyuanbas oy} (09-03 [e10ads ® Juigoeas Aq ‘Adydxo
p239[dwmod 3q ued 91 :sfem 92473 Ul PIjeUiWIa) 3q AW WOIYNIAXY °9[qe) 23 Ul aul| Isdiy
aq) g)A sUI33q Ueds 3F) ‘Palarusd 3sdiy SI 9]qe) AONIBJY 9Y) UI[AN "IOUIWWOIAI O} SI ULIS
37} YOIgm 9e 3]|qe) 33 Ul 3UI[€ JWeU [[I1a 31 JO ‘3[qe) 3g) JO UOIINIIX3) jo uolpajdmod
29B21pUI JIYIA [[IA 91 paMmO][0] §1 03-03 3y} pue ‘pamdojlad are mol jeY) Ul (Lue

J1) sUOI1d® 2Y) puUE $2)RUIWIY) UEIS 9} USY], "dNI) sl 33e2ipaid 250Ym PUNO) SI A0d € [13UN
auo £q auo sajedipald 9g) Suiysay ‘smod §,3[qe} Ay g3noay) ueds [eljuanbas € si ntaed
TOIIMIAXI d1IslIajoeleyd 3], ‘UOIYsej AUIINOIQNS [BUOIIUIAUOD 3F) Ul SWNSII 0} UONNIIXI
§,2Uijnod 3ulf[ed 3Y) Sulsned ‘asead (oD 3[qe) Y} JO UOIINIAXI jey) Lj1vads L[[ruorydo

ued (,,09-03,, 343 Sulj[ed U33Q ARY M [OIIYM) WIAN! 5] SIY], "3[qe) 9Y3 Ul 3UI| JOY}O JWOS
Jo 13qe] 2y £[[euly pue ‘pawiojiad aq 03 sUOIdE Jo dduanbas € ‘aredipald Aq pomoj[o}

St gOIgA ‘[3qe| ® 4)iA §)Je)s M0l IRy °JeWlIO) [€d1)UIPI JO SMOJ JO WOI}II[[0D PIIIPIO U sI
9[qe) AOYIe]y ® jo jeullo} 37], °3duanbaes 11999 SUITIWIANGP 10] B1I91ID Y9 pue paurlojsad

3q 03 suorjde Suifj1oads ‘ajqes AoyIepy Y3 st a8enlue| AojIe|y 3y} jo qded [BI3Ud I,
a8en3usT AONIBN YL ‘g

‘wyjlIoS[e uoneSiaeu WooJeI}Ul 3Y) PUB Sy [1UILIND

93 jo uoiytsodxa jatiq e pue aSenSue| Ao)YIe|y 3y} Jo U0IdIIISIP JOLIq ® O) UOISSNISIP
Juasadd 97} suyyuod [[I4 24 INq ‘sy]] oY) salmedmodde jBY) sUOPUN) JS|T Ldelfixne

Jo Apoq a3ie| € st 2Joq], ‘SW{}II0S[e AON IR\ O} IDUR[QUIISAI §)1 JO ISNEBIAQ AOYJEN [[
am a3endue| € Ul UM 318 SY7][Y[, '10qOd 34} IA0W L[|BN)IR O} PIYOAUI e $IUIINOI
uoljoe Sutpuodsaliod) pue ‘Suruue|d Joj pesn ate siojesado :siseq Suimo|[oj ay) UO
.S10retodo,, woly s3ulpnod uoljoe,, GsINSuNSIp am I3 °(uaAag 1adey)) 99s) sioelodo

SAIYLS 297 YA pajeIoosse SsUInod Uoljde ag) ale (sy7]]) SUCIDY [9Ad]-djelpourdaju] oy |,

uoljdonpoJdiuy °y

sparudwa)dwis a4am Rayy v ey T 9y} €3q14089p 3d420T2 pu0IaIg Y[

The actions called for in an ILA may be LLAs, other ILAs, or arbitrary programs (usually
coded in LISP). Since the Markov interpreter is itself a LISP program, an ILA can call

itself recursively.

The “‘go-to” part of a Markov table line is interpreted after completion of the action part.
In its simplest case, the “go-to’ consists of the label of a line at which to continue the
search for a true predicate. If several lines have the given label, one of the lines is
arbitrarily chosen; if no lines have the given label, one of the lines is arbitrarily chosen; if
no lines have it or if it is NIL, execution is terminated. (NIL is our conventional explicit

return.) The other case involves “loop suppression’ and will be discussed below.

A Markov table is generally a sequence of actions that would transform an initial state
into a final “‘goal” state via a linear sequence of intermediate states. Whether an action is
applicable to a particular state can usually be tested by a relatively simple predicate—the
one heading the table line with the action. Since actions in the real world frequently fail
to achieve their desired results, the Markov interpreter determines which action to execute
by testing the state predicates one by one, starting from the goal predicate (on the top
line) and working backward (i.e., down the table) until a true predicate is found. Markov
operators typically follow the execution of any component action by starting again with
the goal predicate. In its simplest form, each line of a Markov table would contain one of
the state predicates and the operator to be applied to that state; its ‘‘go-to’’ would specify
the first line, which contained the goal predicate and an explicit return. Falling off the
end of a Markov table thus corresponds either to a drastic failure of one of the component
actions or to an inappropriate application of the Markov operator. Of course, persistent
failure of a component action to achieve its desired effect, i.e., to produce a state
satisfying a predicate higher in the table, would cause indefinite looping in such a Markov
table. To circumvent this possibility without requiring specific consideration in each
Markov table, we introduced “loop suppression” into the Markov interpreter. Whenever
the predicate of a line is found to be true, a counter is incremented and checked against a
limit before the line's action is executed; if the counter becomes greater than the limit,
then interpretation of the table is terminated without execution of the action. Thus, if
the limit for a line is three (this is the current default value) then the action(s) on that
line will be executed a maximum of three times; if the line’s predicate is found true a
fourth time, the table will return to the operator that invoked it. Of course, one can

specify a limit for a table line rather than accepting the default value. There is an

42

alternative form for the *‘go-to” just for this purpose: rather than being just a label, it
can be a two-element list. In this case, the first element is the label, and the second
element is the loop-suppression limit for that line; it is evaluated only once, at the time of

the first loop-suppression check for that line.

Table 5 illustrates the Markov language by presenting the actual code for the lowest-level
ILA that pushes an object. Here, line 10 does some initialization; the action [i.e., the
(SETQ XYTARG ...)] is always performed because its predicate T is always true. Then
line 20’s predicate checks whether the pushing operation is finished by means of its
(NEARENOUGH OB XYTARG TOL) predicate; if this is the case, then no actions (i.e.,
NIL) are performed, and control jumps to the label CLEANUP for some post-processing
before exit. Line 25's predicate similarly determines whether the object’s position is
known closcly enough to continue the pushing operation. (This may not be the case either
initially or as the result of the object dropping off the pushbar during a push.) Line 30
causes the table to exit (via CLEANUP) if the object is past its target. Line 40's
predicate is true if the robot has just pushed the object into a wall, and finally, line 50’s
predicate is true if the robot has proper contact with the object. Line 10 and the lines
starting with the label CLEANUP are representative of a more usual programming
language, with the normal execution being sequential. Lines 20 through 50, however, have
the characteristic execution pattern of the ILAs: a loop testing for the main goal and
various subgoals and error conditions and recycling after any action is performed. This
particular ILA is designed to be especially simple because it is intended to be embedded in
several more layers of ILA before STRIPS becomes concerned with their robustness. Even
STRIPS-visible ILAs are called by PLANEX (see Chapter 8) from its execution tables, so

it is perfectly acceptable for this lowest-level pushing operator to fail as readily as it does.

C. The Actions

The following are brief descriptions of the present ILAs. The control relations among the

ILAs and between them and the rest of the system are shown in Figure 7.

ILAs that affect the state of the world have responsibility for making corresponding
changes to Shakey’s axiom model of the current world. Such changes are mentioned
below wherever relevant; ““$" will be used to denote unspecified or changing values in the

model.

43

GOTHRUDR(DOOR FROMRM TORM) moves the robot from room FROMRN
to room TORM via door DOOR. It assumes only that the robot is in FROMRM; it uses
NAVTO to get to the door and BUMBLETHRU to go through it.

BLOCK(DX RX BX) pushes box BX within room RX to a position blocking door DX.
This routine directly replaces the axiom (UNBLOCKED DX RX) by (BLOCKED DX RX
BX) in the model.

UNBLOCK(DX RX BX) pushes box BX within room RX to a position in which it
does not block door DX; it directly replaces the axiom (BLOCKED DX RX BX) by
(UNBLOCKED DX RX). This routine prefers to push the box to the far side of the door

(as viewed from the initial position of the robot), but it will also consider the other push.

GOTO2(X) moves the robot into the vicinity of X if X is a door; it directly updates
the (NEXTTO ROBOT $) axiom. A contemplated extension of GOTO? is to permit X to

be an object.

PUSH1(DIST OB TOL) is the lowest-level push; as such, it maintains OB’s position
and deletes the (NEXTO OB $) and (NEXTTO $ OB) axioms from the model. It pushes
OB forward by DIST feet (within TOL feet); it assumes that the front horizontal

catwhisker is on when it is entered, and it exits under any of the following conditions:
(1) It is unnecessary to push OB forward, i.e.:

(a) OB is within TOL of the implied goal point; or
(b) OB is past the goal point in the current heading.
(2) The pushbar comes on hard.

(3) The front horizontal catwhisker is off.

In any of these cases, the robot backs up 2 feet in an attempt to free its catwhiskers for
normal navigation. The last argument TOL is optional and is defaulted to 1 foot if not

supplied.

ROLL2(DIST TOL) is the lowest-level free-floor roll; as such it deletes the (NEXTTO
ROBOT $) axiom from the model. It moves the robot forward by DIST feet (within TOL
feet); if it engages a front catwhisker it asserts the (JUSTBUMPED ROBOT T) axiom and

44

backs away in an attempt to free the catwhisker. TOL is an optional parameter defaulted

to 1 foot if not supplied; DIST may be negative.

BUMBLETHRU(FROMRM DOOR TORM) moves the robot from room
FROMRM to room TORM through door DOOR. It assumes that the robot is initially in
FROMRM and in front of door. It heads for the corresponding position in TORM and
uses the catwhiskers (if necessary) to help it negotiate the door. It updates the (INROOM
ROBOT $) and (NEXTTO ROBOT $) axioms in the model, and it is the most basic door-
negotiating routine in the system. It uses the vision routine CLEARPATH before entering

an unknown room.

PUSH(OBJECT GOAL TOL) is the highest-level ILA for pushing a box. Its three
arguments are the name of an object, the goal coordinates to be pushed to, and the
allowable tolerance. The tolerance argument may be omitted, in which case its value
defaults to 2.0 feet.

The only precondition for PUSH is that Shakey and the OBJECT are in the same room.
The routine calls FINDPATH (described below) to plan a path to GOAL from the current

object location. PUSH will fail if any of the following conditions are true:

(1) OBJECT is not in a pushable location.

(2) No path of width W [W=MAX(WIDTH(OBJECT),WIDTH(ROBOT))]
can be found from the current position of OBJECT to GOAL.

(3) No path can be found from the current position of the robot to the
“pushplace” of OBJECT, i.e., Shakey cannot get behind OBJECT.

PUSH2(OBJECT GOAL TOL) is a straight-line push, envoked by PUSH to move
OBJECT along successive legs of the planned path. PUSH2 attends to updating the
positions of ROBOT and OBJECT. If the uncertainties in position exceed TOL, PICLOC
updates the position of ROBOT or OBLOC the position of OBJECT (PICLOC and
OBLOC are described in Chapter Six.)

A PUSH2 is accomplished in three basic stages:
(1) The robot navigates to the ‘“‘pushplace’ of OBJECT.

(2) The robot rolls forward and makes contact with the object with a front

catwhisker, by using ROLLBUMP.
45

(3) PUSHL1 is called, which turns on the overrides and causes the robot to

roll forward the required distance.

NAVTO(GOAL TOL) will maneuver the robot to within TOL feet of the point
GOAL. Like the PUSH ILA, it uses FINDPATH to plan the journey to GOAL. NAVTO
will fail if no path is found; if a path exists, it uses POINT AND GOTOI1 for each leg of

the journey.

POINT(THETA TOL) attempts to turn the robot to within TOL degrees of bearing
THETA. If necessary, the vision routine PICTHETA (Chapter Six) will be used to
determine the bearing of the robot. A catwhisker engaged during the turn will cause the

robot to turn back to its original bearing and then attempt to locate the object with
PICBUMPED (Chapter Six).

GOTO1(GOAL TOL) moves the robot forward in a straight line to within TOL feet
of GOAL. It will use ROLL2 to actually move the robot, or it will use vision under the

following conditions:

(1) If the robot’s location is uncertain (>TOL), it will update its position
using PICLOC.

(2) If moving in an unknown room, it will use CLEARPATH.

(3) If the result of CLEARPATH is BLOCKED, it will use PICDETECTOB
(Chapter Six) to enter information about the obstacle in the model.

(4) If the robot unexpectedly engages a catwhisker while rolling,
PICBUMPED will locate the object and update the model.

ROLLBUMP(DIST TOL OBJECT) moves the robot forward DIST feet to engage a
front catwhisker on the object OBJECT. It updates the (NEXTTO ROBOT $)

predicate(s) in the model. If an object is not encountered within TOL feet of DIST,
ROLLBUMP fails.

D. The Pathfinding Algorithm

FINDPATH(ROB G JOURN) is the routine to plan an intraroom path from ROB to
G. The arguments ROB and G are each a list of X, Y coordinate pairs. JOURN is the
type of journey to be undertaken, either ROLL or PUSH. If JOURN is ROLL, the

46

VA 4

‘T¥ abvd ‘[17] wosy,

» VIl ONIHSNd TIATT-LSIMOT THL YOd ATIVI AOMUVIN 38 3qeL

MARKOV TABLE FOR THE LOWEST-LEVEL PUSHING ILA

(DEFPROP PUSH1 PUSH1 (*: MARKOVTABLE NIL))

(DEFPROP PUSH1
((10. T ((SETQ XYTARG (XYTARG (OBPOS OB) (MLVFIND (QUOTE (THETA ROBOT $))) D
(20, (NEARENOUGH OB XYTARG TOL) NIL CLEANUP)
(25, (NOT (NEARENOUGH OB (OBPOS OB) TOL)) NIL Cl)
(30, (GREATERP (ABS (ANGLEDIF (BEARINGTO XYTARG (OBPOS OB)) (MLVFIND (QUOTE
NIL :
CLEANUP)
(40, (MEMQ (QUOTE HC) (WHISKERS))
((SETQ DOSETPOS NIL) (SETPUSHOBPOS OB (PLUS RADFRONT 0.5)))
CLEANUP)
(50. (MEMQ (QUOTE FH) (WHISKERS))
((OVRID 1.) (ROLL
(DIFFERENCE (DISTANCE XYTARG (OBPOS (QUOTE ROBOT)))
(PLUS RADFRONT (MLVFIND (LIST (QUOTE RADIUS) ¢
(OVRID 0,)
(SETQ DOSETPOS NIL)
(SETPUSHOBPOS OB RADFRONT)
(MLDELETE (LIST (QUOTE NEXTTO) OB (QUOTE $)))
(MLDELETE (LIST (QUOTE NEXTTO) (QUOTE $) OB)))
20.)
(CLEANUP DOSETPOS ((SETPUSHOBPOS OB (PLUS RADFRONT 0.5))) Cl)
(C1 (FCWON) ((ROLLBACK) (ROLL ~-1.)) C2)
(C2 T ((MLDELETE (QUOTE (NEXTTO ROBOT $)))) R))
(*: MARKOVTABLE TABLE))

(DEFPROP PUSH1 (DIST OB TOL) (*: MARKOVTABLE PARAMETERS))
(DEFPROP PUSH1 ((TOL 1.) XYTARG (RADFRONT 1,5) (DOSETPOS T)) (*: MARKOVTABLE LOCALS))

¢ T AAVATQU ETE ATTR TR T TEEE) ANV INAURSL L PO EISEA [BRYVLE Ibbd S+ B U
juiod 03 gOY 18 X0q ® 2A0W Ued j0qod 3Y) YIIYM £q gied € si an[eA paunjal 2q1 ‘HsNd
SINHNOC JI "D 01 gOY WoJ) 3e31aeu Ued 10qod 3Y) §oiqa Suoje gied © sUInJad WOIRdUN)

TIAZT ALVIAAWHILNI FHL 4O FUNLONYLS TOULNOD :Z 31n3iyg

6-€L68-V.L
S3ILIALLOVY A3A3T-MOT

’ ' !
| | |

NEH1318WNS Z1od hz.on_. dWNE110H LHSNd
10109 ZHSNd
OIAVWN HSNd

#GNEH10D ZO10S XD078NN 0018

SR

X3NVId ONV SJOHOVW

NN

The pathfinding algorithm is a breadth-first search of the tree of predecessors to G. At
each node of the tree, FINDPATH tests for a direct-line path between ROB and the

current node, say PN. If it exists, the path from PN to G is returned. Otherwise, the
tree is grown one level deeper from PN by computing predecessors to that point. If no
predecessors exist, the path from PN to G is removed from the tree, thus reducing the

search space.

The predecessors to node PN are defined as the intersections of the tangent lines from ON
and ROB around the first obstructing object in the straightline path connecting them.
Thus, each point has at most two predecessors. Figure 8 illustrates one possible

configuration that would generate the tree in Figure 9.

Before a computed predecessor is added to the tree, it is tested to determine whether it is
within the room or within the region of another obstacle. It either condition is true (as

for PO in Figure 8), a shorter path (P5 P4) is computed using the tangents that generated
PO. If either of these points is unacceptable under the criterion just described, the entire
search in that direction is abandoned, and the next node (in this case P3) is considered. A
predecessor that is acceptable under this criterion is added to the tree i f a straightline

path exists between it and its parent node. Otherwise, predecessors are sought recursively

to find a path from the parent node to its computed predecessor.

The searching in FINDPATH terminates, then, when either a path has been found or
when the search tree is reduced to NIL. Thus, the path that is chosen (assuming at least
one exists) is the first one found, that is, the one with the smallest number of legs in the
journey. This criterion was chosen over a minimum-distance criterion to reduce the

amount of subsequent thinking and execution time for the robot.*

*From [11], pages 87-49.

49

s

°
o

SOANN NN ANNANNNNG

ROB

TA-8973-10

Figure 8: AN OBSTACLE CONFIGURATION FOR FINDPATH*

P1 P2

P4

P6 P7

S P3

TA-8973-11

Figure 9: SEARCH TREE FOR CONFIGURATION OF FIGURE 8*

*From [11], page 48.

50

CHAFPTER SIX

Viston Routines

We first present an overview of the main vision routines from [11].
A. Introduction

The current robot executive program never calls for a general visual scene analysis.
Instead, under appropriate circumstances various of the intermediate-level actions (ILAs)
call specific vision routines to answer certain specific questions. These specialized vision
programs perform three basic tasks: locating and orienting the robot, detecting the

presence of objects, and locating objects.

A summary of the six vision routines currently used by the ILAs is given below in Section
C. PICLOC is described in Appendix B, and CLEARPATH is described briefly later.
Most of the other routines make use of LOBLOC, which uses vision to locate accurately

an object whose position is only roughly known.
The following section describes the operation of this routine in some detail.
B. Object Location

Given the approximate floor location of an object, LOBLOC takes a television picture of
the object, analyzes the picture to find the exact coordinates, and enters this information
in the robot’s world model. This specialized task can be done more rapidly and with less
chance for error by a special program than by performing a complete scene analysis and

then extracting the desired answer from the resulting description. However, certain

preconditions must be satisfied for LOBLOC to function properly. These are as follows:

(1) The approximate location must be sufficiently accurate and the object
must be sufficiently small and unoccluded that at least two, and

preferably three, lower corners of the object are in view.

(2) The object and the robot must be in the same room.

51

(3) The location of the robot with respect to the walls must be known to
within approximately one foot.

The first action that LOBLOC performs is to pan and tilt the television camera so that
the nominal floor position image is in the center of the picture. The resulting picture is
taken at 60-line resolution to speed subsequent region analysis operations. However,
before region analysis is begun, the program accesses the model to compute the image of
the wall-floor boundary. Everything in the picture above this boundary is erased, thereby

eliminating baseboards, door jambs, and other possible sources of confusion.

The resulting picture is then subjected to region analysis. That is, it is partitioned into
elementary regions, and these regions are merged using the phagocyte and weakness
heuristics [18]. The following regions are automatically deleted from the resulting region
list:

(1) The region above the wall-floor boundary.

(2) All regions smaller than some threshold 4. (Currently 8 = 4 cells.)

The next major step is to identify the floor region. This is done by scoring each region.
The features or properties that enter into this score are the area A, the ratio R of
perimeter-squared to area, the average brightness B, and the lowest coordinate Z of the
max the
highest brightness, and Z; the smallest coordinate, we compute the scoring function by

2 2 2 2
D'~’=(1-_L) +<1-_R_> +(1- B > +<Z'Zmin>
Amax Rmax Bmax 60

external contour. Letting A ., be the largest area, R, ax the largest ratio, B

The region for which D? is minimum is declared to be the floor.

The next major step is to inspect the n neighbors of the floor to find the ones that are
most likely to be the faces of the object in question. Special tests are made to treat the

simple cases where n happens to be 0, 1, or 2. In general, for each region neighboring the

52

floor we compute its area A and a quantity X which is a simple measure of the horizontal
displacement. of the region from the center of the picture. These features are combined in

a scoring function:

and the region for which D? is minimum is declared to be one face of the object. The
same criterion is used to select the other visible face from the neighbors of both the floor

and the first face.

The major problem remaining is to identify the vertices where the corners of the object
mect the floor. This is done by processing the common boundary between the face regions
and the floor region. After simple straight-line connections are made between endpoints
of any gaps, this common boundary consists of a chain of points along the lower edge of
the object. The lowest point on this chain is taken to be the central vertex, and the
corners on either side are found by the method of iterative end-point fits [17]. Once these
three image points are determined, the support hypothesis is used to locate the
corresponding points on the floor. The resulting coordinates can then be entered in the
model under the name of a new object if the status of the room is unknown, or under the

name of the nearest object if the status is known.
C. ILA Vision Routines

The following is a summary of the intermediate-level routines related to Shakey's visual

system:

CLEARPATH (X Y) decides whether the path from (AT ROBOT $*) to (X Y) is
clear. In analyzing pictures, it inspects only the image of the path to be traversed, and it
uses the range finder to detect large, close objects. The value returned is either CLEAR,
UNKNOWN, or (BLOCKED XO YO), where (XO YO) roughly locates an obstacle.

OBLOC (OB) uses the model information about the location of object OB and the

routine LOBLOC to update (AT OB $*) and (DAT OB $*).
83

PICBUMPED (X Y) is cailed when a bump occurs at (X Y). If Shakey is in a room of
known status, PICBUMPED calls PICLOC; otherwise it calls PICDETECTOB (X Y).

PICDETECTOB (X Y) uses LOBLOC to locate the object near (X Y). If Shakey is
in a room of known status, and if OB is the nearest object, (AT OB $*) and (DAT OB$*)

are updated; otherwise a new object is entered in the model.

PICLOC uses the landmark routine (Appendix B) to update (AT ROBOT $*), (DAT
ROBOT $*), (THETA ROBOT $), and (DTHETA ROBOT $).

PICTHETA updates (THETA ROBOT $) and (DTHETA ROBOT $). Intended to be
used before a long, straight-line journey, PICTHETA currently calls PICLOC.*

Additional material about Shakey’s vision system was reported in [10].

Vision Programs for Intermediate-Level Actions

The special-purpose vision programs basically perform only three functions: orienting and
locating the robot, detecting the presence of objects, and locating objects. We shall

consider each of these functions in turn.

When the environment of the robot is represented accurately and completely in the
model, the chief role of vision is to provide feedback to update the robot’s position and
orientation. Angular orientation information is often needed in advance of a relatively
long trip down a corridor, where a small angular error might be significant. The simplest
way to obtain orientation feedback is to find the floor/wall boundary in the picture,
project it onto the floor, and compare this result with the known wall location in the
model; any observed angular discrepancy can be used to correct the stored value of the

robot’s orientation.

For maneuvers such as going through a doorway, both the robot’s position and orientation

must be accurately known. This information can be obtained from a picture of a known

*From [11], pages 51-54.

54

point and line on the floor. Such distinguished points and lines are called landmarks, and
include doorways, concave corners, and convex corners. The basic program for finding
such landmarks is described in Appendix B. The program has undergone several
refinements and improvements, and now works with the model described in Chapter
Three. Execution time is essentially the time required to pan, tilt, and turn on the
camera.* Concurrently, the accuracy is limited by mechanical factors to between 5 and 10
percent in range and 5 degrees in angle. Increased accuracy, if needed, can be obtained by

improving the pan and tilt mechanism for the camera.

Before the robot starts a straight-line journey, it may be desirable to check that the path
is indeed clear. A simple way to do this is to find the image of the path in the picture
and examine that trapezoidal-shaped region for changes in brightness that might indicate
the presence of an obstructing object. This is a simple visual task, and a program
implementing it has been written. In its current form the program uses the Roberts-cross
operator to detect brightness changes. When we first ran the program, we were surprised
to discover that at steep camera angles the texture in the tile floor can be detected and
give rise to false alarms. This is an instance of a major shortcoming of special-purpose
vision routines, namely, the failure of simple criteria to cope with the variety of
circumstances that can arise. This particular problem can be solved by requiring a certain
minimum run-length of gradient. However, shadows and reflections can still cause false
alarms, and the only solution to some of these problems is to do more thorough scene

analysis.**

*Since the camera, television control unit, and television transmitter draw a large amount of
power from the batteries, they are normally off. Approximately ten seconds is required from the
time these units are turned on to the time that a picture can be taken.

**From [10], pages 41-43.

55

CHAPTER SEVEN

STRIPS

Shakey used a planning system called STRIPS (an acronym based on
STan ford Research Institute Problem Solver) to chatn together ILAs that
would accomplish specific goals. STRIPS was one of the timportant early
problem-solving systems. The original version of this program tis
described in detail in a paper [18]; a somewhat modified story appears in
[19]. More recent hierarchical planning systems, such as NOAH [20] and
SIPE [21], would now be more appropriate than STRIPS for robot
planning. The following excerpt ts a summary of STRIPS that appeared
in a paper and an SRI AI Center Technical Note [22] about learning and

executing planas.
Description

Because STRIPS is basic to our discussion, let us briefly outline its operation. The
primitive actions available to the robot vehicle are precoded in a set of action routines.
For example, execution of the routine GOTHRU(D1,R1,R2) causes the robot vehicle
actually to go through the doorway, D1, from room R1 to room R2. The robot system
keeps track of where the robot vehicle is and stores its other knowledge of the world in a
model composed of well-formed formulas (wffs) in the predicate calculus. Thus, the

system knows that there is a doorway D1 between rooms R1 and R2 by the presence of
the wff CONNECTSROOMS(D1,R2,R2) in the model.

Tasks are given to the system in the form of predicate calculus wifs. To direct the robot
to go to room R2, we pose for it the goal wif INROOM(ROBOT,R2). The planning
system, STRIPS, then attempts to find a sequence of primitive actions that would change
the world in such a way that the goal wif is true in the correspondingly changed model.
In order to generate a plan of actions, STRIPS needs to know about the effects of these
actions; that is, STRIPS must have a model of each action. The model actions are called

operators and, just as the actions change the world, the operators transform one model

57

into another. By applying a sequence of operators to the initial world model, STRIPS can
produce a sequence of models (representing hypothetical worlds) ultimately ending in a
model in which the goal wff is true. Presumably the, execution of the sequence of actions

corresponding to these operators would change the world to accomplish the task.

Each STRIPS operator must be described in some convenient way. We characterize each
operator in the repertoire by three entities: an add function, a delete function, and a
precondition wff. The meanings of these entities are straightforward. An operator is
applicable to a given model only if its precondition wff is satisfied in that model. The
cffect of applying an (assumed applicable) operator to a given model is to delete from the
model all those clauses specified by the delete function and to add to the model all those
clauses specified by the add function. Hence, the add and delete functions prescribe how
an operator transforms one state into another; the add and delete functions are defined
simply by lists of clauses that should be added and deleted.

Within this basic framework STRIPS operates in a GPS-like manner [23]. First, it tries to
establish that a goal wff is satisfied by a model. (STRIPS uses the QA3 resolution-based
theorem prover [15] in its attempts to prove goal wffs.) If the goal wif cannot be proved,
STRIPS selects a “‘relevant’ operator that is likely to produce a model in which the goal
wff is ‘‘more nearly’’ satisfied. In order to apply a selected operator, the precondition wif
of that operator must of course be satisfied: This precondition becomes a new subgoal
and the process is repeated. At some point we expect to find that the precondition of a
relevant operator is already satisfied in the current model. When this happens the
operator is applied; the initial model is transformed on the basis of the add and delete
functions of the operator, and the model thus created is treated in effect as a new initial

model of the world.

To complete our review of STRIPS we must indicate how relevant operators are selected.
An operator is needed only if a subgoal cannot be proved from the wffs defining a model.
In this case the operators are scanned to find one whose effects would allow the proof
attempt to continue. Specifically, STRIPS searches for an operator whose add function
specifies clauses that would allow the proof to be successfully continued (if not completed).
When an add function is found whose clauses do in fact permit an adequate continuation
of the proof, then the associated operator is declared relevant; moreover, the substitutions
used in the proof continuation serve to instantiate at least partially the arguments of the

operator. Typically, more than one relevant operator instance will be found. Thus, the

58

entire STRIPS planning process takes the form of a tree search so that the consequences

of considering different relevant operators can be explored. In summary, the “inner loop’
of STRIPS works as follows:

(1) Sclect a subgoal and try to establish that it is true in the appropriate
model. If it is, go to Step 4. Otherwise,

(2) Choose as a relevant operator one whose add function specifies clauses

that allow the incomplete proof of Step 1 to be continued.

(3) The appropriately instantiated precondition wff of the selected operator
constitutes a new subgoal. Go to Step 1.

(4) If the subgoal is the main goal, terminate. Otherwise, create a new
model by applying the operator whose precondition is the subgoal just
established. Go to Step 1.

The final output of STRIPS, then, is a list of instantiated operators whose corresponding

actions will achieve the goal.
An Example

An understanding of STRIPS is greatly aided by an elementary example. The following
example considers the simple task of fetching a box from an adjacent room. Let us

suppose that the initial state of the world is as shown below:

Room R1l Room R2
Door
» D1
T BOX1
ROBOT
yDoor S—
' p2
Room R3

59

Initial Model

Mo: INROOM(ROBOT,R1)
CONNECTS(D1,R1,R2)
CONNECTS(D2,R2,R3)
BOX(BOX1)
INROOM(BOX1,R2)

(Vx Vy Vz)[CONNECTS(x,y,z) == CONNECTS (x,z,y)]
Goal wif

Go: (3x) [BOX(x) A INROOM(x,R1)]

We assume for this example that models can be transformed by two operators GOTHRU
and PUSHTHRU, having the descriptions given below. Each description specifies an
operator schema indexed by schema variables. We will call schema variables parameters,
and denote them by strings beginning with lower-case letters. A particular member of an
“operator schema is obtained by instantiating all the parameters in its description to
constants. It is a straightforward matter to modify a resolution theorem prover to handle
wffs containing parameters (18], but for present purposes we need only know that the
modification ensures that each parameter can be bound only to one constant; hence, the
operator arguments (which may be parameters) can assume unique values. (In all of the
following we denote constants by strings beginning with capital letters and quantified

variables by x, y, or z):

GOTHRU(d,r1,r2)

(Robot goes through Door d from Room rl into Room r2.

Precondition wif

INROOM(ROBOT,r1) A CONNECTS(d,r1,r2)

60

Delete List

INROOM(ROBOT,$)
Our convention here is to delete any clause containing
a predicate of the form INROOM(ROBOT,$) for any value
of 8.
Add List

INROOM(ROBOT,r2)

PUSHTHRU(b,d,r1,r2)

(Robot pushes Object b through Door d from Room rl
into Room r2.)

Precondition wif

INROOM(b,r1) A INROOM(ROBOT,r1) A CONNECTS(d,r1,r2)
Delete List

INROOM(ROBOT,$)

INROOM(B,$)
Add List

INROOM(ROBOT,r2)

INROOM(b,r2).

When STRIPS is given the problem it first attempts to prove the goal G from the initial

model M. This proof cannot be completed; however, were the model to contain other

clauses, such as INROOM(BOX1,R1), the proof attempt could continue. STRIPS

61

determines that the operator PUSHTHRU can provide the desired clause; in particular,
the partial instance PUSHTHRU(BOX1,d,r1,R1) provides the wff INROOM(BOX1,R1).

The precondition G, for this instance of PUSHTHRU is

G,: INROOM(BOX1,r1)
A INROOM(ROBOT,r1)
A CONNECTS(d,r1,R1).

This precondition is set up as a subgoal and STRIPS tries to prove it from M.

Although no proof for Gl can be found, STRIPS determines that if r1 = R2 and d = D],
then the proof of G, could continue were the model to contain INROOM(ROBOT,R2).
Again STRIPS checks operators for one whose effects could continue the proof and settles

on the instance GOTHRU(d,r1,R2). Its precondition is the next subgoal, namely:

Go: INROOM(ROBOT,r1)
A CONNECTS(d,r1,R2).

STRIPS is able to prove G, from M, using the substitutions r1 = R1 and d=D1. It
therefore applies GOTHRU(D1,R1,R2) to M, to yield:

M,: INROOM(ROBOT,R?2)
CONNECTS(D1,R,R2)
CONNECTS(D2,R2,R3)
BOX(BOX1)
INROOM(BOX1,R2)

(Wx Vy Vz)[CONNECTS(x,y,z) = CONNECTS(x,2,y)].

Now STRIPS attempts to prove the subgoal G; from the new model M;. The proof is
successful with the instantiations rl1 = R2, d = D1. These substitutions yield the
operator instance PUSHTHRU(BOX1,D1,R2,R1), which applied to M, yields

62

M,y INROOM(ROBOT,R1)
CONNECTS(D1,R1,R2)
CONNECTS(D1,R2,R3)
BOX(BOX1)
INROOM(BOX1,R1)

(Vx Vy Vz) [CONNECTS(x,2,y)).

Next, STRIPS attempts to prove the original goal, Gy, from M,. This attempt is

successful and the final operator sequence is

GOTHRU(D1,R1,R2)
PUSHTHRU(BOX1,D1,R2,R1).*

*From [22] pages 4-11 of Technical Note.

63

CHAFTER EIGHT

LEARNING AND EXECUTING PLANS

Once a plan to accomplish a goal has been constructed, the robot executive
system, called PLANEX, executes tt. If problems arise during ezecution,
PLANEX must also decide how to modify the plan it is ezecuting or
whether to construct a new plan. The Shakey system also was able to
learn generalized versions of the plans it constructed that could be used to
help accomplish subsequent tasks. These capabilities were described in a
paper [22] and summarized in one of the Shakey technical reports [11].
The following excerpt ts from that report:

A. Introduction

The basic problem-solving system used by Shakey is STRIPS, a system that makes use of
a combination of heuristic search and formal deductive techniques. However, STRIPS in
its original form is limited to constructing a plan for solving a specific problem. In this

section we describe new:

(1) Procedures for constructing ‘‘generalized” plans that are applicable to a
large family of problems (in addition to the specific problem that
motivated the planning process).

(2) Methods for storing, selecting, and monitoring the use of generalized
plans while a task is actually being carried out.
The recently developed methods for storing and using generalized plans allow us:

(1) To store a generalized plan as a sequence of, say, n parameterized

operators.
(2) To use as a single operator in a subsequent planning process many of

the legal subsequences among the 2" - 1 subsequences of the original

sequence of n operators.

65

(3) To identify for monitoring purposes exactly those effects of a selected

subsequence that are necessary for the success of the new plan.

As a rough illustration of the use of these capabilities, suppose that we already have a
generalized plan for closing a door and turning off a light. We are now given the task of
just turning off some particular light. The methods to be described will extract from the
original plan the appropriate subsequence of operators needed to turn off the light.
Suppose now that the subsequence of operators, or subplan, for turning off the light also
has the effect of leaving the robot pointing in a specified direction. If this effect is a
legitimate side-¢ffect—that is, if the successful execution of the plan does not require the
robot to be pointing in a specified direction—then the methods described will identify this
fact and the final robot orientation will not be monitored during plan execution. Hence,
the plan execution mechanism will not reject as “‘unsuccessful”’ an execution that has

failed only in a detail irrelevant to the task at hand.

The processes for storing a generalized plan begin with the creation by STRIPS of a
generalized plan, or macro operator—that is, a sequence of n operators whose arguments
are parameters. During the creation of this plan, STRIPS performed proofs
demonstrating that each operator was in fact applicable at the time it was used. We
assume throughout this section the availability of both the STRIPS plan and certain
information about the structure of the proofs performed by STRIPS to generate the plan.
We also assume the availability of descriptions of each operator used in the plan. An
operator description consists of three things: a precondition formula, which must be
provable from a model if the operator is to be applied to that model; an add-list,
specifying clauses added to the model; and a delete function (represented as a list of
literals), which maps a set of clauses into a subset of itself that remains true after the

operator has been applied.
B. Storage of a Generalized Plan

We store a generalized plan in the the form of a triangular table* as shown in figure 10.
The columns of the table, with the exception of column 0, are labeled with the names of
the operators of the plan, in this example OP;, ...,OP,. For each columni,i=1, .. 4, we

place in the top cell the add-list A; of operator OP;. Going down the ith column, we place

*The late John Munson of the SRI Artificial Intelligence Center originally suggested this
tabular format.

66

o PC,
oF,
1 PCA ™~ (A, A,
oP,
2 PC A ~ (A1'2) D,(A,) A,
OPs
3 PC AT (A1'2'3) 03021A1) Da(Azl As
oP,
4 0‘0302(A1) D403(A2) DJ(A3) A,
0 1 2 3 4
TA-8973-12

Figure 10: TYPICAL MACROP

in consecutive cells the portion of A; that survives the application of subsequent operators.
This is indicated by the delete function D;, i = 2, 3, 4, that maps an add-list into the
subset of itself remaining true after the application of OP;. (The delcte function D, of
OP, is applied to the model in which MACROP is applied, and not to any of the add-
lists.) Thus, cell (2,1) contains Dy(A,), which is the portion of A, still true after OP, is
applied. Cell (3,1) contains Da(Dy(A{)) =D3Do(A;), which is the subset of A, that
survives the application of both OP, and OPj,.

We can now interpret the content of the ith row of the table, excluding the first column.
Since each cell in the ith row (excluding the first) contains statements added by one of the
first 1 operators and not deleted by any of the first i operators, we see that the union of
the cells in the it row (excluding the first cell) specified the add-list obtained by applying
in sequence OP, ...,OP;. We denote by Al, " the add-list achieved by the first i
operators applied in sequence. The union of the cells in the bottom row of a triangle table

specified the add-list of the complete macro operator.

67

Let us now consider the first column of the triangle table, which we have so far ignored.
Loosely, the statements in row i of column zero are involved with the precondition
formula PC; , of OP; ;. To be more specific, cell (i,0) contains clauses needed to prove
PC;, but not contained in A} ;. We will call the set of clauses (axioms) used to prove
a formula the support of that formula. The clauses in cell (i,0) are therefore the portion
of the support of PC; ., that was true in the initial state. (In Figdre 10, we have used the
notation PCjA~A; i to indicate the contents of cell (i,0).) The remaining part of the
support of PC; is supplied by applying in sequence OPy, ...,OP;. The i*h row of the table,
then, contains the complete support of the precondition of OP; ;. It is convenient to flag
the clauses in row i that are the support of PC;_;, and hereafter speak of marked clauses;
by construction, obviously, all clauses in column zero are marked.

C. Planning with Generalized Plans

1. General Approach

In the preceding section, we described the construction of triangle tables for storing
generalized plans. Now let us consider how a generalized plan will be used by STRIPS

during a subsequent planning process.

The first thing to emphasize is that the i*h row of a triangle table (excluding its first cell)
represents the add-list A, . pann-row table presents STRIPS with n alternative add-
lists, any one of which can be used to reduce a difference encountered by STRIPS during
its normal planning process. STRIPS selects a particular add-list in the usual fashion by
testing the relevance of that add-list with respect to the difference currently being
considered. Suppose for a moment that STRIPS selects the ith add-list Ay i i <n.
Since this add-list is achieved by applying in sequence OP; ,...,OP;, we will obviously not
be interested in the application of OP;

1
establishing any of the preconditions PC; +1r-+PCy. Now in general, some steps of a plan

+1 »-OPy, and will therefore not be interested in

are needed only to establish preconditions for subsequent steps. If we lose interest in the
tail of a plan—that is, in the last (n - i) operators—then we may be able to achieve some
economies by omitting those operators among the first i whose sole purpose is to establish
preconditions for the tail. Conceptually, then, we can think of a single triangle table as
representing a family of generalized operators. Upon the selection by STRIPS of a
relevant add-list, we must extract from this family an economical parameterized operator

achieving the add-list. STRIPS must then be provided with a complete

68

description—precondition wif, add-list, and delete function—of the extracted operator so

that it can be used during the planning process.

In the following paragraphs, we will explain by means of an example an algorithm for

accomplishing this task of operator extraction.

2. The Operator Extraction Algorithm

Consider the illustrative triangle table shown in Figure 11. Each of the numbers within
cclls represents a single clause. The circled clauses are ‘“marked’ in the sense described
carlier; that is, they are used to prove the precondition of the operator whose name
appears on the same row. A summary of the structure of this plan is shown below, where

Ul"

refers to the initial state and “F" to the final state:

Precondition Support Precondition Support

Operator Supplied By Supplied To

op, 1 OP,

OP, I OP;

OP, I : OP,, F

OP, L,OP, F

OP, I,OP, OPg, F

OPg¢ L,OPg OP,

OP, I,OP3,0P¢ F

Suppose now that STRIPS selects Ay o 3 the desired add-list and, in particular, selects
clause 16 and clause 25 as the particular members of the add-list that are relevant to
reducing the difference of immediate interest. These clauses have been marked on the
table with a dot. The operator extraction algorithm proceeds by examining the table to
determine what effects of individual operators are not needed to produce clauses 16 and
25. First, OP is obviously not needed; we can therefore remove all circle marks from row
6, since those marks indicate the support of PC;. We now inspect the columns, beginning
with column 6 and going from right to left, to find the first column with no marks of

either kind. Column 4 is the first such column. The absence of marked clauses in column

69

4 means that the clauses added by OP, are not needed to reduce the difference and are
not required to prove the precondition of any subsequent operator; hence we delete OP,
from the plan and unmark all clauses in row 3. Continuing our right-to-left scan of the
columns, we note that column 3 contains no marked clauses. (Recall that we have already
unmarked clause 18.) We therefore delete OP5 from the plan and unmark all clauses in
row 2. Continuing the scan, we note that column 1 contains no marked entries (we have

already unmarked clause 11), and therefore delete OP, and the marked entries in row 0.

oP

1,12

i3
QP

18,15
16

®| 0|6

1,12
oP

@ 12 15, 16 17.18
' ! 19,20

oP

2 o 17,18 21,22
19, 20 23

GRNONNO

oP,
5 12 16 17,18 2,22 @
: op,
[) L]
6 16 1, 21,22 24 @
op,
7 17 27 2 26
0 1 2 3 4 5 6 7
TA-8973-13

Figure 11: MACROP WITH MARKED CLAUSES

70

The result of the table-editing process just described is shown in Figure 12. (The question

mark in cell (2,1) will be explained momentarily.) A summary of the structure of this
plan is shown below:

JNO
1O | ®

OPS
2 ’
orP 6
Y |
3 16 24 25
0 1 2 3
TA-8973-14

Figure 12: MACROP AFTER EDITING

Precondition Support Precondition Support
Operator Supplied By Supplied To
OP, | OP¢,F
OPy LLOP, OP¢
OPg 1,OPg F

We have thus reduced the seven-step generalized plan we started with to a compact three-

step plan that specifically produces an add-list containing the relevant clauses.

Now that an operator achieving a desired add-list has been extracted, we must provide

STRIPS with its description. The precondition wff is obvious; it consists of the

71

conjunction of all clauses in column 0. The computation of the add-list and delete
function of the new operator is a little more complicated. First, notice in Figure 11 that
clauses 14, 15, and 18 are added by OP,. Clause 14 is evidently deleted by OPj since it
does not appear in cell (3.2). The extracted plan, however, does not include OP3, and we
cannot tell whether clause 14 would survive the application of OPg or OPg in the
extracted plan—hence the question mark in Figure 12. Furthermore, cell (3,1) may
contain more clauses than shown. This example illustrates the necessity of computing a

new add-list and delete function for the extracted operator.

The computation of a new add-list and delete function for a macro operator is based on
the add-lists and delete functions of the component operators. Suppose the macro
operator of Figure 12 is applied to some state S; (in which we assume that clauses 3, 7, 8,
and 9 are true). Since STRIPS does deletions before additions, we can write the resulting

state Sf as:
where we have used “‘+" to mean set union. Now it is not difficult to show that delete
functions distribute over set union, that is, to show for any set A and B and any delete
function D that

D(A + B) = D(A) + D(B)
Hence, we can write the final state S¢ as:

Since this has the form Sp == D(S;) + A, we see that the delete function of the macro

operator is the composed function
DgDsDy
and that its add-list is

72

it 1s interesting to note that this add-list is precisely the last row of the triangle table

constructed as described in the previous section, the plan OP,. OP¢, OP¢. In general, we
can say that the add-list of a macro operator is given by the last row of its triangle table
representation, and that its delete function is given by the composition of the component

delete functions.

3. Refinements

In the previous paragraphs, we outlined an algorithm for extracting from a generalized
plan a subsequence of operators that add particular clauses to a model. We would now
like to describe two refinements: one needed to avoid certain inconsistencies that could
otherwise occur, and one for achieving further economies when more than one level of

triangle tables are involved.

a. Add-List Refinement

Consider a simple generalized plan consisting of two consecutive PUSH operators, each of
which pushes a (parameterized) object to a (parameterized) place. The triangle table for
this plan might be as shown in Figure 13 where for simplicity we have assumed that the
PUSH operator has no precondition and hence column 0 is empty. Because the clause
AT(OB1,P1) appears in cell (2,1), we know that this clause was not deleted by the second
push operator. Suppose now that STRIPS selects row 2 as an add-list. By instantiating
OBI and OB2 to the same object name, and instantiating P1 and P2 to distinct locations,
we evidently have a plan for achieving a state in which the same object is simultaneously
at two different places! The source of this embarrassment lies in the delete mechanism

used by STRIPS, which we now examine in some detail.

73

0 PUSH (081, P1)

1 AT (081, P1) '~ PUSH (0B2, P2)
2 AT (081,P1) AT (082, P2}
0 1 2
TA-8973-15

Figure 13: GENERALIZED PLAN FOR TWO-PUSH MACROP

The delete function of an arbitrary STRIPS operator is specified by a delete-list consisting
of a set of literals. If the operator is applied to a state S, then STRIPS deletes from S
every clause containing a literal unifying (without regard to sign) with any member of the
delete-list. If a potential unification involves parameters, as it often does, then the
unification can be made only if it does not contradict any existing bindings of the
parameters to constants. To continue our example, suppose the second push operator is

applied to the parameterized state S:

AT(OB1, P1)
AT(OB2, P3).

The delete-list of the second push operator, we assume, contains the single literal
AT(OB2?, $), where “$"" unified with anything. If there were no existing bindings of
parameters to constants, then both clauses in S would be deleted. From figure 13, to the
contrary, we see that AT(OB1, P1) was not deleted; hence, it must have been the case
that OB1 and OB2 represented distinct objects in the unparameterized problem for which
the plan was originally created. If in a subsequent attempt to use this plan we set OBl =

OB2, then we are violating the constraint responsible for the occurrence of AT(OBI1, P1)

74

in the final state. Accordingly, we replace the entry in cell (2,1) of Figure 13 by the new

entry:
(OB1 £ OB2) D AT(OBI1,P1)

By this means we indicate that row 2, and cell (2,1) in particular, produces the literal
AT(OBI, P1) only under the condition that OB1 and OB2 are not instantiated to the

same constant.

The previous example illustrates how a literal can be allowed to survive the application of
a delete function only under some condition of the bindings of its arguments. We
introduced this notion in the context of maintaining the validity of a triangle table, but it
is more broadly applicable within the general framework of STRIPS. Although it is an
enlargement on our main theme of storing and using generalized plans, let us briefly

consider how the notion of conditional survival of a literal can be exploited.

During the planning process, STRIPS frequently permits a delete function to delete true
clauses from a state description. To overcome this tendency toward excessive deletions,

we make use of the notion of conditional survival as defined by the following algorithm.

Let L(P1) be a literal in a parameterized state description, and suppose that the deletion
of the clause containing this literal depends on binding parameter P1 to another

parameter P2. Then:

e If P1 or P2 has no constant binding then replace L(P1) by P1 5% P2 D
L(P1). (In “standard” STRIPS this clause would simply be deleted.)

e If P1 and P2 both represent the same constant in the original problem,
then delete the clause containing L(P1). (This is what STRIPS does as a
standard operation.) In the appropriate cell of the triangle table, place P1
P2 D L(P1). (This generalizes the triangle table beyond the planning
states used by STRIPS.) If P1 and P2 represent distinct constants in the
original problem, then replace L(P1) by P1 5% P2 D L(P1). (This is the
case illustrated by our previous example.)

We should note that the inclusion in a table of such clauses as, say, P1 ¢ P2 D L(P1)
leads to certain complications. Suppose, in a subsequent problem, that STRIPS uses such

a clause in the proof of some precondition. Often, the proof will produce the unit clause

75

P1 = P2. In this case, we consider the proof completed by assuming P1 5% P2 (providing
the assumption contradicts no existing bindings). However, we must record this
assumption by placing P1 7% P2 in column 0 of the table being constructed; it is, after all,
now a hypothesis of the theorem. Moreover, all subsequent proofs in the new plan must
not violate this hypothesis. As a bookkeeping procedure, we can conjoin the assumption
(viz., P1 £ P2) to cach new precondition that STRIPS attempts to prove; this has the

cffect of preventing violations of our assumption.

b. Relaxing Preconditions in Nested Tables

Consider the situation shown in Figures 14(a) and (b), where we have shown a macro
operator MOP whose ith operator is itself the macro operator OP;. As always, cell (i, i) of
MOP contains the complete add-list of OP;, while the marked entries of Row (i - 1)
constitute the support of the proof of the preconditions of OP;. During the planning
pracess, suppose STRIPS selects from one of the rows of MOP certain clauses it would like
to add to the current state of the world. Suppose further that some, but not all, of the
clauses in cell (i,i) of Figure 14(a) are marked. We can therefore mark in Figure 14(b)
those clauses in A, that are needed, and exercise the operator extraction algorithm on
table OP;. As we saw earlier, this will at times result in the deletion of some of the
clauses from PC;. Suppose, then, that some of the clauses of PC,; are in fact deleted by
the operator extraction algorithm. This raises the possibility of deleting some of the
clauses in the support of PC; since they now need to support only a weaker theorem. If
the support of PC; can be weakened—that is, if some of the clauses in row (i - 1) can be
unmarked—than in general we may be able to delete more steps from MOP and/or obtain

weaker, more easily established, preconditions for MOP.

In order for this schéme of precondition relaxation to be feasible, we need an economical
solution to the following abstractly stated problem: Given that a set of clauses C,,Cy
implies a theorem T;N ... NT, which C;'s can be deleted from the premises if a selected
subset of the T,'s are deleted from the theorem? Fortunately, it is possible to solve this
problem by appropriately labeling literals during the refutation proof of the theorem. We
will not elaborate here on the details of this bookkeeping procedure. In terms of the
example of Figures 14(a) and (b) the important point is that the bookkeeping need be
done only once, namely, when PC; is shown to be a consequence of its support.
Thereafter, it is a straightforward matter to compute, without recourse to theorem

proving, the appropriate relaxation of the support of PC; given a relaxation of PC; itself.

76

MoP
|
. SUPPORT
OF PC,
]
| op,
I
i { Ai
e
| I |
| | !
| I
| | I
0 i
(a)
OP,
1]
0
e e PC . e
i
1
i
2 A,
1
|
0 1 2
{b)

TA-8973-16

Figure 14: MOP: A NESTED MACROP*

*From [11], page 69.

77

The ability to relax preconditions leads to an obvious refinement of the operator
extraction algorithm described earlier. Previously, we unmarked clauses only when a
component operator was deleted from a macro operator, in which case the entire support
of the precondition of that operator was unmarked. Now we can also unmark a subset of
the support of a component operator still retained in the macro operator. Finally, we
remark that although Figure 14 shows only two levels of tables, the procedure for relaxing
preconditions can be implemented recursively; hence; nested tables to arbitrary depth can

be readily processed.
D. Monitoring the Execution of Plans

In this section we outline an algorithm for using triangle tables to monitor the real-world
execution of generalized plans. An important feature of the algorithm is that it monitors
only those effccts of operators, and only those aspects of the world, relevant to the

problem solution. Additionally, the algorithm embodies a modest replanning capacity in

the form of an ability to reinstantiate parameters of operators.

The plan execution algorithm rests on the observation that a triangle table contains
complete information about the internal structure of the plan it represents. More
specifically, a triangle table specifies exactly what each operator accomplishes in terms of
providing support for the preconditions of subsequent operators or the goal statement.
Equivalently, a triangle table also specifies the conditions that must obtain in order for a
component operator to be applicable.* The plan execution algorithm to be described uses

this information in a straight-forward manner.

Important information about the internal structure of a plan is embodied in the kernels of
a triangle table. The ith kernel of a triangle table for an n-step plan is the largest
rectangular subarray containing cells (n,0) and cell (i-1,i-1). In Figure 10, by way of an
example, we have outlined the second kernel of MACROP. The importance of the ith
kernel stems from the fact that it contains the support of the preconditions for the tail of
the plan—that is, the the operator sequence OP; ,...,OP . This should be clear, since row
j of the i*h kernel contains that portion of the support of PCj +1 that must already be

true when OP, is executed. To continue with the example of Figure 10, cells (2,0) and

*Strictly speaking, a triangle table specifies the support for the particular proof of a precondition
found by STRIPS. In general, there are many possible supports for a given precondition, but we
would not expect a plan execution algorithm to be cognizant of them.

78

(2,1) contain those axioms in PCg that are presumably true before OP, is executed. 1f
any of these axioms are false, then even perfect execution of OP, will not result in a state
in which OP is applicable. Roughly speaking, then, a reasonable plan execution
algorithm should find the highest indexed kernel with all true entries and execute the

corresponding component operator.

Such an algorithm would reflect the heuristic that it is best to execute the ‘‘legal”

operator least removed from the goal.

An important refinement of the rough execution algorithm outlined above can be obtained
by noting that the ith kernel contains in general not only those clauses supporting proofs
of preconditions but many additional clauses as well. These additional clauses are
irrelevant to the problem at hand, and we would certainly want our exccution algorithm
to ignore them. The identification of relevant clauses is easily accomplished using the
operator extraction algorithm previously described. The final row of the table
representing a plan to be executed contains the support of the goal formula, and the
supporting clauses are marked as before. The operator extraction algorithm then
procduces a new operator for achieving those clauses. (We dispense with the computation
of precondition formula, add-list, and delete function.) Typically, but not necessarily, all
the component operators will be retained. More importantly, only some of the table
entries will be marked, and these are the only portions of the kernels that need be

monitored.

The task of finding an efficient algorithm for finding the “highest true kernel’'—that is,
the highest indexed kernel with all marked clauses true—is of some interest in itself. Our
algorithm for finding the highest true kernel involves a cell-by-cell scan of the triangle
table. Each cell examined is evaluated as either True (i.e., all the marked clauses are true
in the current model) or False. The interest of the algorithm stems from the order in
which cells are examined. Let us call a kernel ‘“potentially true’” at some stage in the scan
if all evaluated cells of the kernel are true. The scan algorithm can then be succinctly

stated as:
Among all unevaluated cells in the highest-indexed potentially true

kernel, evaluate the left-most. Break ‘‘left-most ties' arbitrarily.

The reader can verify that, roughly speaking, this table-scanning rule results in a left-to-

right, bottom-to-top scan of the table. However, the table is never scanned to the right of

79

any cell already evaluated as false. An equivalent statement of the algorithm is “Among
all unevaluated cells, evaluate the cell common to the largest number of potentially true
kernels. Break ties arbitrarily.” We conjecture that this scanning algorithm is optimal in
the sense that it evaluates, on the average, fewer cells than any other scan guaranteed

always to find the highest true kernel. A proof of this conjecture has not been found.

The plan execution algorithm described above is embodied in a computer program named
PLANEX [24]. When PLANEX is called to execute a table, it executes the component
operator associated with the highest true kernel. Typically, but not necessarily, this will
be OP;. When OP; completes its action, PLANEX rescans the table to find the highest
currently true kernel. Typically, but not necessarily, this will be Kernel 2, in which case
OP, is executed, and so forth, until the goal kernel is reached. We emphasize, however,
that after each operator execution PLANEX may either call an earlier operator (perhaps
to rectify an error) or skip to a later operator (perhaps a stroke of luck rendered some
operators unnecessary). Furthermore, many arguments of predicates in the table are
parameters; PLANEX is free to instantiate these parameters in order to find a true
instance of the predicate. Thus, PLANEX is really searching for the highest-indexed
kernel an instance of which is satisfied by the current state of the world. This ability of
PLANEX to instantiate—and reinstantiate—arguments provides a modest replanning
capacity. If the turn of world events produces a situation in which a solution has the
same form as a tail of the original plan, PLANEX will find it. If no tail of the plan is
applicable, then no kernel will be true, and PLANEX returns control to STRIPS to

replan.*

*From [11], pages 55-73.

80

CHAPTER NINE

Ezpertments With Shakey

In this final chapter we tllustrate the capabilities described so far by
giving Shakey some specific tasks. The material reprinted below (from
[11]) is a description of planned ezperiments that were later carried out
and recorded tn a film and videotape available from SRI [25].

Experiments

In this section we shall describe some experiments now being planned that will illustrate
several features of the robot system, which we call, informally, ‘‘Shakey.” Specifically
these will show how Shakey generates a plan to perform a task, and how it then uses part
of this plan later as a component of a plan for performing another task. Saving plans for
later use might be regarded as a form of learning. The experiments also show how the
various levels in Shakey's hierarchical control structure function to enable Shakey to

recover gracefully from several kinds of unexpected failures.
1. Shakey’s World and Model

We must first describe the environment in which Shakey operates and Shakey’s model of
this environment. In Figure 15, we show a floor plan of some rooms and doorways in
which our experiments with Shakey will be conducted. We can place several large boxes
and wedge-shaped objects in these rooms; three boxes are depicted in room RCLK of
Figure [15]. Initially Shakey is in room RUNI. The doorways all have mnemonic names
indicating the rooms they connect; e.g., DMYSPDP connects RMYS and RPDP. Shakey's
model of this environment is represented by a set of formulas or axioms in the first-order
predicate calculus. The rooms, doorways, boxes, walls, and other entities occur as terms
in formulas that describe important properties of the environment. The axiom model
representing the environment for the planned experiments is listed in Table 6. The room

names are mnemomics for properties of the physical environment:

81

RHAL = Hallway

RRIL = Rilla’s office

RCLK = Room with the clock on the wall
RRAM = Room with ramp to hallway
RPDT = PDP-10 room

RUNI = Unimate room

RMYS = Mystery room, i.e., room with unknown contents.

The meanings of most of the predicate symbols are obvious. AT gives coordinate location
information referenced to the coordinate system of Figure 15. DAT gives information
about the probable error in this coordinate information. The RADIUS predicate is used
to give rough size information. THETA and DTHETA give information about Shakey’s
heading and probable heading error, respectively. The UNBLOCKED predicate tells
which doorways are unblocked (i.e., free of obstructing objects such as boxes). The
predicate ROOMSTATUS is used to tell whether the contents of a room are known or
unknown. The model listed in Table 6 indicates that the contents of all rooms are
assumed to be known except for RMYS. By this we mean that Shakey knows that he will
never encounter any new objects except perhaps in RMYS. This knowledge is used to
guide certain picture-taking behavior, as we shall see later. The LANDMARKS predicate
gives the locations of various landmarks such as corners and doorjambs that Shakey can
take pictures of to update its position. The axioms at the end of the model in Table 6
(beginning with the predicate WHISKERS) give information about the status of various
lower-level motor and sensing activities, e.g., the status of the catwhisker switches and

camera control settings. (These were explained in Chapter Four.)

Altogether there are 170 axioms in the model initially, which makes this model quite large

in comparison with those used by any previous automatic problem-solving systems.
2. Shakey’s Action Repertoire

In order to perform the tasks described below, Shakey has available a repertoire of ILAs.
(The operation of these ILAs is described in Chapter Five.) The problem-solving system,
STRIPS, must be aware of the properties of the available ILAs. Therefore each ILA is
represented for STRIPS by an operator with specified preconditions and effects. These
operators and their descriptions are given in Table 7 using the add and delete lists

-employed by STRIPS.
82

50 —
B RHAL
- RRAIL
40 po
- =
- b o 5
E X ——=
- anoO
30— ARAM DRAMCLK
- 80X2
8 L s
- <
i & RCLK
——— >
> s
— e 80X1
20 }—
B DMYSCLK
o
- RMYS " 3]
-9 [——|
- I 2
| =]
L DMYSPDP
t
10 p— ! RPDP
¢ I
":== g
2
- > 3
SHAKEY
— RUNI
P I S T T N N T S T T N Y WY O
0 10 20 30 40
x — feet

TA-8973-6

Figure 15: MAP OF SHAKEY'S EXPERIMENTAL ENVIRONMENT*

*From [11], page 6.

83

AT(ROBOT, 7,5)

DAT(ROBOT, 0.1,0,1)
INROOM(ROBOT ,RUNT)

AT(BOXO, 34,32)

INROOM(BOXO , RCLK)
AT(BOX1,25,22)
INROOM(BOX1 ,RCLX)
AT(BOX2,26,27)

INROOM(BOX2 , RCLX)

SHAPE(BOXO, BOX)

SHAPE(BOX1, BOX)

SHAPE(BOX2, BOX)
RADIUS(BOXO0,1.7)
RADIUS(BOX1,1.5)
RADIUS(BOX2,1.5)
DAT(B0X0,0.1)

DAT(BOX1,0.1)

DAT(B0X2,0.1)
THETA(ROBOT , ~90)
DTHETA(ROBOT, 1)
PUSHABLE(BOX1)

PUSHABLE(BOX2)

UNBLOCKED(DRAMMAL , RHAL)
UNBLOCKED(DRAMHAL , RRAM)
UNBLOCKED(DCLKRIL ,RRIL)
UNBLOCKED(DCLKRIL, RCLK)
UNBLOCKED(DRAMCLK , RCLK)
UNBLOCKED(DRAMCLK , RRAM)
UNBLOCKED(DMYSRAM , RMYS)
UNBLOCKED(DMYSRAM , RRAM)
UNBLOCKED(DMYSCLK , RCLK)
UNBLOCKED(DMYSCLK , RMYS)
UNBLOCKED(OPOPCLK , RCLK)
UNBLOCKED(DPDPCLK , RPDP)
UNBLOCKED(DMYSPDP , RPDP)
UNBLOCKED(DMYSPDP , RMYS)
UNBLOCKED(DUNIMYS , RMYS)
UNBLOCKED(DUNIMYS ,RUNT)
BOUNDSROOM(FSRAM RRAM SOUTH)
BOUNDSROOM(FERAM RRAM EAST)
BOUNDSROOM(FWRAM RRAM WEST)
BOUNDSROOM(FNCLK RCLK NORTH)
BOUNDSROOM(FSCLK RCLK SOUTH)
BOUNDSROOM(FECLK RCLK EAST)
BOUNDSROOM(FWCLK RCLK WEST)
BOUNDSROOM(FNMYS RMYS NORTH)
BOUNDSROOM(FSMYS RMYS SOUTH)
BOUNDSROOM(FEMYS RMYS EAST)
BOUNDSROOM(FWMYS RMYS WEST)
BOUNDSROOM(FNPDP RPDP NORTH)
BOUNDSROOM(FSPDP RPDP SOUTH)
BOUNDSROOM(FEPDP RPDP EAST)
BOUNDSROOM(FWPDP RPDP WEST)
BOUNDSROOM(FNUNI RUNI NORTH)
BOUNDSROOM(FSUNI RUNI SOUTH)
BOUNDSROOM(FEUNI RUNI EAST)
BOUNDSROOM(FWUNI RUNI WEST)
FACELOC(FNHAL 50.0)
FACELOC(FSHAL 35.5)
FACELOC(FEHAL 18,200000)
FACELOC(FWHAL 11,200000)
FACELOC(FNRIL 49.0)

Table 8: AXIOM MODEL

84

FACELOC(FSRIL
FACELOC(FERIL
FACELOC(FWRIL
FACELOC({ FNRAM
FACELOC(FSRAM
FACELOC(FERAM
FACELOC(FWRAM
FACELOC(FNCLK
FACELOC(FSCLK
FACELOC(FECLK
FACELOC(FWCLK
FACELOC(FNMYS
FACELOC(FSMYS
FACELOC(FEMYS
FACELOC(FWMYS
FACELOC(FNPDP
FACELOC(FSPDP
FACELOC(FEPDP
FACELOC(FWPDP
FACELOC(FNUNI
FACELOC(FSUNI
FACELOC(FEUNI
FACELOC(FWUNI 0.0)
JOINSROOMS (DRAMHAL
JOINSROOMS (DRAMCLK
JOINSROOMS(DCLKRIL
JOINSROOMS (DRAMHAL
JOINSROOMS (DRAMCLK
JOINSROOMS (DCLKRIL
TYPE(BOX1 OBJECT)
TYPE(BOX2 OBJECT)
TYPE(BOX0 OBJECT)
TYPE(RHAL ROOM)
TYPE(RRIL ROOM)
TYPE(RRAM ROOM)
TYPE(RCLK ROOM)
TYPE(RMYS ROOM)
TYPE(RPDP ROOM)
TYPE(RUNI ROOM)
TYPE(DRANHAL DOOR)
TYPE(DRAMCLK DOOR)
TYPE(DCLKRIL DOOR)
TYPE(DMYSRAM DOOR)
TYPE(DMYSCLK DOOR)
TYPE(DMYSPDP DOOR)
TYPE(DPDPCLK DOOR)
TYPE(DUNIMYS DOOR)

0.0)

0.0)

35.0)

15.200000)
36.800000)
18,599997)
23,599997)
7.6000000)
18,200000)

35.400000)
36 .800000)
18,799998)
35.5)
24.0)
18,200000)

14 ,799998)
8,2000000)
36 .800000)
18.600000)
7.1999999)
2,1999998)
17.200000)

RRAM RHAL)
RRAM RCLK)
RCLK RRIL)
RHAL RRAM)
RCLK RRAM)
RRIL RCLK)

BOUNDSROOM(FNHALL RHAL NORTH)

BOUNDSROOM(FSHAL
BOUNDSROOM(FEHAL
BOUNDSROOM(FWHAL
BOUNDSROOM(FNRIL
BOUNDSROOM(FSRIL
BOUNDSROOM(FERIL
BOUNDSROOM(FWRIL
BOUNDSROOM(FNRAM
JOINSROOMS(DMYSRAM
JOINSROOMS (DMYSCLK
JOINSROOMS (DMYSPDP
JOINSROOMS (DPDPCLK
JOINSROOMS (DUNIMYS
JOINSFACES(DRAMHAL
JOINSFACES (DRAMCLK

RHAL SOUTH)
RHAL EAST)
RHAL WEST)
RRIL NORTH)
RRIL SOUTH)
RRIL EAST)
RRIL WEST)
RRAM NORTH)

RNYS RRAM)
RMYS RCLK)
RMYS RPDP)
RPDP RCLK)
RUNI RMYS)
FNRAM FSHAL)
FERAM FWCLX)

TABLE: 6, continued

85

JOINSFACES(DCLKRIL FNCLK FSRIL)
JOINSFACES(DMYSRAM FNMYS FSRAM)
JOINSFACES(DMYSCLX FEMYS FWCLK)
JOINSFACES(DMYSPDP FEMYS FWPDP)
JOINSFACES(DPDPCLK FNPDP FSCLK)
JOINSFACES(DUNINYS FNUNI FSMYS)

DOORLOCS(DRAMHAL 11.200000 18,200000)

DOORLOCS(DRAMCLK 26,799998 32.0)

DOORLOCS(DCLKRIL 21,700000 24,799998)

DOORLOCS (DMYSRAM 10.0 15.200000)

DOORLOCS (DMYSCLK 16,200000 20.799998)
DOORLOCS(DMYSRDP 9,7000000 14,799998)
DOORLOCS(DPDPCLK 25,799998 30,799998)

DOORLOCS(DUNIMYS 10,799998 16.0)
ROOMSTATUS(RHAL KNOWN)
ROOMSTATUS(RRIL KNOWN)
ROOMSTATUS (RRAM KNOWN)
ROOMSTATUS(RCLK KNOWN)
ROOMSTATUS (RMYS UNKNOWN)
ROOMSTATUS(RPDP KNOWN)
ROOMSTATUS(RUNT KNOWN)

LANDMARKS(RHAL (COORDS (4, 11.200000 35.5

LANDMARKS(RRIL
(COORDS (4. 21,700000
(3. 24,799998
(2, 18,799998
(2. 36.800000
(2. 36,800000
(2. 18,799998
LANDMARKS (RRAN
(COORDS (4. 18,200000
(3. 18,.200000
(1, 11,200000
(4, 10,0 24,0
(3. 15,200000

35,400000
35.,400000
49.0 4.)
49.0 3,)
35.400000
35.400000

26 ,799998
32.0 0,)
3.5 2))
-1.)

24.0 -1,)

(2, 0,0 35,5 4.)

(2. 18,200000

24,0 2)

(2. 0,0 24,0 1,)))

JOINSROOMS (DMYSRAM RRAM RMYS)
JOINSROOMS(DMYSCLK RCLK RMYS)
JOINSROOMS (DMYSPDP RPDP RMYS)
JOINSROOMS (DPDPCLK RPDP RCLK)
JOINSROOMS(DUNIMYS RUNI RMYS)
LANDMARKS(RCLK
(COORDS (4, 24,799998
(3. 21.700000
(4. 25,799998
(3, 30,799998
(4, 18,599997
(3, 18,599997
(4. 18,599997
(3, 18,599997
(2, 18,599997
(2. 36,.800000
(2, 36.800000
(2. 18,599997
LANDMARKS (RMYS
(COORDS (4, 18,200000
(1. 18,200000
(4. 18,200000
(3, 18,200000
(4. 15,200000

35.0 -1.)
35.0 -1,)
15 ,200000
15,200000
20,799998
16 ,200000
32.0 0.)

26,799998
35.0 4)

35.0 3.)

15,200000
15,200000

2,7000000
14,799998
16.,200000
20,799998
23,599997

(3, 10.0 23,599997 -1,)

TABLE 86, conti

86

nued

0.)))

-1.)
=1.)

0.)

4
3
(2
(2
2
2
LANDMARKS(RPDP
(COORDS (4
(&)
4
&}
(2
2
LANDMARKS(RUNI
(COORDS (4
&
¢]
(2
2
WHISKERS(ROBOT,0)
IRIS(ROBOT, 1)
OVERIDE(ROBOT, 0)
RANGE(ROBOT , 30)
TVMODE(ROBOT , 0)
FOCUS(ROBOT, 30)
PAN(ROBOT, 0)
TILT(ROBOT,0)
DPANCROBOT, 3,12)
DTILT(ROBOT,0.7)
DIRIS(ROBOT,0)
DFOCUS(ROBOT, 0)

PICTURESTAKEN(ROBOT, 0)
JUSTBUMPED(ROBOT , NIL)

-

.

10,799998 7,6000000
16 ,000000 7,6000000
0,0 23,599997 4.)

18,200000 23,599997
18,200000 7,60000G0
0,0 7,6000000 1.)))

30,799998
25,799998
18,200000
18,600000
36,800000
36 ,800000

14,799998
14,799998
14,799998
9,7000000
14,799998
8.,2000000

16,000000 7,1999999
10,799998 7,1999999
16.0 7.1999999 3,0)
17,200000 2,1999998
0.0 2,1999998 1,)))

TABLE 6, concluded

87

-1.)
~1.)

2,)

~ We shall now describe the planned experiments that will use the model of Table 6 and the
operators shown in Table 7. The description will be in terms of the expected results of

these experiments.

a. Task 1

Starting with the configuration of Figure 15 (represented by the model in Table 68),
Shakey will perform two tasks. Each of these tasks is stated in English and entered into
the system via teletype. The first task is stated as “‘USE BOX 2 TO BLOCK DOOR
DPDPCLK FROM ROOM RCLK.” This statement is converted by the English language
system ENGROB [26] to a goal expressed by a well-formed formula (wff) of the first-order
predicate calculus: BLOCKED(DPDPCLK,RCLK,BOX2). The STRIPS problem-solving
system is then called to compose a sequence of operators whose execution will create a
world model in which this goal wif is true. In terms of the operators in Table 7, we can

show that the following sequence would solve this problem:

GOTO2(DUNIMYS),GOTHRUDR(DUNIMYS,RUNL,LRMYS),
GOTO2(DMYSCLK),
GOTHRUDR(DMYSCLK,RMYS,RCLK),
BLOCK(DPDPCLK,RCLK,BOX2)

Rather than generating this specific solution, STRIPS generates a generalized plan that
involves going from an arbitrary initial room through an intermediate room, and into a
third room and then blocking a doorway in the third room. The rooms, doorways, and
blocking object in this generalized plan are represented by parameters. The generalized
plan is thus a subroutine whose arguments are the parameters. These arguments are
bound to specific constants only when the plan is executed. The value of the generalized
subroutine is that it can be stored away (or ‘‘learned’’) and then used again in other

situations perhaps as part of a plan for a more complex task.

88

Preconditions:

INROOM(ROBOT ,RX) A INROOM(BX,RX)
A PUSHABLE(BX) A UNBLOCKED(DX ,RX)
A (3RY)JOINSROOMS (DX ,RX ,RY)

Delete List:

AT(ROBOT,$1,$2)
AT(BX,S$1,$2)
UNBLOCKED(DX , R%)
NEXTTO(ROBOT,$1)
NENTTO(BX,$1)
NEXTTO(S1,BX)

Add List:

*BLOCKED(DX , RX, BX)
NEXTTO(ROBOT , BX)

Blocks door DX with an object BX by pushing BX to a place in room RX directly in
front of door DX.

UNBUOCK(DXin‘BX)
Preconditions:
BLOCKED(DX ,RX,BX) A INROOM(ROBOT,RX) A PUSHABLE(BX)
Delete List:
AT(ROBOT,$1,$2)
BLOCKED(DX , RX, BX)
AT(BX,S$1,82)
NEXTTO(ROBOT,S$1)
NEXTTO(BX,S1)
NEXTTO(S1,BX)

Add List:

*UNBLOCKED(DX ,RX)
NEXTTO(ROBOT , BX)

Unblocks door DX by pushing object BX away from its place in room RX directly in
front of door DX,

GOTHRUDR(DX ,RX ,RY)

Preconditions:
NEXTTO{ROBOT,DX) A INROOM(ROBOT,RX)
A JOINSROOMS(DX,RX,RY) A UNBLOCKED(DX,RX)
A UNBLOCKED(DX, RY)
Delete List:
AT(ROBOT,$1,82)

NEXTTO(ROBOT, $1)
INROOM(ROBOT, $1)

Table 7: STRIPS OPERATORS

89

Add List:

* [NROOM(ROBOT , RY)
NEXTTO(ROBOT , DX)

Takes Shakey through door DX from room RX into room RY,
GOTO2(X)

Preconditions:

(IRX) [INROOM(ROBOT ,RX) A INROOM(X,RX)]
V (3RX,RY) (INROOM(ROBOT ,RX)
A JOINSROOMS(X,RX,RY) A UNBLOCKED(X,RX)]

Delete List:

AT(ROBOT,$1,32)
NEXTTO(ROBOT,$1)

Add List:
*NEXTTO(ROBOT,X)

Takes Shakey from any point in a room to a location next to amy object or doorway, X,

in the same room, (Shakey will navigate around obstacles that might be in the way of
a direct path,)

PUSH(OB X, Y)
Preconditions:

(ZRX) [INROOM(ROBOT ,RX) A

INROOM(OB,RX) A LOCINROOM(X,Y,RX)]
A PUSHABLE(OB)

Delete List:

AT(ROBOT,$1,$2)
NEXTTO(ROBOT,$1)
AT(0B,S$1,82)
NEXTTO(0B,$1)
NEXTTO($1,0B)

Add List:

*AT(0B,X,Y)
NEXTTO(ROBOT ,0B)

Pushes object OB from one point in a room to a coordinate location (X,Y) in the same room,
(Shakey must initially be in the same room as OB and (X,Y), but will push OB around obstacles
that might be in the way of a direct path,)

NAVTO(X,Y)

Preconditions:

(3RX) [INROOM(ROBOT ,RX)
A LOCINROOM(X,Y,RX) }

TABLE 7, continued

90

Delete List:

AT(ROBOT,$1,82)
NEXTTO(ROBOT,$1)

Add List:
*AT(ROBOT,X,Y)

Takes Shakey from any point in a room to the coordinate location (X,Y) in the same room.
(Shakey will navigate around obstacles that might be in the way of a direct path.)

POINT(DIRECTION)
Preconditions:
none
Delete List:
THETA(ROBOT,$1)
Add List:
*THETA(ROBOT ,DIRECT ION)
Turns Shakey so that its heading is DIRECTION,
PUSH3(OB,X)

Preconditions:

PUSHABLE(OB) A 3(RX) { INROOM(ROBOT,RX) A INROOM(OB,RX)
A [INROOM(X,RX) V 3(RY)JOINSROOMS(X, RX,RY)]}

Delete List:

AT(ROBOT, $1,$2)
NEXTTO(ROBOT,$1)
AT(0B,$1,$2)
NEXTTO(OB,$1)
NEXTTO'$1,0B)

Add List:

*NEXTTO(OB,X) .
NEXTTO(ROBOT,0B)

Pushes object OB from one point in a room to a location next to any object or doorway X
in the same room. (Shakey will push OB around obstacles that might be in the way of a
direct path.)

*
Note: An asterisk(*) in front of an add-list clause indicates that this clause is one of
the "primary effects" of the operator,

TABLE 7, concluded**

**From [11], pages 18-15.

91

The task in question elicits the following generalized plan from STRIPS:

GOTO2(PAR6),GOTHRUDR(PAR6,PAR7,PARS,)
GOTO(PAR4),GOTHRUDR(PAR4,PARS,PAR2),
BLOCK(PAR1,PAR2,PAR3)

This plan is stored away as the macro operator:
MACROP1(PAR3,PAR1,PAR2,PAR4,PAR5 PAR7,PARS)

STRIPS creates a triangle table representation of MACROP1. This table compactly
stores information vital to monitoring the execution of MACROP1 and information
needed to use MACROP1 (or parts of it) as a component of a future plan. We show this
triangle table representation of MACROPI in Table 8* and refer the reader to Chapter

Eight for a discussion of triangle tables and their uses.

After the creation of the triahgle table representation of MACROP1, STRIPS prepares a
version of it that will solve the given task, namely, to ‘*“Use BOX2 to block door DPDCLK
from room RCLK."” This version is obtained from MACROP1 by replacing those
parameters standing for constants in the goal wff by those constants. That is, in this
case, we replace PAR1 by DPDPCLK, PAR2 by RCLK, and PAR3 by BOX2 throughout
the MACROP1 triangle table. This instantiated table is then given to PLANEX for

execution.

PLANEX is a program that supervises the execution of those ILAs corresponding to the
operators in the plan. For a discussion of the operation of PLANEX, see the last part of
Chapter Eight. PLANEX takes as input a partially instantiated MACROP in triangle
table form. (This MACROP may have some parameters remaining after those occurring
in the goal wff have been instantiated.) The PLANEX algorithm looks for a specific, fully
instantiated subsequence of the operators in the MACROP that can be executed in the
present situation to achieve the goal. The ILA corresponding to the first operator is then
executed. In the case of the task we are considering the first ILA to be executed is
GOTO2(DUNIMYS), which causes the robot to go to the door named DUNIMYS.

Note: For all triangle tables, an asterisk () before a clause indicates that this clause was used to
prove the preconditions of the operator named at the right of the row in which the clause
appears.

92

The PLANEX algorithm then determines that the next ILA to be executed should be
GOTHRUDR(DUNIMYS,RUNLRMYS). Execution of this ILA begins by calling the vision
routine CLEARPATH, which takes a TV picture through the doorway to determine
whether the path in RMYS is clear (since the contents of RMYS are unknown). The path
is in fact clear, so Shakey proceeds through the doorway.

Next PLANEX calls for the execution of GOTO2(DMYSCLK). Since the contents of
RMYS are unknown to Shakey, GOTO calls CLEARPATH again. To illustrate how
Shakey can deal with unforeseen difficulties, we now place a box directly in Shakey’s path
in front of the door DMYSCLK. As Figure 15 and Table 6 show, Shakey does not know
of the existence of this box. CLEARPATH determines that the path is blocked and notes
the approximate location of the blocking object. Since Shakey expectS that it might
encounter unknown objects in room RMYS, GOTO next calls a vision routine called
OBLOC. This routine calculates the size and exact location of the object, gives it a name,
BOX3, and adds this information to the model. (it also assumes, perhaps optimistically,
that the new box is pushable.) OBLOC also notes that BOX3 is blocking door
DMYSCLK, so it adds the wff BLOCKED(DMYSCLK,RMYS,BOX3) to the model. Since
the conditions for continuing the execution of GOTO(DMYSCLK) are no longer satisfied,
control returns to PLANEX. Our i interest in this experiment is to show how Shakey can

gracefully recover from such an unexpected failure of its plan.

PLANEX, as usual, attempts to find a fully instantiated version of the parameterized
MACROPI1 that can be executed in the present situation to achieve the goal. In this case,
PLANEX finds another instantiation of MACROPI1 that works. The operators in this

instantiation are:

GOTO2(DMYSPDP),GOTHRUDR(DMYSPDP,RMYS,RPDP),
GOTO2(DPDPCLK),

GOTHRUDR(DPDPCLK,RPDP,RCLK)
BLOCK(DPDPCLK,RCLK,BOX2).

Here we see one of the advantages of constructing parameterized plans. To perform the

original task, we first constructed a parameterized plan having an instance that solves the
problem. Later in the task execution we find that after an unexpected difficulty, another
instance of the same parameterized plan can be used to achieve the goal. We expect that

this method of error recovery will be quite valuable in robot problems. (If PLANEX could

94

LT abod ‘[17] wouq,

€6

H(9dVd LUVd'sdVd PIVd UVd TV 'SUVd)IdOUDVIN

404 A1dVL JTONVIYL :8 319=L

*UNBLOCKED(PARG, PAR7)
«JOINSROOMS(PARG , PAR7 , PARS)
« INROOM(ROBOT , PAR7)

TRIANGLE TABLE FOR MACROPL(PARJ,PAR1,PAR2,PAR4 PARS ,PAR7 ,PARG)

GOTO2(PARG)

*UNCLOCKED(PARG , PART)

* INROOM(ROBOT , PART)
*JOINSROOMS(PARG , PART , PARS)
*UNBLOCKED(PAR6 , PARS)

*NEXTTO(ROBOT , PARG)

GOTHRUDR(PARG , PAR7 ,PARS)

*UNBLOCKED(PAR4, PARS)
*JOINSROOMS(PAR4,PARS ,PAR2)

* INROOM(ROROT , PARS)
NEXTTO(RODOT , PAR6)

GOTO2(PAR4)

*UNBLOCKED(PAR4 , PARS)
*JOINSROOMS{ PAR4 ,PAR5 ,PAR2)
*UNBLOCKED(PAR4,PAR2)

* INROOM(ROBOT , PAR5)

*NEXTTO(ROBOT ,PAR4)

GOTHRUDR(PAR

*~BQ(ROBOT , PARJ)

*UNBLOCKED(PAR1 ,PAR2)

*~EQ(RONOT , PAR3) 2 INROOM(PAR3, PAR2)
SPUSHABLE(PAR3)

*JOINSROOMS(PAR] ,PAR2 , PARS)

¢ INROOM(ROBO
NEXTTO(ROBOT

INROOM(ROBOT

(SAWY'LOGOY)NOOUNI 2491g2e [[ia jeq) s103e13do Jof 6300] SAIYLS

0s ‘SANY wool ul aq Isnw £ayeqg ‘os op 0, “(EXOL‘SANY M IDSANA)MOOTANN
Joresado aqy £jdde oy L17 pjnoys H yeq) sapIdap 18dy SJIYLS (sl 03 Suipuodsaiiod
sloyetado a3 0} monippe ul) alioradal Joresado sy1 Ul s|qe[ieae [JOHYDVIN seY 91 mou

INq ‘andy Jjm 2Y) ayeW [[IM eY) siojesado Jo asuanbas ® pulj 0y sydmaire mou SYIHILS

(SAWY MTOSANA)AAMDOTINN

:JJM smnojed jedipaid ' 09Ul PIlIdATOD §I JUIWIIeIs YsiSuy o) ‘miedy

MTOSANA 3ubi20[q 2q 03 paId403sip 31 1243 (gX0g) 123(q0

oY) feme aaow 0y Loyeyg juea o ‘streq] 'SAWNY WOOY WOYUA MTOSINAQ OO
MOOTANN,, 8! ‘qst[Suy ul ‘waisks Yy 0 WIALS yse) Y1 JO 1WaWNLIS YL "TJOYOVIN
Jo 14pd 3uisn £q paAjos aq ued 1ey) Yse) € 31 Suiald £q urea| 01 Lyjiqe s Laeyy

1597 MOU A\ Q[9InS1] Ul UMOYS s€ MOU sI plIom s La)eyg ul sSuig) jo ae}s 9 |,
¢ ysBL °q

‘3uiajos wajqoad aininj Ul Jojelado Ue se pasn 9¢ UBD pur

Keme pajyj u3dq seq [JOUDVIA 1871 70U 0s[e 3ap\ “£I[NOYJIp UaIsalojan agj jo ds ui
“ysey 181} oy pagsijdmodse sey Layeqg ‘aejdmod wonelado sigr Qipn MO0 £q pajuo
V11 HSNd 293 mgyis £[pd1yua auop st uoipedado ysnd sigy ysijdwodoe 0} papoou Suinae|d
[e20] o], ‘(ysnd , Soj-om,, ®) MDA 100p 01 U3 pue [X(Og punote 3t Suiysnd

pue gX O 01 3uto3 Joj sjfe2 v sig1 Sutmuny (X0 MTOUMTOdAdAINDOTE]

JO wonaaxa Y} I0j s[[ed XANV'1d U4 "MT1DHY wmWood

s19ua fayeyq £|jeuy [1nun sonunuod ssad0ld agy pue ‘Ioop Y3 ySnoayy 3uios loj s|wd
XU XANVId "dddSANA 200p 03 saaow sng) £33eYS (dAdSANQ)ZOLOD doredodo
1541} 377 JO UOIINIAIXI Y9 40} s{[2 XANV'1d ‘IdOHDVIN JO 22ue)sul mau sigy Suipui I3}y

("dOYDVIA pue ue[d 1agjoue aonpold 03 payse oq p[hom
SdIU.LS Toy) ‘[eod ay) 2adigoe p[nos 181 [JOYDVIN Jo souessul ajqeaijdde ou puyy

50 v
B RHAL
- RRIL
40
| 2
[- 4
: :
- 3 8
L ! aoxo<>
30— RRAM DRAMCLK
o RCLK
] — s
’l ; 5
| e | 2 e
> s
- -8 BOX1 SHAKEY
20 e
8OX3 DMYSCLK
- BOX2
[&]
=] -4
! g
- OMYSPOP &
i
10 |- i RPDP
< 0
§
2
_ S
a
RUNI
L
°|_ PR N (N SR TN NN N (N T WO N MO NN NN N NN
0 10 20 30 40
x — feet
TA-8973-7

Figure 16: MAP OF SHAKEY'S WORLD AFTER COMPLETION OF THE FIRST
TASK*

*From [11], page 21,

96

situation and achieves the condition INROOM(ROBOT,RMYS), STRIPS is quickly able to
settle on this instance and produce a plan for Task 2. Let us denote by MACROP1’ the
subsequence of MACROPI selected by STRIPS. MACROP1 " still contains free
parameters that are left to be bound at execution time. Its definition in terms of the

operators comprising it is:

MACROP1’ (PAR2,PAR4 PARS,PAR7 PARG)

GOTO2(PARS)
GOTHRUDR(PARS,PAR7,PARS)
GOTO2(PAR4)
GOTHRUDR(PARS,PAR?2)

The complete generalized plan for the second ask is:

MACROP1’ (PAR2,PAR4,PARS,PAR7,PARS)
UNBLOCK(PAR1,PAR2,PAR3)

This generalized plan is given the name MACROP2 and is saved for possible later use.
The triangle table representation of MACROP? is shown in Table 8.

After creating the general version of MACROP2, STRIPS prepares a version of it for
PLANEX by instantiating it with those constants appearing in the task description.
Namely, DMYSCLK is substituted for PAR1 and RMYS for PAR2. It then gives this
partially instantiated version to PLANEX to be executed. PLANEX finds that the

following instantiation of the plan will achieve the goal:

MACROP1’ (RMYS,DMYSRAM,RRAM,RCLK,DRAMCLK)
UNBLOCK(DMYSCLK,RMYS,BOX3)

Next, PLANEX calls for execution of MACROP1’. This execution is accomplished by
PLANEX itself. The ability to handle ‘‘nested” triangle tables is one of the features of
our system. PLANEX discovers that the first ILA to be executed in MACROP1 "’ is
GOTO(DRAMCLK). In a similar manner, PLANEX ultimately executes the entire string
of ILAs in MACROP1’ and then the UNBLOCK ILA to accomplish the second task.

97

‘65 abod ’[r[j wo4f,

86

H(TUVIPUVd'edVd LYVd 9dVd 1UVd ' €dVd)edOYDOVIN

dOd JT19dVL dTONVIYL :68 2[q9%L

TRIANGLE TABLE FOR MACROP2(PAR3,PAR1,PAR6 PAR7,PAR5 PAR4,PAR

* INROOM(ROBOT , PAR7)
*UNBLOCKED(PAR6 , PAR7)
*JOINSROOMS (PAR6 , PAR7 , PAR5)
*UNBLOCKED(PARG , PAR5) MACROP1 /(PAR2 ,PAR4 ,PARS ,PAR7 ,PAR6)
*JOINSROOMS (PAR4 , PARS , PAR2)
*UNBLOCKED(PAR4 , PAR5)
*UNBLOCKED(PAR4 , PAR2)
*BLOCKED(PAR1 ,PAR2,PAR3) * INROOM(ROBOT , PAR2)
NEXTTO(ROBOT , PAR4)
UNBLOCK(PAR1
INROOM(ROBOT , PAR2) NEXTTO(ROBOT
UNBLOCKED(PA

 —

£ SAIYLS Ut 30 ‘XANVId W ‘SY7] [2A9] 12y31q 9e ‘A[omeu ‘Inmado um...v £1340034

319Y M S[3A3] J0g3IY [eIoAds e IoY) ‘salyi[iqe pue aZpajmouy s,yI[Aytoads ® puofaq e
sainpasoad £10A0031 ajeladoidde agq) wagpy "SI0419 LU 1031100 03 £[[€O0] UED }1 }RYM SIOP
V11 §o®3 9BYg) 3sUas) Ul 3snqod aq 03 Paudisap si sy] Jo WasLs Y, ‘sainjiej jo sad £y
SNOLIEA WOJj J9A0J3J 09 L)1[iqe 3y} pue sue[d pazijesouald uled] 0} L3ijiqe oY) e s0{)

Jo juejtodumi gsopy ‘sjmomiIadxa 3597} UI PITRISN{|l I8 WIISAS 3} JO §3INIBIJ [BIIAIY

*aan9o1d e usye} jsnl Sulseq Ioyje aerrdordde aewmyss Joaid 3G} 03 3jedipadd Ly(Q

37} §7953 Os[e 9] ‘[9pow 3y} OjUI WOled0| pArepdn S} 19903 pue ‘UOIPEIO] [BNIVE § 3040l
aq1 aamyoid s1gy wodj sajejnojed ‘(qurelioof e se [ons) ainjesj £qieau awos hm ampoid ¢
saye) YYVINANVY'T ‘PalIe? st MUVINANV'T P2[[e° weiSoad [ensiA € ‘92Ueiajo) 2} SPIIIXI
97R WIS JOIId 37} JIAUIYA) °JOIId 3[qeIa[0} d1jIdads amos wey) ss9f [[115 S1 J JIYIIYM 338
0} Pay99Y? st Jould d[qeqodd sigy ‘gOLOD §B [ons sy7[Jo UOIINIAXS Suln(UoloW 10qol
£12A3 199j© 013 JO JRWIIS3 Y} IsBAIIUI A[[edpeworne smeldold 0UeUI)UIRW-[IPOJN
"LV 27ed1paad 2y Ul paiojs uoijedo] s £ayeqs Ul Joals 9|qeqold 343} jnoqe uoljeuwiojul
sUle)UO0d [opoul) 1eY) |[eo9y -salyijiqeded £I9A0221-10119 INO JO JUO JIYIOUR 3SIDIIXI 0}

opop Aew mwaysks Y3 1ey) 3|qeqodd st 1 ‘pardnpuod £|[enjoe ale sjudwWiIAdxa 353y WIYAN

ACKNOWLEDGMENTS

Many people worked on the Shakey project. Charles A. Rosen, the
founder of the SRI Artifictal Intelligence Center, first concetved of “‘an
tntelligent automaton project.’’ In an attempt to mention at least some
researchers, we have ezplicitly listed in the references to this note all of
the authors of the Shakey technical reports (instead of using the usual
“et al.” convention.) We also gratefully acknowledge the Defense
Advanced Research Projects Agency who supported the research described
here. A special note of appreciation ts due Dr. Ruth Davts who, as a
sentor offictal tn the Defense Department of Research and Engineering,

had the viston to tnitiate this and other projects in robotics.

101

Appendix A

Mechnical Development of the Automaton Vechicle

Appendix A

Mechnical Development of the Automaton Vehicle

By Vladimsir Lieskovsky

The following note from [8] by Viadimsr Lieskovsky described the robot

vehtele in some detatl:

MECHANICAL DEVELOPMENT OF THE AUTOMATON VEHICLE

A. General Arrangement of the Vehicle

At the beginning of the project, only very sketchy information was available about specific
requirements for the vehicle. The general requirements given were that the vehicle should
be able to maneuver on a linoleum-tiled laboratory floor, move on ramps that had up to a
ten percent slope, be not wider than a doorway, weigh not more than approximately 200
Ibs, move under radio-transmitted digital-computer control, and be energized by an on-
board power source. It was further specified that the vehicle should be able to turn
around its own vertical centerline in either direction and be able to move both forward

and backward.

Accordingly, with this prescription we began with a rectangular platform, 3 ft in length
and 2 ft in width, with the corners cut off at an angle. The platform was equipped with
four wheels mounted in a diamond pattern: two 8-in diameter rubber castor wheels, one
in front of the platform and one at the back; and two 8-in diameter rubber wheels,
coaxially mounted, one at either side of the platform. The coaxially-mounted wheels were
to be driven independently. One of the castor wheels was mounted on a spring-loaded
flange, which allowed that wheel to deflect, under load, out of the plane determined by
the other three wheels. In this way we achieved the compliance necessary to negotiate

slopes. The platform stands about 10 inches above the floor level. The space provided

105

between the wheels accommodates the main drive motors, and for a low center of gravity,

the batteries.

A 4-in vertical distance above the platform was reserved for proposed manipulator arms.
A standard 19-in electronic rack, supported at three points, was located above this
reserved space. A video camera and range finder combination was mounted atop the

rack.
B. Details of the Physical Arrangement

1. Power Supply and Drive

One of the first decisions to be made was the selection of the form of energy to be used
for drive purposes. Among those considered were hydraulic, pneumatic, and eventually,
electric drives. Since electrical power had to be made available for the electronics, electric
drive was ultimately selected. The choice between secondary batteries and fuel cells was
dictated mainly by price and delivery figures in favor or the batteries. Two 12-volt
batteries in series were used to establish the operational, nominal voltage at 24 Vdc. The
choice between drive motors was reduced to either a straight dc motor, an inverter and ac
motor combination, or stepping motors. Complexity and control considerations of the
digital commands ruled out the inverter/ac combination. Direct current motors, although
electrically noisy, were attractive due to their high power density and good torque
characteristics. Manufacturer’s quotes were uniformly forbidding: six months for delivery
and a price in excess of several thousand dollars for each motor. The units would have
had standard clutches, brakes, and position readout capability for feedback information.
Stepping motors, although they suffer from low power density, are excellently suited for
digital control, and they were immediately available and were low in price (not more than
about $200.00 each). Therefore, the decision was made to use stepping motors exclusively
for prime movers. Not all of the motors selected were rated at 24 Vdc, but they were

easily converted by using dropping resistors.

In order not to lose count of the steps in the drive train between the motor and the drive
wheel, the speed reduction between the motor and the wheels had to be one without
slippage, that is, positive. The reduction was necessary to increase available torque from

the motors and to reduce the amount of translation per incremental step of the motor to

106

1/32nd of an inch measured at the periphery of the wheel. For every control pulse, the
stepping motor executes a rapid change in its angular position. Depending on the inertia
of the driven load and the damping of the drive trains, oscillations may develop. These
oscillations were reduced by limiting the incremental stepsize, i.e., the generated
amplitude. A cogged belt, or timing belt, arrangement was selected for the drive train.
This was to give the necessary positive drive, while also introducing damping. As it
turned out, the belt proved to be a secondary source of oscillations, since bending
vibrations were generated in the belt when the stepping motor was operated. Increasing

the belt tension reduced the oscillations to an acceptable level.

2. Closing the Minor Loop Through the Motor

The stepping motor operates in an open loop mode. Completion of any step depends on
the inertial load coupled to the motor, and not unlike a synchronous motor, the stepping
motor also can ‘‘fall out of phase,” so to say, when it is overloaded. This condition is
largely a function of the stepping rate. Therefore, closing the loop in the operation of the
main drive motors seemed to be warranted. Fortunately, similar considerations led
Fredrikson [27] to synthesize, build, and describe a closed-loop stepping motor scheme.
By using his results, we were able to adhere to the ground rule of no novel detail
development. We closed the minor loop through the motor in the following way: a disk,
containing fifty appropriate holes on a circle, was mounted on the motor shaft. Four light
source and photocell pairs placed along the circle, and shifted by one-fourth of the hole
pattern pitch, were mounted on the motor housing. This arrangement provided for 200
positions for every revolution, which is also the step-pattern of the motor. We used the
simple schematic, described in [27] to complete the feedback loop. In operation, no step
command can be given until after the information from the position feed-back disk
indicates that the previous step has been completed. Simply, the motor cannot miss a
step.

3. Wheels

The rubber wheels presented another problem: due to their finite elasticity, transient
motions generated either by the vehicle itself, or by its environment, resulted in disturbing
oscillations of the whole vehicle in pitch and roll modes with a time constant of about 2
seconds. This amount of settling time was judged to be unacceptable because no picture
taking with the TV camera could be initiated during that time. Since friction on the

driving wheels had to be maintained, but elasticity minimized, a properly-stiffened rubber

107

driving rim on a metal wheel proved to be an acceptable solution. Since the castor
wheels, however, could remain relatively compliant, but required reduced friction on the

floor, they were capped with a metallic rim and gave good results.

The originally configured, independently-suspended castor wheel design gave way to a
scheme that provided easy handling of the batteries. The supply batteries are now
contained in a subcarriage, supported at three points. At one end of the subcarriage, one
ball-bearing is located at each of the two corners while at the other end is located the
vchicle's previously independently-suspended castor wheel. The batteries in the
subcarriage can be conveniently wheeled to and from a recharging station. When the
subcarriage is wheeled back to the vehicle, the ball-bearings are received by corresponding
ramps, which lift up the ball-bearings and lock them into proper position. The bearings
now act as pivots around which the subcarriage swings in a vertical plane. This freedom
of movement provides for independent suspension of one of the four wheels. The
distribution of the load on the vehicle is such that when the subcarriage is removed, the

rest of the vehicle is still statically stable on its remaining three wheels.

4. TV Camera and Range Finder Mount

Although it is possible to scan with a TV camera which is rigidly mounted on a vehicle
that is capable of turning around its own vertical axis, it seemed expedient to provide for
an independent panning capability. Thus, the TV-range finder combination is mounted
on a yoke that can be rotated by a vertically-mounted stepping motor. The yoke
accommodates a transverse, horizontal axis, around which the TV camera can be tilted.
The tilt drive train incorporates a worm drive and another stepping motor. The worm
drive is necessary to cope with the excessive tipping moments originating from a revised
version of the range finder. When the stepping motor is not in operation, the worm drive
provides a self-locking feature as an added bonus. In the pan mode, limit switches and
stops are provided as well as an electromagnetic detent, acting on a 200-tooth gear,
mounted on the shaft of a 200-step/revolution stepping motor. The yoke was designed for
these functions only. The shaft of the pan motor is coaxially mounted with the vertical
centerline of the vehicle; that is, if equal and opposite commands are given to the driven
wheels, the location of the pan motor shaft does not change. The TV camera is located in
such a fashion that the photosensitive surface of its vidicon tube is exactly at the
intersection of the vertical pan axis and the tilt axis. Turning the vehicle about its
vertical axis, panning the camera, and tilting it, does not affect the location of the vidicon

surface, only its direction.
» only 108

It also seemed expedient to attach the range finder directiy to the TV camera. In this
way, the distance of an object, viewed by the optical centerline of the TV camera, from

the range-finder can be measured.

A separate arrangement of the TV camera and the range finder was similarly logical:
distance-mapping of the surroundings could be accomplished while the TV camera could
“‘digest”’ and recognize a particular scene. However, the kinematic complexity of this

arrangement seemed prohibitive when compared to the possible advantages.

Stepping motors were mounted onto the TV camera lens housing for computer controlled
adjustment of the focus and the iris. Since these motors operate in the open loop mode,
step count may be lost. Therefore, separate limit switches for both focus and iris
functions and at both ends of their range are provided. Whenever the limit switches are
actuated, the counters are reset accordingly. This is also the scheme utilized in the pan

and tilt modes.

»

5. Tactile Sensors

Tactile sensors are mounted at the front and back and on both sides of the vehicle to
provide protection against damage to the vehicle and to its surroundings and to provide
touch information. These sensors were selected from commercially available
microswitches, and are actuated by a flexible coil spring approximately 6 inches long.
Piano wire whiskers or extensions may be added to the end of the coil springs to provide
longer reach. The guiding principle has been to sense the presence of a solid object within
the braking distance of the vehicle when it is traveling at top speed. Additional
appropriately placed sensors protect the TV camera against collision in the translational
and the rotational modes. The actuation of any sensor will inhibit the corresponding

action, while override is also made available.

As further protection against collisions, heavy rubber bumperstrips are mounted on all
protruding edges of the vehicle. If the performance capacity of the main drive motors

permits, these bumpers will be used to move objects around the environmental room.*

*From [3], pages 40-45.

109

Appendix B

Some Current Techniques For Scene Analysts

Appendix B

Some Current Techniques For Scene Analysts

For completeness, we reprint below an SRI AI Center Technical Note by
Richard Duda [28] that describes some of the vision routines used by
Shakey.

Some Current Techniques fbr Scene Analysis
by
Richard O. Duda

1. Introduction

The purpose of the visual system is to provide the automaton with important information
about its environment, information about the location and identity of walls, doorways,
and various objects of interest. By adding new information to the model, the visual
system gives the automaton a more complete and accurate representation of its world.
The role of vision is not independent of the state of the model. If the automaton has
entered a previously unexplored area, the visual scene must be analyzed to add
information about the new part of the environment to the model. In this situation, the
model can provide so little assistance that it is ofter not referenced at all. On the other
hand, if the automaton is in a thoroughly known area, the role of vision changes to one of
providing visual feedback to correct small errors and verify that nothing unexpected has
happened. In this situation, the model plays a much more important role in assisting and
actually guiding the analysis.

Until recently our attention has been directed primarily at the general scene-analysis
problem. Every picture was viewed as a totally new scene exposing a completely unknown
area. More recently we have addressed the problem of using a complete, prespecified map
of the floor area to update the automaton’s position and help in tasks such as going
through a doorway. Another use of this kind of visual feedback would be the monitoring

of objects being pushed.

113

In trying to solve these problems, we have tended to take one or the other of two extreme
approaches. Either we tried to develop general methods that can cope with any possible
situation in the automaton's world, or we tried to exploit rather special facts that allow
an cfficient special-purpose solution. The first approach involves the more intercsting
problems in artificial intelligence, but it provides more capabilities than are needed in
many situations, and provides them at the cost of relatively long computation times. The
second approach provides fast and effective solutions when certain (usually implicit)
preconditions are satisfied, though it can fail badly if these conditions are not met.
Eventually, of course, some combination of these two approaches will be needed, since the
automaton actually operates in a partially known world, rather than one that is
completely unknown or completely known. However, we have decided to concentrate on
these two extreme situations before addressing the intermediate case. The remainder of

this note describes the current status of our work in these areas.*

II. Region Analysis

A. The Merging Procedure

Our work in general scene analysis is based on dividing the picture into regions
representing walls, floors, faces of objects, etc. The basic approach has been described in
detail elsewhere [16], and only a brief summary will be given here. The procedure begins
by partitioning the digitized image into elementary regions of constant brightness. This
usually produces many small, irregularly shaped regions that are fragments of more
meaningful regions. Two heuristics are used to merge these smaller regions together.
Both of these heuristics operate on the basis of fairly local information, the difference in
brightness along the common boundary between two neighboring regions. The heuristics
are not infallible; they can merge regions that should have been kept distinct, and they
can fail to merge regions that should been merged. However, they reduce the picture to a
small number of large regions corresponding to major parts of the picture, together with a

larger number of very small regions that can usually be ignored.

The effect of applying these heuristics is best described through the use of examples.

Figure B-1 shows television monitor views of three typical corridor scenes. Figure B-2

*Our earlier work in scene analysis is described in [7]. Additional information on more recent
work is contained in [8], [16], [29], and [30].

114

shows the results of applying the merging heuristics to digitized versions of these pictures.
The boundaries of the regions in these pictures are directed contours, and can be traced
using the correspondences shown in Table B-1. Generally speaking, important regions can
be scparated from unimportant regions purely on the basis of size. Figure B-2a, for
example, contains four large, important regions. Three of them are directly meaningful
(the door, the wall to the right, and the baseboard), and the fourth is the union of two
important regions (the floor and the wall to the left). An inspection of Figure B-2b shows
similar results. Figure B-2c shows the result of applying the technique to a complicated
scene; while some useful information can be obtained, the resolution available severely

limits the usefulness of the results.

Our only complete scene-analysis program is oriented toward identifying boxes and
wedges, objects with triangular or rectangular faces, in a simple room environment [16].
For this task, we begin by fitting the boundaries of the major regions by straight lines.
Regions are identified as being part of the floor, walls, baseboards, and faces of objects by
such properties as shape. brightness, and position in the picture. Objects are identified by
grouping neighboring faces satisfying some of the simpler criteria used by Guzman [31].

In the process, certain errors caused by incorrect merging are detected and corrected. We
have yet to complete a similar analysis program for the conditions encountered in corridor
scenes. However, we have investigated the problem of obtaining a scene description that

is internally consistent; the next section describes the analysis approach for this problem.

B. A Procedure for Scene Analysis

If we assume temporarily that the merging heuristics have succeeded in the sense that all
of the large regions are meaningful areas, then the only basic problem remaining is the
proper identification of each region. Examination of the corridor pictures indicates the

need to be able to identify a number of different region types, including the following:

115

(a) DOOR

(b) HALL

{c) OFFICE WITH SIGN

TA-8259-20

Figure 1: THREE CORRIDOR SCENES

116

cecespprrEzeceyRe eeseencecastsesatasinanns

o

sy: 5.

sTITIITITIIST TPETIIIINT sref¥isteszroes S3§8FEpones

Figure 2: RESULTS OF MERGING HEURISTICS

117

b) HALL (c) OFFICE WITH SIGN

(s) DOOR

TA-8259-21

CONFIGURATION CHARACTER CONFIGURATION " CHARACTER

O 1

oiolojaiaiolo]s
e
nlolololojolola

TA-8269-24

Table 1: CORRESPONDENCE BETWEEN BOUNDARY SEGMENT
CONFIGURATIONS AND CHARACTERS USED IN PRINTOUT

118

(1) Floor (8) Sign*

(2) Wall (9) Window

(3) Door (10) Clock

(4) Door jamb (11) Doorknob
(5) Object face (12) Thermostat
(6) Baseboard (13) Power outlet
(7) Baseboard reflection (14) Automaton.

Each of these regions has certain properties which tend to characterize it uniquely. For
example, the floor region is usually large, bright, and near the bottom of the picture.
However, most regions can be identified with greater confidence if the nature of their
neighbors is considered as well. Thus, the presence of a baseboard or baseboard reflection
at the top of a region almost guarantees that the region is the floor; conversely, the
presence of wall area immediately above a region guarantees that it can not be a
baseboard reflection. If regions are identified without regard to how that choice affects
the overall scene description, the chance for error is increased. Moreover, the resulting

description can be nonsensical.

Many, though by no means all, of the relations between types of regions relate to
neighboring regions. Table B-2 indicates those types of regions that can and cannot be
legal neighbors. We can easily add to this further restrictions, such as the fact that the
baseboard must have the wall as a neighbor along its top edge. These are some of the
important known facts about the general nature of the automaton’s environment. The

problem is to use facts such as these to aid in the analysis of the scene.

One approach to solving this problem is to use these facts as constraints to eliminate
impossible choices. Suppose that each significantly large region in the picture is
tentatively classified on the basis of the attributes of that region alone. Suppose further
that a score is computed for each region that measures the degree to which it resembles
each region type.** For any selection of names for regions, we can define the score for the

resulting description as the sum of the individual scores. Then, we can analyze the scene

*By ‘“sign” we mean a dark vertical bar on the wall used, as illustrated in Figure B-1¢, to identify
an office.

**This score might be interpreted as the logarithm of the probability that the given region is of
the indicated type.

119

NOLVYWOLNV
1311N0 H3IMOd
1VAISOWHIHL
8ONNHYOO0a
N0010

MOGNIM

NOIS

NOILDOI V43
auvoe3sve

quvoe3sve
30V4 123780
gWVI ¥o0O
4ooa

1Ivm

¥ood

w4+

+|+|+{+|+|+|+

+

[+ [+[+]+]+

+l+|+|+

Jrag ey ey ey e 2

+[+]+

+ 4|+ | +|F|F|+|+
+l |+ +{+|F|+

+|+|+|F|F|+]| Tt

. FLOOR

WALL

DOOR

DOOR JAMB

OBJECT FACE

REFLECTION

BASEBOARD
SIGN

BASEBOARD

WINDOW
CLOCK

DOORKNOB

POWER OUTLET

THERMOSTAT

AUTOMATON

TA-8259-25

Table 2: REGIONS THAT ARE LEGAL NEIGHBORS

120

by trying to find highest scoring legal selection of region names. With no loss in
generality and some gain in convenience, we can work with the losses incurred by selecting
other than the highest scoring choice. In terms of losses, we want the legal description

having the smallest overall loss.

This problem is basically a tree-searching problem. The start node of the tree

" corresponds to the first region selected for naming. The branches emanating from that
node correspond to the possible choices of names for that region. A path through the tree
corresponds to a unique labeling of the picture. Thus, if there are N possible region
names and R regions, there are potentially NR possible paths through the tree. Each path
passes through R+1 nodes from the start node to the terminal node. Every terminal node
has a loss value, which is the sum of the losses incurred for the choices along the path to
that node. A goal node is a terminal node corresponding to a complete, legal scene

description. We seek the goal node with the smallest overall loss.

This is a standard problem in tree searching, and optimum search procedures are known.
Assume that some choices have been made for some of the regions so that we have a
partially expanded tree. Using the Hart-Nilsson-Raphael terminology [32], some of the
terminal nodes of this tree are open nodes, candidates for further expansion. Each open
node has an associated loss g, the sum of the losses from the start node to that node. If
we assume that there is no reason to believe that zero-loss choices cannot be made from
that node on, then the optimal search strategy is to expand that open node having the

minimum g.

To expand a node, we must select a region not previously considered and examine the
possible choice for that region, ruling out any choices that are not legal. Different
strategies can be used for selecting the next region. It seems advantageous to ask it to be
a neighbor of the regions selected previously, since this maximizes the chance of detecting
illegalities. In general, we will have several neighbors for candidate successors. Of these,
it seems reasonable to select the one having the highest score, under the assumption that

the first choice name for this region is most likely to be correct.

After a region has been selected, it is necessary to examine the choices one can make for
its name to see which ones are legal. If we limit ourselves to pairwise relations between

neighboring regions, we need merely compare each choice with previously made choices on

121

the path to this point and test each for legality.* The node expanded is removed from the
list of open nodes, the resulting new nodes are added, and the process is repeated until the
algorithm selects a goal node for further expansion. This is our final result, a legal scene

description having the minimum loss.

C. Examples

The following examples serve to illustrate the action of this scene-analysis procedure.
Consider first the simple scene shown in Figure B-3. For simplicity, we assume that there
are only five types of allowed regions—floor, wall, door, baseboard, and sign. Consider
Region 1. On the basis of its brightness, size, vertical right boundary, and possession of a
hole, it should receive a high score as wall, and lower scores as floor, door, sign, and
baseboard, Region 2 might, perhaps, score highest as a door, and so on. Thus, the
following table of scores, although purely imaginary, is not unreasonable. Missing entries

correspond to scores too low to be seriously considered.

Type Base-
Region ! Floor Wall Door board Sign
1 5 6 2
2 7 1 5
3 3 3 5 1

*When an illegality is found, that choice is deleted. One can argue that few relations are so
strong as to be absolutely illegal, and an alternative approach would be to introduce various
additional losses for the different observed relations.

122

The following table gives equivalent information in terms of the losses associated with

each choice.
Type Base~ Max
|_Region Floor Wall Door board Sign Score
1 1 0 4 6
2 | 0 6 2 7
3 2 2 0 4 5

Let us use our tree-searching algorithm to obtain the minimum-loss, legal description of
this scene. Initially the successor function is unconstrained by neighbor restrictions, and
selects Region 2 merely because it has the highest score. At this point, all of the choices
for Region 2 are legal, and the tree has three open nodes; the numbers shown next to each

node give the loss accumulated in reaching that part of the tree.

The search algorithm requires that the open node having the least loss be expanded next,
which corresponds to tentatively calling Region 2 a door. The successor function finds
only one neighbor to choose from, Region 1, and considers its alternatives: wall, floor,
and door. None of these choices is a legal neighbor surrounding Region 1, and hence all

are rejected. Thus, this open node has no successors.
123

TA-82598-26

Figure 3: A SIMPLE SCENE

124

Returning to the choices for open nodes, Region 2 is tentatively called a sign. The
successor function again selects Region 1, and this time finds one legal successor, the
wall.* The loss associated with this choice is 0, and the overall loss is 2. The list of open

nodes still contains two members.

The search algorithm selects the open node with loss 2, and the successor function has

only Region 3 to select from. All of the choices for Region 3 are all legal with respect to

*Note that our successor function will always produce a tree with R+1 levels. At any level, the
same region will always be selected by the successor function. The actual successors, however,
will be limited by the legality requirement.

125

calling Region 2 a sign and Region 1 a wall. The least loss results from calling Region 3 a

door, and the scene analysis is completed.

A somewhat more realistic example involving 10 regions and 14 region types is illustrated
in Figure B-4. Table B-3 gives the hypothetical scores. Based on these scores alone, half
of the regions would be incorrectly identified. Figure B-5 shows the tree produced by the
search algorithm. The devélopment of this tree is too complicated to describe in detail. It
should be noted, however, that considerable backtracking occurred because a low-scoring
third choice was needed for Region 8, the doorknob. Whether or not this can be

circumvented without causing other problems is not known.

D. Remarks

To date, this procedure has only been used on some hypothetical examples. We have
modified a general tree-searching program to adapt it to some special characteristics of
this problem. However, we have not started the important task of writing programs to
measure characteristics of regions and to use these characteristics to produce recognition

scores.

In addition, we have not implemented any legality conditions beyond the simple conditions
given in Table B-2.

126

5 10

TA-8259-27

Figure 4: A MORE COMPLICATED SCENE

127

REGION
TYPE

FLOOR 1 n

6
2

WALL 7 3|5 5 4
. 6

DOOR 3 6

DOOR JAMB 6

OBJECT FACE 6

BASEBOARD 5 9 3

BASEBOARD
REFLECTION

SIGN 1 6

WINDOW 1 2 8

CLOCK

-t

DOORKNOB

DI N

THERMOSTAT

POWER OUTLET 3 4

AUTOMATON

TA-8259-29

Table 3: HYPOTHETICAL REGION SCORES

128

an!

P Ny

S8R]
X &
-3 5-3 0
g 13

Wi F D Ws

e @ B

Wi F D Wa

D' acg @ * ol

S/B\BR S/ B8\BR S/ 8\BR S/ B \BR s/fB\BrR S/B\BR S/fB\BR S/ B \BR
16 B 14
Bo® Cdd S0 dE® G0 oo de® &

2-1 2-1 2-1 24 -1 2-1 2-3

A
6 ~lf— Q
PRUNED @ SEQUENCE
NODE NUMBER
REGION

2-1 2.1 2<% 2-1 2-1 2+ 2-% 2-1 2-1 23 241

2-3

} noven

REGIONS IN
CONFLICT

10-3 10-3 10-9 10-3 10-3 10-3 10-3 10-9 10-3 10-

w

TA-8259-28

Figure 5: THE ANALYSIS TREE

129

This approach to scene analysis has several potential advantages. It is not necessary to
identify every region correctly at the outset to obtain a correct analysis, provided that the
“syntactic’’ rules are sufficiently complete. By providing a limit on the allowable loss, a
partial scene description can be obtained that may be useful even though incomplete.
Perhaps most important, the operations of merging, feature extraction, classification, and
analysis are clearly separated, allowing fairly independent modification and improvement.
In particular, the general knowledge about the environment can be expressed explicitly as
rules for legal scenes, and if the environment is changed it is possible to confine the

program changes to modifying these rules.

One of the major problems with this approach is the lack of an obvious way to detect
erroncous regions, regions that are fragments of or combinations of meaningful regions.
We are currently working on this problem, since progress toward its solution is needed
before implementation of this system can be begun. Another problem is that it is not
clear how specific information contained in the model can be used to guide the analysis.
This problem of working in a world that is neither completely known nor completely

unknown is one of the major unsolved problems in visual scene analysis.
III. Landmark Identification

When the environment is completely known, the visual system can provide feedback to
update the automaton's position and orientation. The x-y location of the automaton and
its orientation © can be determined uniquely from a picture of a known point and line
lying in the floor.* Such distinguished points and lines serve as landmarks for the
automaton. This section describes our present program that uses concave corners, convex

corners, and doorways as landmarks to update position and orientation.

A flowchart outlining the basic operations of this program is shown in Figure B-6. The
program begins by selecting a landmark from the model that should be visible from the
automaton’s present position; if more than one candidate exists, one is selected on the

basis of range and the amount of panning of the camera required.* The camera is then

panned and tilted the amount needed to bring the landmark into the center of the field of

*If no landmark is in view, a suitable message is returned together with a suggested vantage point
from which a landmark can be seen. This is one of several “‘error’ returns that can be obtained
from the program. The program can also be asked to select a specxflc landmark, or a landmark
different from the ones previously selected.

130

view, and a picture is taken. The baseboard-tracking routine described previously [8] is
used to find the segments of baseboard in the picture and to fit them with long straight

lines.

Exactly what happens next depends on the landmark type. For a door, the long line
nearest the center of the picture is selected, and the true image of the landmark is
assumed to be the endpoint of the baseboard segment on that line and nearest the center
of the picture. An additional check is made to see that the gap from that point to the
next segment is long enough to be a passageway. A convex corner viewed from an angle
such that only one side is visible is treated as if it were a door. Otherwise, the
intersection of long lines nearest the center of the picture is assumed to be the true image
of the landmark, and a check is made to see that the baseboard segments near this point
have the right geometrical configuration. The location of the landmark in the picture
gives the information needed to compute corrections for the automaton’s position and

orientation.

The operation of this program is illustrated in Figure B-7. In this experiment, the
automaton was approximately 7.5 feet away from a wall along which there were four
landmarks, both sides of a doorway, a convex corner, and a concave corner. The pictures
in Figure B-7. show how closely the panning and tilting brought the landmarks to the
center of the pictures. For scenes as clear as these, the program operates very reliably.
Presently, we can use this routine to locate the robot with an accuracy of between 5
percent and 10 percent of the range, and to fix its orientation to within 5 degrees. Since
the errors are random, the accuracy can be improved further by sighting a second
landmark. Further increases in accuracy, if needed, will have to be obtained by
improving the tilt and pan mechanism for the camera.*

*From [28], pages 1-24

131

!

SELECT MOST
CONVENIENT
LANDMARK
FROM MODEL

v

PAN AND TILT
CAMERA TO
CENTER ON
LANDMARK

v

TAKE PICTURE,
TRACK BASEBOARD,
AND FIT WITH
LONG LINES

‘Concave corner TYPE OF
LANDMARK

Door

FIND
INTERSECTION BOTH SIDES U';'E' %ELS:EGST
OF LONG LINES VISIBLE ? ANDMARK
NEAREST LANDMARK
y
FIND TRACK
TYPE OF Convex ON THAT LINE
CORNER NEAREST
LANDMARK
CHECK FOR CHECK FOR CHECK FOR
CONCAVITY CONVEXITY DOOR-WIDTH
GAP IN TRACK

¥

UPDATE
POSITION

3

Figure 8: BASIC FLOWCHART FOR LANDMARK PROGRAM

TA-8259-22

132

(a) RIGHT DOOR (b) LEFT DOOR

{d} CONCAVE CORNER

TA-8259-23

(c) CONVEX CORNER

Figure 7: LANDMARKS

133

[1]

[o

14]

(5]

REFERENCES

Rosen, Charles A., and Nils J. Nilsson, eds.

Application of Intelligent Automata to Reconnaissance, First

Interim Report, prepared for Rome Air Development Center, Griffiss Air
Force Base, New York, under contract AF 30{602)-4147, SRI Project
5953, Artificial Intelligence Center, SRI International, Menlo Park,
California (November 1966). NTIS access number 80-817 189.

Rosen, Charles A., and Nils J. Nilsson, eds.

Application of Intelligent Automata to Reconnaissance, Second

Interim Report, prepared for Rome Air Development Center, Griffiss Air
Force Base, New York, under contract AF 30(602)-4147, SRI Project
5953, Artificial Intelligence Center, SRI International, Menlo Park,
California (March 1967). NTIS access number 80-820 989.

Rosen, Charles A., and Nils J. Nilsson, eds.

Application of Intelligent Automata to Reconnaissance, Third

Interim Report, prepared for Rome Air Development Center, Griffiss Air
Force Base, New York, under contract AF 30(602)-4147, SRI Project
5953, December 1967. Artificial Intelligence Center, SRI

International, Menlo Park, California (December 1967). NTIS access
number 80-827 938.

Nilsson, N., B. Raphael, and S. Wahlstrom.

Application of Intelligent Automata to Reconnatssance, Fourth

Interim Report, prepared for Rome Air Development Center, Griffiss Air
Force Base, New York, under contract AF 30(602)-4147, SRI Project
5953, Artificial Intelligence Center, SRI International, Menlo Park,
California (May 1968). NTIS access number 80-841 509.

Nilsson, N. J., C. A. Rosen, B. Raphael, G. Forsen, L. Chaitin,

and S. Wahlstrom.

Application of Intelligent Automata to Reconnaissance, Final
Report, prepared for Rome Air Development Center, Griffiss Air Force
Base, New York, under contract AF 30(602)-4147, SRI Project 5953,
Artificial Intelligence Center, SRI International, Menlo Park,
California (December 1968). NTIS access number 80-849 872.

135

(6]

(8]

(9]

[10]

Nilsson, Nils J.

Research on Intelligent Automata, First Interim Report, prepared

for Rome Air Development Center, Griffiss Air Force Base, New York,
under contract F30602-69-C-0056, (ARPA Order No. 1058, Amendment 1),
SRI Project 7494, Artificial Intelligence Center, SRI International,

Menlo Park, California (February 1969). NTIS access number AD-A140279

Coles, L. S., R. O. Duda, T. D. Garvey, J. H. Munson, B. Raphael,
C. A. Rosen, and R. A. Yates.

. Application of Intelligent Automata to Reconnaissance, Final

Report, prepared for Rome Air Development Center, Griffiss Air Force
Base, New York, under contract F30602-69-C-0056, (ARPA Order No. 1058,
Amendment 1), SRI Project 7494, Artificial Intelligence Center,

SRI International, Menlo Park, California (November 1969). NTIS access
number 80-86A 871.

Chaitin, L. J., R. O. Duda, P. A. Johanson, B. Raphael, C. A. Rosen,

and R. A. Yates.

Research and Applications - Artificial Intelligence, Interim

Scientific Report, prepared for the National Aeronautics and Space
Administration, 600 Independence Avenue, S.W., Washington, D.C., under
contract NAS1-2221, (ARPA Order No. 1058, Amendment 1), SRI Project
8259, Artificial Intelligence Center, SRI International, Menlo Park,
California (April 1970). NTIS access number N73-25173.

Raphael, Bertram.

Research and Applications - Artificial Intelligence, Final Report,
prepared for the National Aeronautics and Space Administration, 600
Independence Avenue, S.W., Washington, D.C., under contract NAS1-2221,
(ARPA Order No. 1058, Amendment 1), SRI Project 8259, Artificial
Intelligence Center, SRI International, Menlo Park, California

(November 1970). NTIS access number N73-72140.

Raphael, B, L. J. Chaitin, R. O. Duda, R. E. Fikes, P. E. Hart,

and N. J. Nilsson.

Research and Applications - Artificial Intelligence, Semiannual

Progress Report, prepared for the National Aeronautics and Space
Administration, 600 Independence Avenue, S.W., Washington, D.C., under
contract NASW-2164, SRI Project 8973, Artificial Intelligence Center,
SRI International, Menlo Park, California (April 1971). NTIS access
number N73-22558.

136

[11] Raphael, B,, R. O. Duda, R. E. Fikes, P. E. Hart, N. J.
Nilsson, P. W. Thorndyke and B. M. Wilber.
Research and Applications - Artificial Intelligence, Final Report,
prepared for the National Aeronautics and Space Administration, 600
Independence Avenue, S.W., Washington, D.C., under contract NASW-2164,
SRI Project 8973, Artificial Intelligence Center, SRI International,
Menlo Park, California (December 1971). NTIS access number N73-23279.

[12] Hart, P. E, R. E. Fikes, T. D. Garvey, N. J. Nilsson,
D. Nitzan, J. M. Tenenbaum, and B. M. Wilber.
Artificial Intelligence - Research and Applications, Annual
Technical Report, prepared for the Advanced Research Projects Agency,
Arlington, Virginia, under contract DAHCO04-72-C-0008, (ARPA Order No.
1943), SRI Project 1530, Artificial Intelligence Center, SRI
International, Menlo Park, California (December 1972). NTIS access
number AD7 56970.

[12] Munson, John H.
A LISP-FORTRAN-MACRO Interface for the PDP-10 Computer, Technical
Note 16, Artificial Intelligence Center, SRI International, Menlo
Park, California (November 1969).

[14] Green, C.
““Application of Theorem Proving to Problem Solving,” in
Proceedings of 1st International Joint Conference on Artificial
Intelligence, Washington, D. C., Walker, Donald E., and Lewis
M. Norton (eds.), pp. 219-239 (1969). Also appears in Readings in
Artificial Intelligence, Webber, Bonnie Lynn, and Nils J. Nilsson,
eds., pp. 202-222, Tioga Publishing Company, Palo Alto, California (1981).

" [15] Garvey, T. D., and R. E. Kling.
User's Guide to QA8.5 Question-Answering System, Technical Note

15, Artificial Intelligence Center, SRI International, Menlo Park, California
(December 1969).

[16] Brice, C. R., and C. L. Fennema.
Scene Analysis Using Regions, Technical Note 17, Artificial
Intelligence Center, SRI International, Menlo Park, California (April
1970). Also appears in Artificial Intelligence, 1(3), pp. 205-226
(Fall, 1970).

137

[17]

18]

[19]

[20]

(24

[rm

Duda, R. O., and P. E. Hart.

‘Pattern Recognition and Scene Analysis, New York: John Wiley and Sons

(1973).

Fikes, R. E., and N. J. Nilsson.
“STRIPS: A New Approach to the Application of Theorem Proving to
Problem Solving,” Artificial Intelligence, 2(3/4), pp. 189-208 (1971).

Nilsson, Nils J.
Principles of Artificial Intelligence, Tioga Publishing Company,
Palo Alto, California (1980).

Sacerdoti, E. D.
A Structure for Plans and Behavior, New York: Elsevier (1977).

Wilkins, D.
“Domain-independent Planning: Representation and Plan Generation,”
Artificial Intelligence 22, Number 3, pp. 269-301 (April 1984).

Fikes, R. E., P. E. Hart, and N. J. Nilsson.

“Learning and Executing Generalized Robot Plans,” Technical Note 70,
Artificial Intelligence Center, SRI International, Menlo Park, California
(July 1972). Also appears in Artificial Intelligence, 3(4),

pp. 251-288 (1972).

Ernst, G., and A. Newell.
7PS: A Case Study in Generality and Problem Solving, ACM Monograph
Series, Academic Press, New York (1969).

Fikes, R. E.

Monitored Erecution of Robot Plans Produced by STRIPS, Technical
Note 55, Artificial Intelligence Center, SRI International, Menlo
Park, California (April 1971). Also appeared in Proceedings IFIP
Congress 71, Ljubljana, Yugoslavia (August 23-28, 1971).

Film, SHAKEY: Ezperiments in Robot Planning and Learning,

Artificial Intelligence Center, SRI International, Menlo Park, California
(1972).

138

[26]

7]

(28]

29

[30]

[31]

32

Coles, L. Stephen.

“Talking with a Robot in English,” Proceedings of the
International Joint Con ference on Artificial Intelligence,
Washington, D. C., Walker, Donald E. and Lewis M. Norton (eds.),
pp. 587-596 (1969).

Fredrickson, T. R.
“Closed Loop Stepping Motor Application,” Third International
Federation of Automatic Control Congress, London (June 20-25, 1966).

Duda, R. O.

Some Current Techniques for Scene Analysis, Technical Note 46,
Artificial Intelligence Center, SRI International, Menlo Park, California
{October 1970).

Duda, R. O., and P. E. Hart.
Ezperiments in Scene Analysis, Technical Note 20, Artificial
Intelligence Center, SRI International, Menlo Park, California (January 1970).

Duda, R. O., and P. E. Hart.

A Gencralized Hough Transformation for Detecting Lines in
Pictures, Technical Note 36, Artificial Intelligence Center, SRI
International, Menlo Park, California (August 1970).

Guzman, A.
“Decomposition of a Visual Scene into Three-Dimensional Bodies,”
Proceedings FICC, pp. 291-304 (December 1968).

Hart, P. E., N. J. Nilsson, and B. Raphael.

“A Formal Basis for the Heuristic Determination of Minimum Cost
Paths,” IEEE Trans, Sys. Sci. Cyb., Vol. SSC-4, pp. 100-107 (July 1968).

139

