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Evolutionary Robotics and the Radical
Envelope-of-Noise Hypothesis 

Nick Jakobi* 
University of Sussex 

For several years now, various researchers have endeavored to apply artificial
evolution to the automatic design of control systems for real robots. One of the
major challenges they face concerns the question of how to assess the fitness
of evolving controllers when each evolutionary run typically involves hundreds
of thousands of such assessments. This article outlines new ways of thinking
about and building simulations upon which such assessments can be
performed. It puts forward sufficient conditions for the successful transfer of
evolved controllers from simulation to reality and develops a potential
methodology for building simulations in which evolving controllers are forced
to satisfy these conditions if they are to be reliably fit. It is hypothesized that as
long as simulations are built according to this methodology, it does not matter
how inaccurate or incomplete they are: Controllers that have evolved to be
reliably fit in simulation still will transfer into reality. Two sets of experiments
are reported, both of which involve minimal look-up table-based simulations
built according to these guidelines. In the first set, controllers were evolved
that allowed a Khepera robot to perform a simple memory task in the real
world. In the second set, controllers were evolved for the Sussex University
gantry robot that were able to distinguish visually a triangle from a square,
under extremely noisy real-world conditions, and to steer the robot toward the
triangle. In both cases, controllers that were reliably fit in simulation displayed
extremely robust behavior when downloaded into reality.

Key Words: simulations; evolutionary robotics; robot-environment interactions;
neural networks

Introduction 
’ 

_

The artificial evolution of control architectures typically involves the constant and
repetitive testing of hundreds upon thousands of individuals as to their ability to
behave in a certain way or to perform a certain task. In the case of real robots, this
testing procedure is far from a trivial matter and [with the exception of certain hybrid
approaches (Thompson, 1995; Nolfi, Floreano, Miglino, & Mondada, 1994a)] can
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be done in only one of two ways: Control architectures either must be evaluated on
real robots in the real world, or they must be evaluated in simulations of real robots
in the real world. Both of these approaches are problematic.

The evaluation of control architectures for real robots must be done in real time,
which makes the entire evolutionary process prohibitively slow (Mataric and Cliff,
1996). For example, Mataric and Cliff (1996) cite the evolution of collision-free

navigation in a Khepera robot, which, in the experiments reported by Floreano
and Mondada (1994), took a total of 65 hours (100 generations at 39 minutes per
generation) to evolve.1 It is difficult to see how this approach can scale up, if the
behaviors in which we are interested require thousands or even millions of gener-
ations. Nonetheless, even if we are resigned to an evolutionary process that takes
years rather than days, then there are other problems that must be faced. The process
must be automated, which begs questions about such concerns as how data are to be
collected for fitness evaluations and how the robot will be placed at the start of fitness
trials without human intervention. Power must be supplied continuously to robots
in situations in which batteries have limited life spans and tethering by a permanent
power lead is not always possible. In addition, machines break down, especially under
the sort of continuous random battering that the real-world evaluation approach ad-
vocates. Clearly, the alternative simulation approach would be preferable, as it avoids
all these problems and can run at faster than real time.

Several experimenters, including Jakobi, Husbands, and Harvey (1995), Beer and

Gallagher (1992), and Miglino, Lund, and Nolfi (1995) have shown that it is possible
to evolve in simulation control architectures for a real robot. Now that this is no

longer in doubt, the question becomes one of whether the technique will scale up.
In Mataric and Cliff (1996), the authors argue that if behavioral transference can
be guaranteed only when a carefully constructed, empirically validated simulation is
used, then as robots and the behaviors we want to evolve for them become more

complicated, so do the simulations. The level of complexity involved, they argue,
would make such simulations so computationally expensive that all speed advantages
over real-world evolution are lost and so difficult to design that the time taken in
development outweighs time saved by fast evolution.

Clearly, the main challenge for the simulation approach to evolutionary robotics
is to invent a general theoretical basis and methodology on which fast-running sim-
ulators can be easily and cheaply built that guarantee the transference of evolved
behaviors from simulation to reality.

This article puts forward such a theoretical and methodological basis, albeit at

1 The shape-discrimination behavior evolved in Harvey, Husbands, and Cliff (1994) took only 36 hours to evolve, but
this is of the same order of magnitude. 
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a preliminary stage, and outlines some notable experimental successes using the
proposed techniques. Section 2 undertakes a conceptual analysis of how it is possible
for control architectures that have evolved in simulation to transfer into reality. Two
conditions on evolved controllers are posited that together are sufficient to ensure
that this transference is successful. Section 3 outlines a methodology for building
simulations that force reliably fit control architectures to meet these two conditions
and therefore to cross the reality gap successfully. The concept of fast, easy-to-build,
minimal simulations also is introduced in this section. Section 4 outlines evolutionary
experiments that involve a minimal simulation of a Khepera robot, and section 5
outlines evolutionary experiments that involve a minimal simulation of the Sussex
University gantry robot. Finally, section 6 offers some conclusions and thoughts for
the future. 

How Is It Possible to Cross the Reality Gap? 

’

As has been demonstrated in several reports (Jakobi et al., 1995; Beer & Gallagher,
1992; Nolfi, Miglino, & Parisi, 1994b), it is possible to evolve control architectures
in simulation for a real robot. However, the explanations offered by the authors of
these articles as to why behaviors successfully transfer to reality when evolved under
certain simulation conditions though not under others fall well short of the level of
understanding necessary to develop a general simulation-building methodology. The
consensus view seems to be that control architectures will transfer successfully if the
right amount of noise is included in a carefully constructed and empirically validated
simulation of the robot and its environment.2 However, there is no such thing as
the perfect simulation; some real-world features will be modeled at the expense of
others, and because our empirically validated simulation might be your unrealistic
toy-world, we cannot agree on what to put into the simulation and what to leave
out of it without objective criteria based on a sound theoretical understanding.

2.1 I What constitutes success? 
&dquo;

If we are to devise a general methodology for building simulations for evolutionary
robotics, it is important to define exactly what we mean when we say that a behavior
has successfully transferred from simulation to reality. In Miglino et al. (1995), the
authors look at the fitnesses of control architectures in simulation and compare them

to the fitnesses of the control architectures in reality but, as we shall see in section 3.4,
this is not always possible when using the type of simulations proposed in this article,

2 Although the nature of the "right amount of noise," and indeed even what it means for a behavior to "transfer
successfully from simulation to reality," varies markedly among articles on the topic.
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and so we shall not be using this criterion here. In Jakobi et al. (1995), the authors use
a more subjective approach to judge whether control architectures behave in reality
in a manner that is qualitatively similar to how they behave in simulation, but again,
as we shall see, this is not always possible.

For the purposes of this article, a control architecture is said to have success-

fully crossed the reality gap if it successfully and reliably displays the behavior it
was evolved to display when downloaded into reality. It should be stressed that this

does not involve any comparison between the behavior of the control architecture
in simulation and in reality, but merely a judgment, based on thorough testing, of
whether the control architecture reliably performs the task in reality. As in Jakobi et
al. (1995), this often may be a somewhat subjective measure but should nevertheless
be unambiguous. If one uses a simulation to evolve robot controllers to move around
a cluttered environment while avoiding objects, for example, then control architec-
tures successfully cross the reality gap if, when downloaded, they do indeed cause a
robot, in a reliable fashion, to move around a cluttered environment while avoiding
objects. If one uses a simulation to evolve visually guided robot controllers that steer
toward a target, then control architectures successfully cross the reality gap if, when
downloaded, they do indeed reliably steer the robot toward the target. ,

2.2 Overcoming the failings of simulation
All the worries and problems associated with getting controllers to cross the reality
gap spring from one simple fact: It is not possible to build a simulation that is a

perfect copy of the real world. If it were, then from the point of view of evolving
robot controllers, there would be no differences between simulation and reality, and
we would be surprised if they did not cross the reality gap. Unfortunately, any real-
life simulation will differ from a perfect copy of the real world on two counts: It

will model only a finite set of real-world features and processes, and those features
and processes that it does model, it will model inaccurately. Both of these failings
have fundamental implications for the ways that we should think about simulations
for evolutionary robotics and the conditions that must be satisfied if evolved robot
controllers are to cross the reality gap. We will look at both failings in turn.

2.2.1 Simulations cannot accurately model everything Because a simulation
can model only a finite set of real-world features and processes, the first thing that
we must decide when building a simulation is exactly what feature and processes
should constitute this set. Obviously, for the purposes of evolutionary robotics, we
are interested only in those real-world features and processes that have some bearing
on a particular robot or robots and a particular environment. It still remains to be

determined, however, which of these choices we must model and which we can get
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away with ignoring, in order that evolved controllers will cross the reality gap. There
is little point in modeling the color of a robot or the objects in its environment, for
example, if that robot is fitted only with sonar range sensors.

The approach advocated in this article is very different from the conventional one.
It is based on the observation that the only aspects of a simulation that have to be
modeled accurately, if we are to ensure that a particular robot control architecture
will cross the reality gap, are those that the particular robot control architecture uses
and relies on to perform its behavior. In other words, if we accurately model only
a subset of all the possible robot-environment interactions, then provided that the
behaviors of evolving robot controllers can be constrained to depend on the members
of this subset and this subset alone, from their point of view there will again be no
difference between simulation and reality. If this subset is sufficient to underlie a

particular behavior that we are interested in evolving, then robot controllers that
evolve in this way to perform the task in question will transfer successfully from
simulation into reality.

The conventional approach is to try to model, as accurately as possible, all the

real-world features and processes that could conceivably affect a robot’s behavior. The
rationale behind this is that, again (ignoring the inevitable inaccuracy of the modeling
process for the time being), there will be no differences between simulation and reality
from the point of view of evolving robot controllers; we can therefore give evolution
a free rein, safe in our knowledge that whatever aspects of the simulation on which
evolving controllers come to depend, those aspects also will be present in the real
world. In practice, however, no matter how comprehensive the model, there will
always be real-world features that have been left out. Even with extensive and time-
consuming empirical validation, simulations built according to this approach can hope
to capture only a subset of the totality of possible robot-environment interactions.
They should therefore be thought of in the same way as the simulations discussed
earlier.

Because these concepts are central to the ideas presented later in this article, we
will give them a special terminology Throughout the rest of the article, the set of
robot-environment interactions that we decide to model as a basis for the behaviors

of evolving controllers will be referred to as the base set of robot-environment in-
teractions. Such a base set might include the way in which infrared sensors interact
with nearby objects to return values, for example, or the way in which wheel speeds
respond to motor signals to move the robot around the environment, or the way in
which a camera returns an image when pointed at a particular feature in the environ-

3 A formal and theoretical framework that offers a slightly different viewpoint is developed m Jakobi (1997a). This
formal framework, which is more amenable to mathematical analysis than to an intuitive understanding, should be
seen as complimenting the terminological framework offered here.
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ment. Those aspects of the simulation that correspond to members of this base set,
and on which evolving controllers can safely depend and that they can use without
encountering any differences between simulation and reality, will be referred to as the
base set aspects of the simulation. Also, there likely will be aspects of the simulation
on which behaviors of evolving controllers can depend but that have no basis in
reality. These will derive from the simple fact that a simulation must be a coherent
whole from the point of view of evolving control architectures. In other words, if

only a few robot-environment interactions are modeled accurately in the simulation,
then those that are not modeled often will leave &dquo;gaps&dquo; that must be filled in by
arbitrary values and processes so that the simulation constitutes a complete virtual

reality. Those aspects of the simulation that are not base set aspects, but on which

evolving control architectures can come to depend nevertheless, will be referred to
throughout the rest of the article as the implementation aspects of the simulation. We
will examine concrete examples of all of these terms in section 3.

To see why the selection of certain concepts and the assignment of special terms is
important, consider a hypothetical simulation in which we have decided on a particular
base set of robot-environment interactions and have modeled them 100 percent

accurately. In other words, we have created a simulation the base set aspects of
which are 100 percent accurate. What are the conditions under which controllers

evolved in such a simulation will transfer to reality? The answer is that if a control
architecture evolves to depend on the base set aspects of the simulation to perform its
behavior, and those base set aspects alone (either implicitly or explicitly), then the control
architecture will successfully cross the reality gap, the simple reason being that, from
the point of view of such a control architecture, there will be no difference between
this simulation and one that is a perfect copy of the entire real-world situation.

Control architectures whose behaviors are exclusively grounded in the base set

aspects of a particular simulation will be referred to throughout the article as being
base set exclusive. Those controllers that are not base set exclusive but that depend
on implementation aspects of the simulation and that have no counterpart in reality
will, more likely than not, fail when downloaded. Their behaviors will depend on
things that may or may not be true of the real world.

2.2.2 Simulations cannot accurately model anything Even if we know the con-
ditions under which robot controllers will cross from a simulation whose base set

aspects are 100 percent accurate into reality, we are only half-way toward a general
explanation. It just is not possible to model a base set of robot-environment inter-
actions with 100 percent accuracy. To explain how control architectures can and do
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cross the reality gap, we need to add something to the exclusivity condition laid out
earlier. We must state the conditions under which a control architecture will transfer

into reality from a simulation whose base set aspects are inaccurate.
Consider first that, as defined previously, for a control architecture to cross the

reality gap it need not perform the task identically in the real world to the way that
it performs the task in simulation, but it must perform the task in the real world.
Thus, small inaccuracies in the base set features of a simulation might result in slight
differences between a controller’s behavior in simulation and its behavior in reality,
but as long as it continues to behave satisfactorily in reality, then we may say that the
control architecture has successfully crossed the reality gap. This is akin to hitting a
barn door with a shotgun at five paces: If your aim is off by a meter or so, you will
still hit the barn door, and this is all we are after. Of course, in more complicated
and involved situations, there will not be so much room to maneuver, but it should
be kept in mind that even for the most delicate of behaviors, there will normally be
a little bit of leeway in which small discrepancies are lost.

Some control architectures, however, will be more robust to inaccuracy than are
others. The level of base set inaccuracy that an evolved control architecture can
tolerate before it ceases to perform satisfactorily in the real world will depend on
exactly how it uses the base set aspects of the simulation to perform the task. For
example, it has long been appreciated in the engineering world that processes that
employ feedback or similar techniques will be far more robust to inaccuracy and
noise than those that do not (Brogan, 1991). This is true here also: Nonbrittle

control strategies and behaviors that constantly correct themselves as they go, either
through explicit feedback loops or implicitly via the environment [as in Braitenberg’s
vehicles (Braitenberg, 1984)], lend themselves to the handling of the differences
between simulation and reality. However, in certain situations, even the most brittle,
ballistic of control strategies will perform the task satisfactorily in reality, as in the
shotgun example given earlier.

Unfortunately, we cannot say anything much stronger than that control architec-
tures must be robust to the differences between the base set aspects of a simulation

and the base set itself if they are to cross the reality gap. This is because there are so
many ways of handling these differences depending on the behavior, what we de-
mand of it, the nature of the robot-environment interactions and real-world features
that make up the base set, and so on. As we shall see, however, there may be ways of

forcing the evolution of this type of robustness (in whatever form evolution cares to
conjure up), in which case there is no need to focus too hard on exact mechanisms by
which control architectures may be robust, as this job may be left to the evolutionary
process itself. All that is important for our present purposes is to say that this type of
robustness is a necessary property of behaviors if they are to perform satisfactorily
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in reality. Throughout the rest of the article, we will refer to controllers that display
this property as being base set robust... , ,

3 The Radical Envelope-of-Noise Hypothesis: A New Methodology for Building
Simulations

In the previous section, two properties were described-that of being base set exclu-
sive and that of being base set robust-which together are sufficient for the successful
transfer of robot controllers across the reality gap. In this section, we introduce the
radical envelope-of-noise hypothesis, a general methodology for forcing the evolu-
tion of these two properties by placing certain restrictions on the simulation itself.
The section begins with a brief overview of the methodology so that the reader has a
framework in which to view the arguments presented later. It then examines exactly
how one might go about building simulations that force successful evolved behaviors
to be both base set exclusive and base set robust. The section ends with a discussion

of the issues involved in using the methodology to build minimal simulations for
evolutionary robotics that run fast and are easy to build.

3.1 Overview of the methodology
As opposed to a single bold statement of fact, which may be proved true or false
by empirical testing, the radical envelope-of-noise hypothesis should be seen as a
methodology that we can use to build simulations that are posited to display certain
properties. Whether or not the hypothesis is true (or, more pragmatically, useful)
depends on whether reliably fit control architectures, that have evolved in simulations
built using the methods and techniques outlined in the following sections, transfer
across the reality gap. The methodology can be summed up in three steps:

1. A base set of robot-environment interactions (that are sufficient to
underlie the behavior we want to evolve) must be identified and made
explicit. A simulation should then be constructed that includes a model
of these interactions. This simulation will display base set aspects, which
have a basis in reality, and implementation aspects, which do not.

2. Every implementation aspect of the simulation must be randomly varied 
&dquo;

from trial to trial so that evolving controllers that depend on them are
unreliable. In particular, enough variation must be included to ensure that
evolving controllers cannot, in practice, be reliably fit unless they are
base set exclusive (i.e., they actively ignore each implementation aspect
entirely) . _

3. Every base set aspect of the simulation must be randomly varied from 
’ 

j ’
trial to trial so that reliably fit controllers are forced to be base set robust. 
The extent and character of this random variation must be sufficient to ’ .<
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ensure that reliably fit controllers are able to cope with the inevitable
differences between the base set aspects and reality but not so large that
reliably fit controllers fail to evolve at all.

Although only briefly stated, it should be evident that the methodology departs
radically from more traditional ways of building simulations in steps 2 and 3. The
next two subsections fully explain, in turn, the reasoning behind these two steps.

3.2 Ensuring that reliably fit controllers are base set exclusive
When control architectures are being evolved in simulation to perform a specific
task, a fitness criterion is used (usually an explicit function tailored to the task) to
tell which controllers are fitter than others. If this fitness criterion is set up correctly,
then all control architectures that are able consistently and robustly to perform the
task we are after will also be reliably fit and vice versa. If a single fitness evaluation
consists of taking the average score from several independent trials, then we may say
that a behavior that is reliably fit is one that scores a high fitness value on all such
trials. In such a situation, a control architecture that is base set exclusive is one that
uses the base set aspects of the simulation, and those aspects alone, to be reliably fit.
If we want successful evolved behaviors to be base set exclusive, therefore, we need
to ensure that reliably fit individuals do not depend in any way on implementation
aspects of the simulation to achieve reliable high fitness, but depend only on base set
aspects.

One way of forcing this to happen is to make all the implementation aspects of
a simulation unreliable by varying them randomly from trial to trial. If this is done

correctly, then the only practicable way in which a control architecture can be reliably
fit, trial after trial, is by using those aspects of the simulation that are in themselves
reliable (i.e., the base set aspects). Because a single fitness evaluation involves several

independent trials, reliably fit individuals will score more highly, in the long run,
over those that are less reliable, and we may expect them to be selected for by the

evolutionary process. If the process succeeds, and reliably fit individuals evolve, then
we can be confident that they will rely exclusively on the base set aspects of the
simulation to perform their behavior and therefore will be base set exclusive.

The most difficult part of making the implementation aspects of a simulation
unreliable is identifying what these aspects are in the first place. Mostly, they will
arise as an incidental artefact of the modeling process, in which case they can be
subtle and hard to spot. For example, one of the robot-environment interactions
we might choose to include as a member of our base set is the fact that a particular
sensor returns a value in the interval 0 to 13 when pointed in a certain direction.
In implementing this interaction as a base set aspect of the simulation, however,
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we must choose a particular way in which values are returned between 0 and 13.
Values could be returned from across the whole interval, or they could all equal 7.
The point is that unless the way in which values are returned within this interval in
simulation is the same as the way in which they are returned in reality, then it is an
implementation aspect of the simulation and has no real-world basis. If the way in

which values are returned within the interval 0 to 13 is randomly varied from trial
to trial, however, then evolving controllers cannot rely on how they arise within this
interval (the implementation aspect), but only on the fact that they do (the base set
aspect).

In other cases, the implementation aspects of a simulation will be obvious to us
as we have put them in especially to make the modeling process easier or to reduce
computational overheads. For example, we may note that certain of the robot-
environment interactions we would like to include in our base set are very simple
to model when the robot is located within certain areas of its environment and are

very difficult to model in others. To make the job of building our simulation easier,
therefore, we might model the real robot-environment interactions for when the
robot is situated in the easy-to-model areas, and implement arbitrary interactions for
when the robot is situated in the hard-to-model areas. In this case, the interactions

between the virtual robot and its environment when it is situated in the easy-to-
model areas are base set aspects of the simulation, and the interactions between the
virtual robot and its environment when it is situated in the hard-to-model areas are

implementation aspects of the simulation. By randomly varying these implementa-
tion aspects from trial to trial in a way that makes them completely unreliable, reliably
fit controllers will employ strategies that rely on the robot-environment interactions
in the easy-to-model areas, while completely ignoring any interactions between the
robot and its environment in the hard to model areas. Extra care must be taken in

this sort of situation to ensure that the base set aspects of the simulation are com-

prehensive enough to allow reliably fit controllers to evolve, however. There is a real
danger, if we are overzealous in our lust for computational expediency, that we may
effectively exclude so many real-world features from the simulation that what is left
is insufficient for successful behavior.

Once the implementation aspects have been made explicit, we must then tackle
the task of injecting randomness into the implementation aspects of the simulation.
In many cases, it will be tempting merely to add large amounts of noise to everything
that is not a base set aspect and to leave it at that. However, if this noise is in itself
reliable in the sense that evolving controllers can always count on it being there, then
they can and will (see Jakobi et al., 1995) evolve to use it to achieve high fitness.
The secret is to vary the implementation aspects of the simulation randomly from
trial to trial as opposed to during each trial only. As a fitness evaluation consists
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of several trials, each controller will be subjected to several different instances of
each implementation aspect-noisy, absolute, black, white, big, small or whatever-
depending on the nature of the particular aspect and the ways in which it can be
varied. As long as there is nothing that all instances of a particular implementation
aspect have in common, then reliably fit controllers will be totally independent of
that aspect, or they will not be reliable.

Of course, in practice, it might be very difficult to ensure that there is nothing
that all instances of any particular implementation aspect have in common. However,
if the implementation aspects of a simulation are made unreliable enough, then it
is so much harder for evolution to find a way of using them reliably than it is for
evolution to find a way of totally ignoring them that we can be extremely confident
that controllers that evolve to be reliably fit will be base set exclusive.

3.3 Ensuring that reliably fit controllers are base set robust
To ensure that reliably fit control architectures are base set robust, we must be able
to ensure that they can cope with the differences between the base set of robot-
environment interactions on which a particular simulation is founded and the base
set aspects of that simulation. We may approach this by adapting ideas borrowed
from Husbands and Harvey (1992) (with further elaborations in Husbands, Harvey,
and Cliff, 1993). The concept is that by randomly varying the base set aspects of a
simulation by a small amount, from trial to trial, reliably fit individuals will have to
be able to cope with a certain amount of variation in order to be reliable. There will,
therefore, be a selection pressure in favor of controllers that are better able to cope
with slightly different versions of each base set aspect and, thus, in favor of controllers
that are better able to cope with the differences between the base set aspects of the

simulation and the base set of robot-environment interactions in reality. Hence, to
evolve reliably fit individuals that are base set robust, all we need is some way of

knowing how much random variation must be applied to the base set aspects of the
simulation and the best way in which to apply it.

As has already been said, rarely is it possible to simulate even the smallest portion
of the world completely accurately. However, it also is rare that a simulation builder
will not have at least some idea of how inaccurate his or her simulation is, and this

seems a sensible way to work out limits on the amount of random variation we need

to apply to the base set aspects of a simulation in order to ensure that successful
evolved controllers will be base set robust.

As to how this variation should be applied, there are lessons to be learned from
experiments reported in Jakobi et al. (1995). In those experiments, extra noise was
added to the simulation over and above that present in reality, and controllers were
able to evolve that made use of the extra noise in such a way that they were reliably fit
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in simulation but failed miserably when downloaded onto the real robot. However,
this extra noise was reliably present during every trial, so evolving controllers that
relied on its presence were still able to be reliably fit. In other words, evolving
controllers were faced with the same base set aspects of the simulation at every
fitness trial, and these base set aspects were significantly different from the real base
set of robot-environment interactions (i.e., they were much noisier). Given this fact,
it is unsurprising that evolved controllers were unable to cross the reality gap as they
had not evolved to be able to cope with lots of different instances of each base set

aspect but only with a single instance that had no basis in reality.
For there to be a selection pressure in favor of controllers that can cope with

slightly differing versions of each base set aspect of a simulation, these aspects need
to be varied between trials and not during them. There should, of course, be noise
on sensors and actuators during each trial, as there will also be noise on sensors and
actuators in the real world. However, this noise should be regarded as an integral
part of the base set of robot-environment interactions on which the simulation is

founded and not something extra to it. Noise levels should be altered between trials
along with all the other base set aspects of a simulation. They should not remain
steady throughout the evolutionary process at unrealistic levels.

3.4 Minimal simulations 

A careful inspection of the last two sections will reveal that nowhere is it implied
that the base set aspects of a simulation should reflect reality as closely as possible,
nor that the number of implementation aspects of a simulation should be kept to
a bare minimum. In this lies the potential power of the radical envelope-of-noise
hypothesis. A reliably fit controller that evolves in a simulation containing very
inaccurate base set aspects and lots of implementation aspects is just as likely as any
other to cross the reality gap, provided that the right amount of random variation is
included in the simulation in the right way according to the methodology laid out
earlier. What is much more unlikely in this situation is that reliably fit controllers will
evolve at all. The amount of randomness with which the evolutionary machinery
can find ways of coping will always be limited, no matter how this machinery is set
up. If the amount of variation necessary to ensure that reliably fit controllers cross the

reality gap surpasses this limit, then reliably fit controllers simply will fail to evolve.
However, if the evolutionary machinery is sufficiently powerful, we can evolve

complex control architectures, capable of performing nontrivial real-world tasks,
using surprisingly inaccurate and simple simulations. In such a situation, how one
chooses the members of the base set of robot-environment interactions, and builds
a model of them, may be governed in the main by considerations of computational
expense rather than those of fidelity. In other words, if we are interested in evolving
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a particular behavior, we can build the minimal base set of robot-environment inter-
actions necessary into a model optimized for speed rather than accuracy. Using this,
we then can construct a minimal simulation, which may include implementation
aspects that lead to further run-time savings, that is very computationally efficient.

Minimalism has trade-offs. By providing only a minimally sufficient base set of
robot-environment interactions within a minimal simulation, we are depriving evo-
lution of its opportunistic ability, when performed within the real world, to ground
reliable behavior in any aspect of the environment it sees fit, whether or not we
have thought of it.4 However, this point also has its positive side. By making explicit
and modeling a minimal base set of behaviorally relevant robot-environment interac-
tions, we ensure that the only controllers that can evolve to be reliably fit within
the simulation will be those that are able to perform the &dquo;real&dquo; task in a general,
nonbrittle way, without relying on non-behaviorally relevant aspects that are specific
to the particular environment within which they evolved. Thus, the famous neural
network, developed by the U.S. military, that could discern pictures of landscapes
containing tanks from pictures of landscapes that did not-owing to the unfortunate
fact that all the pictures containing tanks were taken in the morning whereas those
that did not were taken in the afternoon-could not evolve in a minimal simulation.

Both of the experiments described next involve minimal simulations. In the

first, a rough and ready simulation of a Khepera robot is used to evolve controllers
that are capable of reliably solving a T-maze in the real world and, in the second,
a simulation of the Sussex University gantry robot is used to evolve controllers

that can robustly perform the task described in Harvey et al. (1994)-consistently
telling a triangle apart from a square using real vision. The methodological guidelines
proposed in this section are very general,5 not a step-by-step recipe that, if used, will
guarantee the user success every time. It is hoped, however, that together with the

example simulations in sections 4 and 5, this information provides readers with at
least some idea of how they might go about constructing good minimal simulations
for evolutionary robotics. 

A Minimal Simulation of a Khepera Robot r

This section describes experiments in which neural network controllers were evolved
for a Khepera robot using a minimal simulation. This robot, shown in Figure 1, is

4 Adrian Thompson’s work with evolvable hardware (Thompson, 1996) provides a beautiful example of this type of
artificial evolution.

5 Although the techniques proposed have been developed with evolutionary robotics firmly m mind, there seems no
reason why they could not be adapted for use in some more conventional engineering domains that would also benefit
from fast simulations that are easy to build.
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Figure 1
The Khepera robot.

Figure 2
A plan of the Khepera
robot showing the
positions and numbers of
the infrared sensors and
the two wheels.
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Figure 3
The task in the real world.

5.8 cm in diameter and approximately 3 cm high. Eight infrared sensors, which
respond to nearby objects, are placed around the robot body as shown in Figure 2.
In a different mode, these sensors may also be used to detect ambient light levels
in the vicinity of the robot, with very rough directional sensitivity (see K-Team,
1993). Several different groups (Jakobi et al., 1995; Michel, 1995; Miglino et al.,
1995) have built Khepera simulators on which they have successfully evolved control
architectures that cross the reality gap. For this reason, the Khepera is an ideal platform
on which to test the radical envelope-of-noise hypothesis.

4.1 The aim

The aim of the experiments was to evolve a behavior for the Khepera robot that was
at least one step up from the simple reactive behaviors that have been prevalent in
the evolutionary robotics literature thus far. The behavior that was selected is shown

diagrammatically in Figure 3. As a Khepera robot begins to negotiate a T-maze, it

passes through a beam of light shining from one of the two sides, chosen at random.
To score maximum fitness points, the control architecture must &dquo;remember&dquo; on

which side of the corridor the light went on and, on reaching the junction, must
turn down the corresponding arm of the T-maze. This behavior involves several
elements: Not only must controllers guide the robot down the corridors without

touching the sides and negotiate the junction at the end of the first corridor (simple
reactive behaviors both), but they also must involve a dependence on some internal
or (less likely in this case) external state that allows them to &dquo;remember&dquo; which side
the lamp was on so that they can take the correct turn at the junction.
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Figure 4
The T-maze task m
simulation.

4.2 The minimal simulation

The minimal simulation used in the experiments was designed with low compu-
tational overheads firmly in mind. To give some idea of its simplicity, it contains

two look-up tables, one containing 72 values and one containing 80, and approxi-
mately 300 lines of commented C code that employ nothing more mathematically
complicated than floating point arithmetic. In fact, it does not model a T-maze at
all-or rather it does not model all aspects of a T-maze-but only a sufficiently large
base set of robot-environment interactions for the evolution of successful behaviors.

This particular minimal base set was chosen because its members are easy to model;
the robot-environment interactions in question are the same whether the robot is
in a T-maze or in a simple, continuous, straight corridor and, as we shall see, this
allowed considerable simplification of the simulation. The base set consisted of the

following interactions:

1. The way in which the robot moves in response to motor signals
2. The way in which the infrared sensors return values in response to those

sections of the walls of the T-maze that can be regarded as if they were ’ ’

sections of the walls of a continuous, infinite corridor .. ,

3. The way in which the ambient light sensors respond to bright verses ,

ambient light levels ,

At first glance, item 2 of this list seems totally counterintuitive as a T-maze has
nothing to do with infinite corridors. However, with respect to the infrared sensors
of a Khepera robot, which have a maximum range of only 8 cm or so, a T-maze
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is identical to an infinite corridor almost everywhere. Where a T-maze differs from
a corridor, at the T-junction, the interactions between the sensors and the corridor
walls were treated as implementation aspects of the simulation and were randomly
varied from trial to trial according to the methodology laid out earlier. In this way,
reliably fit controllers were forced to use strategies that depended on the interactions
between the infrared sensors and the sections of the walls of the T-maze that could

be regarded as straight and continuous corridor walls, and those interactions alone.
First, we will describe the way in which the simulation of a T-maze was constructed
from two different phases of a simple continuous corridor model, and then we will
describe how the corridor model itself was put together. -

4.2.1 Simulating a T-maze with two corridors Figure 4 shows the two phases
of the T-maze simulation. In the first phase, the virtual robot had to travel down a
simple corridor, where it received a light signal from either one side or the other.
After it had traveled a predetermined distance, it suddenly was popped out of the
first corridor, rotated through 90 degrees, and popped into the middle of a second
corridor for phase 2. It then had to choose whether to turn left or right, depending
on which side the light had been on, in order to gain maximum fitness points.

Now, although this twin corridor set-up varies significantly from a T-maze, the
two have enough in common that evolving control architectures that are prohib-
ited from relying on any of the differences still are able to sense enough of their
environment to perform the task successfully. In particular, the robot-environment
interactions governing the way in which the robot, traveling down a straight corridor,
is confronted with a wall straight across its path and a second corridor stretching off
to either side all were modeled.

The differences between the simulation and the real-world T-maze all occur

around the T-junction. When the virtual Khepera robot suddenly appears in the
second corridor facing the wall at the start of phase 2, there is a continuous wall
directly behind it (see Fig. 4). In reality, when the Khepera is confronted with a
wall across its path and is forced to make its decision about which way to turn, there
is a complicated junction in the wall behind it (see Fig. 3). Because of this, the
simulated robot’s infrared sensor interactions with the simulated back wall, in an area

corresponding to where the corridors meet in reality and approximately 5 cm to either
side, were regarded as implementation aspects. If this section of the wall fell within
range of the infrared sensors, then the way in which these sensors reacted varied

randomly from trial to trial: Sometimes they returned maximum values, sometimes
low values, and sometimes totally random values. In this way, reliably fit controllers
were forced to employ strategies that, at the decision point, were oblivious to this
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difference between the simulation and reality, relying only on the fact that there was
a straight, continuous wall in front of them and space to either side.

4.2.2 Ensuring that reliably fit controllers were base set exclusive To ensure
that reliably fit controllers were base set exclusive, all the implementation aspects of
the simulation were identified and rendered unreliable. In addition to those imple-
mentation aspects concerned with the differences between the simulation and reality
around the area of the T-junction, there were several others:

. The side of the corridor from which the light signal came

. The width of the two corridors: between 13 cm and 23 cm

. The exact starting orientation of the robot: between 22.5 and
-22.5 degrees of facing straight down the corridor

. The length of the illuminated section of the corridor: between 2 cm
and 12 cm

. The total length of the corridor in phase 1: between 40 cm and 60 cm

To these attributes of the simulation it was necessary to give values in order that
the simulation be a consistent whole, but we did not want evolving behaviors to
be able to rely on these attributes. Random values, from within the ranges shown,
were assigned to each implementation aspect at the start of each trial. Reliably fit
controllers therefore were forced to be independent of exactly where each value fell
within the relevant range and thus were base set exclusive.

4.2.3 Simulating an infinite corridor A simple model of a Khepera’s robot-envi-
ronment interactions within an infinite corridor was responsible for generating the
base set aspects of the simulation. At each iteration, two main functions were called:
one that updated the virtual Khepera’s position and one that calculated the values
returned by the infrared sensors. The third robot-environment interaction listed
previously, namely the way in which the ambient light sensors react to bright versus
ambient light levels, actually was handled by a single line of code. We will look at
the way all three robot-environment interactions were computed in turn.

The simulation was updated the equivalent of ten times per second. Figure 5
shows how the new position of the virtual Khepera robot within its environment
was calculated at each iteration. The orientation was used as an index to a look-

up table with 36 pairs of values: horizontal and vertical increments for a Khepera
traveling at a speed of 1 cm/sec. To work out its new position, the values returned
from this look-up table were multiplied by the average wheel speed in centimeters
per second. The speed of each wheel was calculated directly from multiplying the
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Figure 5
Diagram depictmg how
the new position of the
Khepera robot was
calculated at each

position. A look-up table
holds horizontal and
vertical increment values
for 36 different
orientation values and an

average speed of 1.

Figure 6
Features that formed the
basis for the values m a

look-up table contaimng
the perpendicular
distances to the walls of a
20-cm-wide corridor for
all eight sensors m ten
possible orientations.
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motor signals by the constant 0.8 cm per motor unit per second. The change in
orientation at each iteration was equal to the difference between the distances the
two wheels moved divided by the radius of the robot (approximately 5.2 cm). There
was no allowance for momentum, and the noise inherent in the real-world situation

was not modeled.

Calculating the infrared values was a slightly more involved process and proceeded
in three stages. First, the robot’s orientation was used to generate rough distance-
to-wall metrics for each sensor, as if the robot was in the center of a 20-cm-wide

infinite corridor. Second, these values were scaled according to the actual width of
the corridor in the simulation and the distance from the robot to each wall. Third,
the scaled distance-to-wall metrics were used to calculate infrared sensor values by
way of a simple linear relationship. This process is described in more detail later.

Figure 6 demonstrates these features on which the values held in the infrared look-

up table were based. There were ten sets of eight values, each set corresponding to
one of ten different robot orientations, from facing straight down the corridor to
perpendicularly facing one of the walls. The values themselves were based on the
distances from the center of the robot (which is 10 cm away from each wall), along
the lines of the corresponding sensors, to the walls of an infinitely long corridor.
However, these distance values were in fact always slightly shorter than the line-of-
sight distance to the wall in order to account (in a very approximate way) for the fact
that the infrared sensors of a Khepera robot are sensitive over a whole arc rather than

just along the direct line of sight extending out from each sensor (K-Team, 1993).
If the distance from the center of the robot, along the line of a sensor, to a wall of
the corridor were d, then the warped distance value wdv stored in the look-up table
was given by the following equation:

.. 
. ,’ ’ 

’

The constant 3 in the denominator was chosen fairly arbitrarily and without accu-
rate measurement purely on the basis that it gives the equation roughly the right
properties.

The minimum possible value stored in the table, therefore, for a sensor directly
facing the wall, was 10 cm. The maximum possible value, for a sensor directly facing
down the corridor, was infinity. Now, although there were only ten sets of values
stored in the table (one set of eight for each multiple of 10 degrees between 0
and 90 degrees inclusive), it was a simple matter to calculate sets of values for any
other multiple of 10 degrees. These calculations were made by taking the particular
orientation angle in question and rotating it by the appropriate multiple of 90 degrees
until it lay in the correct quadrant. The look-up table then was used to ascertain a
set of values, and these were reflected across the midline of the robot if necessary
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(i.e., if the angle was between 90 and 180 or between 270 and 360). If the robot was
in the center of a 20-cm-wide, infinitely long corridor, therefore, warped distance
values could be calculated for any sensor at any orientation.

In practice, the perpendicular distance from the center of the robot to a particular
wall of the corridor was variable. Values were scaled appropriately, however, by
multiplying all values returned from the look-up table (for sensors that pointed at
that particular wall) by the fraction attained by dividing the actual distance to the
wall by 10 cm. For example, if the distance from the robot to a wall was actually
5 cm instead of 10 cm, then look-up-table values for sensors that pointed at that wall
were halved. In this way, the 80 values of the look-up table were sufficient to find
the approximate distance, warped according to the equation given earlier, from the
center of the robot in any position and any orientation, along the line of any sensor,
to the wall of an infinite corridor of any width.

Having ascertained warped distance values (wdv) for each sensor, the actual value
that each simulated sensor returned, V, was given by a simple linear function:

where a and b were the maximum and minimum extent, respectively, of the linear

part of the response function. This meant that a sensor would saturate at maximum

value if its warped distance value were less than b (typically approximately 5), would
return zero if its warped distance value were greater than a (typically approximately
9), and would respond linearly in between.
A simple random number generator was used to generate uniformly distributed

random deviates in the range ~50. These were added to returned sensor values at

each iteration. In addition, the lowest value an infrared sensor could return was a
random background value between 0 and 20. These noise levels roughly approximate
the levels observed in the real world and, as such, were as much a part of the robot-
environment interaction model as was any other aspect.

The way in which ambient light sensors respond to bright versus ambient light
levels was modeled by a single line of code. When the robot entered a particular
section of the corridor in phase 1 (that was randomly predefined in terms of length
and position relative to the starting point), the values returned by the ambient light
sensors on one side of the robot dropped from their normal background value of
approximately 450 to a value of nearly 100, as if they had been illuminated by a

bright light. When the robot left the special light zone, the values returned to their
background levels. Whether the right side of the robot or the left side was illuminated

depended on which side of the corridor the light source was placed and in which
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of the two directions directly down the corridor the robot was closest to pointing.
Random deviates in the range of ±50 were added to each ambient light sensor value
at each iteration. < .

4.2.4 Ensuring that reliably fit behaviors were base set robust According to
the methodology laid out in section 3, the base set aspects of a simulation must
themselves be varied slightly from trial to trial in order to ensure that reliably fit
controllers are robust to the differences between the model and the real world. This

variation was accomplished in two ways in the simulation being discussed. First,
random offsets of between ±1 1 cm/sec were generated at the beginning of each trial
and were added to wheel speeds during position update calculations. This caused
the virtual robot to move in a randomly predefined curve when it would normally
have gone in a straight line, and thus forced controllers to devise ways of coping
with and being robust to a variety of different movement characteristics. Second,
the constants a and b of Equation 1 were set randomly at the beginning of each trial,
the former in the range 7.1 to 10.1 and the latter in the range 4.1 to 6.1. This had

the effect of forcing reliably fit controllers to devise strategies that were robust to a

range of infrared sensor characteristics.

4.2.5 Summary of the simulation The overall shape of the simulation originated
from the observation that a T-maze is like an infinite, continuous corridor (from the

point of view of a Khepera robot’s all-important infrared sensors) almost everywhere.
Bearing this in mind, we constructed a simulation of a T-maze in which the base set

aspects could be generated using a simple model of a Khepera robot’s interactions
with the walls of a continuous, infinite corridor. The nature of these modeled

interactions was varied slightly and randomly, from trial to trial, to ensure that reliably
fit controllers were base set robust. Those aspects of the simulation that corresponded
to sections of the T-maze that could not be modeled by a continuous corridor were

regarded as implementation aspects of the simulation. All implementation aspects
of the simulation were varied randomly from trial to trial to ensure that evolving
controllers were base set exclusive. w · .. 

.._ 
_

4.3 The evolutionary machinery 
The experiments described here were designed to test the radical envelope-of-noise
hypothesis (i.e., whether control architectures that have evolved to perform reliably a
task in a simulation created according to the methodology outlined in section 3 would
transfer successfully to reality). However, for the T-maze task described earlier, it is
no simple matter to evolve reliably fit controllers in simulation in the first place. For
this reason, the evolutionary machinery is described briefly here.
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Figure 7
A typical evolved network. The sohd arrows are excitatory hnks and the dashed arrows are inhibitory
links; exact weight values are not shown. Threshold values appear next to each neuron.

The controllers themselves were arbitrarily recurrent neural networks. The num-
ber of neurons in a network was fixed for each evolutionary run (usually ten neurons),
but all the links to a neuron from other neurons (up to a maximum of three) were

genetically determined. Networks were forced to be bilaterally symmetrical by ef-
fectively evolving only half the network and reflecting it across the midline.6 All
nonmotor neurons had simple step threshold activation functions of the following
form: 

_

where Aj is the activation of the jth neuron, T is the threshold of the jth neuron,
and w is the weight on the connection from the ith neuron to the jth neuron.

6 For a justification of why symmetry was enforced rather than allowed to evolve, see Jakobi (1996).
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The activations of motor neurons were calculated using a slightly different output
function:

Thresholds were real numbers in the range ±1.0, and weights on links were real
numbers in the range of ~2.0. Figure 7, a diagram of a typical evolved neural
network, shows how sensor value inputs were applied to networks and how motor
values were output. All sensor values were normalized in the range 0 to 1, and
motor outputs were multiplied by a factor of 10 to give motor signals in the range
~8 cm/sec. The network, sensor values, and motor outputs (in fact, the entire

simulation) were updated the equivalent of ten times per second.
. A direct-encoding scheme was used; there was a one-to-one mapping between
genotype and phenotype. Each genotype was a string of 140 bits, consisting of five
fields or genes, one for each neuron of the left-hand side of the network. The

neurons on the right-hand side of the network were the exact mirror image of those
on the left-hand side. Each gene was itself divided into fields. The first four bits

of each gene, a binary number between 0 and 16, defined the threshold of that
neuron by normalizing between + 1 . The next three sets of eight bits defined the
three possible links to that neuron from other neurons in the network: the first four
ascribing one of 16 possible values to the weight of the link between =b2 and the
next four bits defining from which of 16 neurons the link came. Because there were
only ten neurons in the network, if a link indexed a nonexistent neuron, then it did
not connect, thus placing under genetic control the number of links to a neuron.

The fitness function returned the average value scored by an individual in a total
of ten fitness trials, each lasting the equivalent of 15 seconds. At the end of each
trial, the fitness value was equal to the total distance traveled through the corridor
system plus a bonus of 100 if the virtual robot went the right way at the T-junction.
Thus, if the virtual robot traveled a distance d1 in the first corridor and a distance d2
at the second corridor, then the fitness score T for that particular trial was calculated
by: 

. ’ .

right way at lights
wrong way at lights 

’

The genetic algorithm was a steady-state distributed genetic algorithm (Collins &

Jefferson, 1991) with a population of 100 individuals arranged on a virtual 10 x 10
grid. At each iteration, a random location was chosen on the grid and a breeding
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pool constructed from the nine individuals of the 3 x 3 square centered on that loca-
tion. Two probabilistically fit parents were chosen from this breeding pool according
to a linear rank-based selection procedure, and an offspring was constructed by a
process of crossover and mutation. This offspring then replaced a probabilistically
unfit member of the same breeding pool according to an inverse linear rank-based
selection procedure. Single-point crossover was applied with probability 0.7, and the
expected number of bitwise mutations per genotype, according to a Poisson distri-
bution, was 2. At each offspring event, not only was the offspring’s fitness evaluated,
but the fitnesses of both parents also were reevaluated in an attempt to cope with the

noise inherent in the evaluation process.

4.4 Experimental results

Figure 7 shows a typical example of the sort of neural network that consistently
evolved within approximately 1000 generations (where a generation was taken to be
100 offspring events). This is the simulated equivalent of 300 x 15 x 10 x 100 =
45,000,000 seconds, or more than 17 months of continuous real-world evolution,
and takes approximately 4 hours to run as a single user on a SPARC Ultra (Sun
Microsystems, California). The network reliably achieved near-optimal fitness within
the simulation. To determine whether the network would transfer successfully across
the reality gap, the network was downloaded onto a Khepera robot, and its ability to
perform the task in the real world was tested. Sixty different trials were performed
one after another, 20 in each of three different widths of corridors, the light being
on the left for 10 trials and on the right for the other 10. The consequent robot
behaviors were filmed from above so that the exact path taken by the Khepera robot
on each trial could be extracted using basic image-processing techniques and overlaid
on aerial views of the setup. The results of this process are the six images in Figure 8.

In the top pair of images, the corridor is only 11 cm wide, and the paths taken
by the Khepera robot on all 20 occasions are tightly constrained. In the second pair
of images, where the corridor is 18 cm wide, and especially in the bottom pair of
images, where the corridor is 23 cm wide, the paths taken by the Khepera robot
are less constrained. Nonetheless, the Khepera still turns the correct way at the T-
junction, even though on several occasions it must turn through greater than 90
degrees in order to accomplish this. Note that the path taken in most cases was near-
optimal and that in every case the task was performed satisfactorily, which satisfied
the criteria decided in section 2 for a control architecture to transfer successfully from
simulation to reality. _
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Figure 8
These six pictures together show the paths taken by a Khepera robot m 60 consecutive trials of the
control architecture shown in Figure 7. These 60 trials were performed in consecutive batches of 10,
and each picture shows 10 trials for a particular corridor width and torch orientation. The pictures were
created using an overhead camera, a videodisc, and simple computer vision techniques to find the
position of the robot m each frame.

, ,;_’

5 A minimal simulation of the gantry robot

In this section, we describe experiments in which neural network controllers were
evolved for the gantry robot. The gantry, shown in Figure 9, was developed at
Sussex University for research into the evolution of visually guided behaviors. It
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Figure 9
The gantry arena, with
obstacles.

Figure 10
A close-up of the gantry
robot.
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is best thought of as a hardware simulation of a small, wheeled, mobile robot on

top of which a camera is placed, that has been specifically designed so that control
architectures can be tested automatically and safely in a highly controlled manner
(Husbands, Harvey, Jakobi, Thompson, & Cliff, 1997).

Figure 10 shows a close-up of the actual robot. A camera points vertically down-
ward at a 45-degree-inclined mirror to return a view from the robot looking straight
out horizontally at the environment. The mirror is attached to a stepper motor that
enables the mirror to rotate around the vertical axis under computer control and a

dedicated vision personal computer then rotates the image array via software so that
downward in the picture corresponds to downward in reality. The image array avail-
able for use by evolving control architectures therefore is equivalent to that produced
by a camera pointing outward along the horizontal component of the mirror’s orien-
tation. The frame of the gantry robot is connected to two additional stepper motors

that together allow the entire robot assembly to move in any horizontal direction
within a rectangular arena (see Fig. 9).

All three stepper motors are controlled by a single-board computer (SBC) that
is controlled, in turn, by a dedicated brain personal computer running the control
architecture software. The brain computer sends commands to the SBC in the form

of left and right wheel speeds, as if the gantry were a wheeled mobile robot. The
SBC then calculates and issues stepper motor pulses so that the gantry robot moves
in the appropriate fashion. From the point of view of control architectures running
on the brain personal computer, therefore, the gantry robot behaves exactly as would
a small, wheeled, mobile robot, controlled via the SBC, on top of which is set a
camera whose image is accessed via the vision computer.

5.1 The aim

In Harvey et al. (1994), the authors report experiments in which both neural network
control architectures and the visual morphologies of their inputs were evolved side
by side to perform a simple shape discrimination task. Evolution occurred within an
all-black rectangular arena, 150 x 100 cm, with 22.5-cm-high walls. Stuck onto one
of the long walls were a near-square (20 cm wide x 22.5 cm high) and an equilateral
triangle (20 cm wide x 22.5 cm high), both of which were cut from white paper.
Starting from several different positions and orientations, evolving individuals were
tested as to their ability to make the gantry robot move toward the triangle as opposed
to the square (Fig. 11). After several generations, which took approximately 36 hours
to perform in the real world, control architectures evolved that were able to perform
the task. These controllers were approximately 80 percent reliable within certain
constrained sets of lighting conditions (P Husbands, personal communication, 1997):
If the blinds of the laboratory were opened during the day, or if the overhead lighting
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Figure 11 I
A diagrammatic view of the gantry arena from above, showing the four possible starting positions of the
gantry robot. The dashed line in front of the triangle marks the area that the gantry must reach in order
for a trial to count as a success for testing purposes.

was not on in the right way, the controllers failed. To remedy this sensitivity to

differing lighting conditions, a set of lamps were strung up above the gantry robot,
each turning on and off at different frequencies, to provide extreme real-world noise
with which evolving controllers had to cope. The previously fit controllers failed

completely when the &dquo;disco lights,&dquo; as they are known at Sussex, were switched
on. As yet, no new controllers have been evolved on the gantry robot using real-
world evolution that are able to cope with the extra uncertainty provided by these

lights. Therefore, it was decided that evolving reliably fit control architectures in a
simulation built according to the methodology laid out in section 3, and determining
whether these control architectures were able to perform the task satisfactorily in the
real-world environment with the disco lights switched on, would provide a good test
of the radical envelope-of-noise hypothesis.
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Figure 12
A typical image returned by the camera of the gantry robot. The robot is facing the corner of the arena
and the triangle can be seen on the left. The white circles labeled a, b, and c are examples of pixels that
project onto the triangle, ceiling, and wall, respectively. Pixel a will return a value between 14 and 15,
pixel b will return a value between 0 and 15, and pixel c will return a value between 0 and 13. In the
experiments reported in section 5, each visual input was made up of exactly one pixel the coordinates
within the camera image of which were genetically determined.

5.2 The minimal simulation 

~ 

’

In the experiments reported in Harvey et al. (1994), both the neural network control
architectures and the morphology of their visual inputs were genetically determined.
In the simulation experiments reported here, a different type of control architecture
was used (see later), although both neural networks and the visual morphology of
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their inputs again were genetically determined. The main difference between the two,
as far as a simulation is concerned, is that in Harvey et al. (1994), each visual input to
the neural network consisted of the average gray-level value of a genetically specified
circular subregion of the camera image, whereas in the experiments reported here,
each visual input consisted of the gray-level value of exactly one genetically specified
pixel of the camera image (Fig. 12). In fact, these are not so different with respect to
a simulation, as the average value of each circular visual field in Harvey et al. (1994)
was just the average value of 25 randomly sampled pixels from within the field. A
simulation of either, therefore, must contain a model of how specific pixels of the
camera image acquire values in response to the orientation and position of the robot
within its environment.

Under the disco lights suspended above the gantry, the values returned by pixels
of the camera image vary widely with respect to both time and the direction of
the camera. Even if we know the exact location within the arena onto which a

particular pixel projects, there is little we can say about exactly what the value of that
pixel will be. However, a few general things that hold true except in certain special
circumstances: If a pixel projects onto a wall but not onto a shape, then it will return
a value within the range of 0 to 13; if a pixel projects onto either the triangle or the

square, then it will return a value between 14 and 15; and if a pixel projects onto
either the floor or the ceiling of the arena, it will return a value between 0 and 15.
Because these facts about pixel values within the disco-light environment are almost
always in effect, and because they are enough to distinguish the white triangle and
square from the black walls of the arena (for those pixels that project onto a wall of
the arena), they are all that we needed to model.

In fact, it was logically essential to include in the model only one visual aspect
in order that evolving control architectures would be able to perform the shape
discrimination task; this aspect was the way in which pixels that project onto the walls
of the arena acquire gray-scale values in response to the orientation and position of
the robot. If a pixel projects onto the floor or ceiling, the value it returns will have

nothing to do with squares or triangles, so there is no point in allowing evolving
control architectures to rely on it. This is especially true when one considers the extra
modeling required. For example, if the strategy employed by a control architecture
that is reliably fit within the simulation depends on a pixel that projects onto the
floor, then the simulated value of that pixel would have to be reasonably true to
life, or the control architecture would fail when downloaded into reality: It would

have evolved to rely on something that was true of the simulation but not true of
the real world. For this reason, the values returned by pixels that projected onto the
floor or ceiling of the arena were treated as implementation aspects of the simu-
lation.
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The base set of robot-environment interactions on which the simulation was

founded, therefore, had just two members: « &dquo;.

1. The way in which pixels of the camera image, that project onto the walls ~< ~ <&dquo; ’
of the arena, return gray-scale values within certain intervals: 14 to 15 .

for pixels that project onto either the triangle or the square, and 0 to 13
for pixels that project onto the walls of the arena (but not onto either the 

’

triangle or the square) 
’

2. The way in which the robot moves in response to motor signals

The model of the way in which the gantry robot moves in response to motor

signals was adapted from the movement model for the Khepera robot explained in
section 4. The simulation again was updated at a rate equivalent to ten times per
second, and the same look-up table was used but with different constants to update
speed, orientation, and position variables at each iteration of the simulation. The
radius of the virtual robot (of which the gantry robot is a hardware simulation) is

15 cm, and the constant multiplied by the motor signals to give the current speed
of the robot is 4.17 cm per motor unit per second. In addition, there was also a
momentum term, m, such that at each iteration, the increment 6v to each wheel

speed v in terms of the required wheel speed u was:

This momentum term was added for the simple reason that in the case of the
gantry, robot momentum plays a significant role as it is a heavy robot that takes time
to slow down and speed up. In the case of the Khepera, the robot is small enough
and light enough that momentum effects can be regarded as modeling inaccuracies
and can be coped with by reliably fit control architectures that are base set robust (see
section 3.3). At every iteration, a random deviate in the range of ~0.2 cm/sec was
added to each wheel speed to approximate the noise inherent in the way the gantry
robot moves.

Simple trigonometry was used to work out the location in the arena onto which a
particular genetically specified pixel projects. Look-up tables were employed in place
of the computationally expensive standard C library functions of cos, sin, and tan.
Each table contained 360 values covering 360 degrees. In addition, there was a finer-
grained look-up table for tan that contained 200 values, one for every 0.1 degree
between 0 and 20 degrees.

After rotation by the vision personal computer, the image available to evolving
control architectures on the gantry robot is a circular portion of a two-dimensional
pixel array, 40 pixels in diameter and with an angle of acceptance of approximately
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Figure 13
The left-hand picture shows the gantry arena as seen from above; if the horizontal angle at which a pixel
projects from the mirror onto the back wall is 0, then Px = x + 1o neY and d = l~neY. The right-hand
picture shows a cross-section of the gantry arena; if the vertical angle at which a pixel projects from the
rmrror onto a wall is ~, then Pz = d X tan’ljJ + 19.5.

50 degrees (see Fig. 12). The horizontal and vertical angular offsets of any particular
pixel from the orientation of the robot were calculated from its x and y coordinates
within the image and then were used to work out the horizontal and vertical angles
at which the pixel projected out from the gantry robot’s mirror relative to the fixed
arena environment. Because the coordinates of the robot’s position within the arena

always were known, and the height of the mirror above the floor of the arena was
fixed (approximately 19.5 cm), the exact horizontal and vertical coordinates of the
spot onto which any particular pixel projected could be easily worked out. First, the
simulation established which of the four walls of the arena a particular pixel would
project onto if the vertical angle was in the correct range and calculated the horizontal
coordinate of the pixel projection onto that wall. Second, the vertical coordinate
of the pixel projection onto the wall was calculated. The way this was achieved is
demonstrated in Figure 13. For calculations of Px (the horizontal coordinate of the

point onto which a pixel projects), the coarse-grained tan look-up table was used
and, for calculations of Pz (the vertical coordinate of the point onto which a pixel
projects), the fine-grained tan look-up table was used. This is because ~ will always
be a small angle somewhere between 0 and 25 degrees, whereas 0 can be anything
between 0 and 360 degrees.

Having worked out Px, Pz, and the relevant arena wall, the actual value attributed
to a particular pixel depended on one of three possible scenarios: The pixel did not
project onto a wall, in which case it returned a totally unreliable value that varied
from trial to trial; or it projected onto a wall but not onto the triangle or square, in
which case it returned a value between 0 and 13; or it projected onto the triangle or
square, in which case it returned a value between 14 and 15. The ways in which values

were retuned from within these intervals are described later. If Pz was less than 0 cm
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or greater than 22.5 cm, then the pixel was judged to have projected onto either
the ceiling or the floor. If Pz was between 0 and 22.5 cm, it was judged to have
projected onto a wall. If the wall in question was the one on which hung the triangle
and the square, then simple geometrical relationships between the coordinates of the
pixel projection point and the vertices of the two shapes were used to determine
whether the pixel projection point lay inside either of the shapes. At every iteration,
a random deviate in the range of ±1.2 gray-scale units was added to each pixel value.

5.2.1 I Ensuring that reliably fit controllers were base set exclusive As reported
earlier, if a pixel projected onto a wall but not onto a shape, then it returned a value
between 0 and 13, and if it projected onto either the triangle or the square, then it
returned a value between 14 and 15. Exactly how this was done is crucial, however,
as the base set of robot-environment interactions did not include the way in which

values are returned between 0 and 13 for black walls and between 14 and 15 for

white shapes, but only the fact that they are. For this reason, the way in which pixel
values are returned within these intervals was treated as an implementation aspect
of the simulation and was varied from trial to trial according to the methodology
outlined in section 3. This ensured that control architectures that had evolved to be

reliably fit within the simulation worked independently of the way in which actual
pixel values arose-as long as they arose within the specified intervals-and therefore
that they were robust to the disco lights.

At the beginning of each trial, one of three ways of generating pixel values within
the appropriate intervals was chosen:

1. Each pixel returned a different random value within the appropriate
interval, and values varied randomly over time. This meant that whatever
the behavior of the robot, values could change. The average time
interval between changes in value for any particular pixel was taken from
a Poisson distribution with an average length of 2 simulated seconds.

2. Each pixel returned a different random value within the appropriate
interval, and values changed as a function of the robot’s orientation. This
meant that if the robot proceeded in a straight line, or remained still,
then pixel values remained steady. If the robot turned, then pixel values

, 

could change. Values for each orientation were set randomly at the start
of each trial, with angular distances between changes in value (for any
particular pixel) uniformly distributed between 0 and 50 degrees.

3. Each pixel returned the same value, randomly set at the start of each
trial, within the appropriate interval. Values for each interval were kept
constant throughout the trial. , . w 

,
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Pixels that projected onto either the ceiling or the floor were treated in a sim-
ilar fashion, which ensured that they were totally unreliable: Random values were
returned in a random way between the minimum and maximum values (0 and 15)
instead of some subinterval. In this situation, reliably fit control architectures were
not even able to depend on the interval within which returned values would lie.

The other implementation aspects on which reliably fit controllers were prevented
from depending were the starting position of the robot at the beginning of each trial
and the position of the triangle relative to the square (left or right) and vice versa.
There were four possible starting positions that varied from trial to trial (see Fig. 11),
and in half the trials that made up the fitness test, the triangle was on the left, whereas
in the other half it was on the right. 

5.2.2 Ensuring that reliably fit controllers were base set robust Various aspects
of the model were varied from trial to trial in order to ensure that reliably fit control
architectures were base set robust (see section 3.3). This was especially important with
a robot such as the gantry, which is extremely noisy and imprecise in its operation. In
particular, the mirror that reflects the horizontal image up into the camera is not set at
exactly 45 degrees and is slightly warped. This means that objects appear differently
depending on where they are in the camera image and that, as the robot approaches
an object, its image will deform and distort, appearing to move upward. Because of
this:

. A vertical angular offset of between -1 and -8 degrees was produced at
the beginning of each trial. This was then added to the vertical angle of
projection of every pixel throughout the trial.

. A horizontal angular offset of between ~3 degrees was produced at the
beginning of each trial. This then was added to the horizontal angle of
projection of every pixel throughout the trial.

. The horizontal coordinates (with respect to the wall) of the four corners
of the square and the three corners of the triangle each were offset by a .

random amount within the range =b5 cm throughout each trial.

The stepper motors move the gantry supporting the robot along rollers, using
drive-chains. The rollers slide rather than roll along their rails (owing to a design
fault), with more friction in some places than others, and the drive belts are loose so
that rapid sequences of motor commands can get lost in the extra &dquo;slop.&dquo; Because
of this, the robot can only approximate traveling at a constant speed and neither
accelerates nor brakes evenly in response to motor commands. The robot often will
cease completely half-way through a run. In order that reliably fit individuals evolved
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to cope with these problems, (1) the momentum term, m, of Equation 3 was set

randomly at the beginning of each trial to a value between 1 and 4, and (2) random
offsets of between ~0.5 cm/sec were generated at the beginning of each trial and
added to required wheel speeds during position update calculations. Together these
random variations ensured that reliably fit control architectures were able to cope with
a wide variety of slightly different robot-environment interaction models. Included
in this range were models that involved misshapen and malaligned mirrors as well as

noisy and unpredictable motors-such as the model instantiated by the real gantry
robot.

5.3 The evolutionary machinery

Evolving control architectures that visually discriminate between triangles and squares
in a noisy real-world environment is a nontrivial task independent of which currently
available evolutionary techniques are employed. Evolving such behaviors using the
simulation just described was even more difficult because, in order to be reliably fit,
controllers had to evolve to cope with a whole variety of slightly different base set

aspects of the simulation rather than just the one base set of robot-environment inter-
actions present in the real-world situation. For this reason, although the evolutionary
machinery used in Harvey et al. (1994) (control architectures, genetic algorithm, fit-
ness function, etc.) was reimplemented initially for the experiments described here
(in order to provide a direct comparison), it later was abandoned: Reliably fit in-
dividuals failed to evolve run after run, and the implication was that the control
architectures used in the original experiments were just not capable of displaying
the level of robustness necessary to cope with the uncertainty inherent in the simu-
lation.

Figure 14 shows a typical example of the type of control architecture used in the

experiments reported here. Functionally, they are very similar to those used in the

Khepera robot experiments described in section 4: Weights on links are in the range
of ~2, and thresholds are in the range of 0 to 1. The activation function of every
unit including the motor neurons was that of Equation 2. In addition to a genetically
determined number (with a maximum of 3) of connections to each neuron from
other neurons in the network, neurons also could receive normalized input, in the

range of 0 to 1, from a camera image pixel. Motor signals were calculated from
the output values of the four larger corner neurons of Figure 14, according to the
relation signal = 2 x (A1 - A2), where Al and A2 are the output values of the
appropriate forward and backward neurons. The entire network, including inputs
and outputs, and therefore the entire simulation, was updated at a speed of ten times
per simulated second - - .
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Figure 14
An example of a typical neural network evolved for the triangle-square discrimination task. On the left,
the circular camera image, 8 pixels of which have been genetically specified as inputs to the neural
network. On the right, the square box containing the 47 neurons of the network. Solid lines denote
excitatory connections, and dashed lines denote inhibitory connections. The slightly larger umts in each
of the four corners are motor neurons.

The encoding scheme was chosen to allow genotypes to grow under genetic
control with a minimum amount of phenotypic disruption, thus allowing arbitrary
levels of complexity to evolve according to species adaptation genetic algorithm-like
(SAGA-like) principles (Harvey, 1992).

Development took place in a two-dimensional space, the position of each neu-
ron (apart from the four motor neurons; see Fig. 14) being genetically determined
within that space. Each link within the network to any particular neuron was ge-
netically specified in terms of the desired position of the neuron from which the
link originated. The nearest neuron to this desired position, within a certain radius,
then was allotted as the originator of the link. If no neurons lay within this radius,
which was set at approximately an eighth of the width of the space, then the link
failed to connect. In this way, the resultant network was independent of the exact
order in which the connectivity of each neuron was worked out and developed.
Because each neuron was encoded by a single gene on the genome, its connectivity
was independent of the exact location of its gene on the genome and therefore was
minimally disrupted by changes to this location due to the addition or deletion of
extra genetic material. 7>’ , .
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Each gene was 15 integers long, each integer lying between 0 and 99. Apart from
the first four genes, which specified the characteristics of the four positionally fixed
motor neurons, the first two numbers of each gene specified the x and y coordinates
of the corresponding neuron’s position within the developmental space. The next
number specified whether or not a neuron received input from a pixel of the camera
image, with a probability of 1 in 4, and the next two numbers specified the x and y
coordinates within the camera image of any pixel input. The sixth number of each
gene specified the threshold, between 0 and 1, of the corresponding neuron. The
last nine numbers specified the characteristics of up to three possible links to the

relevant neuron from other neurons in the network: three numbers per link. The
first two governed from which neuron the link originated by encoding the x and y
coordinates of a point within the developmental space. The link then was judged to
have originated from the nearest neuron to this point, or not at all if there were no
neurons within a range of approximately one-tenth of the width of the space. The
third of the three numbers specified the weight on the link between ±2.

The genetic algorithm used in the experiments was extremely simple. After testing
every member of a population of 100 individuals, the fittest 25 were used to produce
the next generation by randomly picking parents and producing offspring until the
new population was full. Crossover was applied with a frequency of 0.7. Each
mutation involved altering one of the integers that made up the genome by an
amount taken from a normal distribution with a mean of 0 and a standard deviation

of approximately 10. Mutated values then were clipped to lie within the range of
0 to 99. The expected number of mutations per genotype, according to a Poisson
distribution, was 1. At each offspring event, probability that a random gene would
be introduced into the offspring genotype was 0.02, as was the probability that an
already existing gene would be deleted.

The fitness function returned the average value scored by an individual in a total
of eight fitness trials, each trial lasting a maximum of 20 simulated seconds. For the
first set of four trials, the triangle was on the left and the square was on the right
and, for the second set of four trials, the triangle was on the right and the square
was on the left. For both sets, the robot was started at each one of the four starting
positions shown in Figure 11 in turn. At the end of each trial, when either the time
had run out or the robot had hit a wall, the fitness function returned 100 - d as the
fitness score, where d was the distance from the center of the robot to the center of

the triangle. 
_

5.4 Experimental results

Figure 14 shows a typical example of the sort of network that evolves to be reliably fit
within the simulation. This particular network is the result of nearly 6000 generations
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of the genetic algorithm (approximately 12 hours as a single user on a SPARC Ultra),
which is the simulated equivalent of 6000 x 100 x 8 x 20 = 96,000,000 seconds,
or more than 3 years worth of real-world evolution. When placed in one of the
four starting positions in the arena, the network initially causes the robot to turn
in a tight circle clockwise. If the square comes into the view of the camera, the

rotational speed of the robot actually increases until the square is out of view. When
the triangle hoves into view, the robot &dquo;locks on&dquo; and proceeds directly toward it,
adjusting its course as it goes.

To determine whether it would cross the reality gap, the network was downloaded
onto the gantry and tested continuously and automatically on the triangle-square
task in the real world under full disco lighting. In total, 200 trials were performed:
100 for the triangle on the left and the square on the right, and 100 for the triangle
on the right and the square on the left. At the beginning of each trial, the robot
was started in one of four different starting positions, corresponding to those of the
simulation, and these were run through in cycle from trial to trial. On each trial,
the robot was automatically judged to have achieved the task successfully if, by the
end of the trial, it was stationed within a rectangular area extending approximately
10 cm to either side of the triangle and 15 cm out into the arena (see Fig. 11).
Inspection revealed that this automatable criterion corresponded well with more
subjective notions of success and failure on the task.

With the triangle on the right and the square on the left, the robot performed
the task successfully 98 times out of 100. Of the two failures, one occurred when
the gantry rails were being polished (to try to prevent the motors from jamming)
and the lights were temporarily obscured by the author’s body. The other failure is
difficult to explain, as the gantry robot just headed off into a wall under otherwise
unremarkable circumstances. This may have been due to freak noise but may also

have been due to a mechanical or software error.

With the triangle on the left and the square on the right, the robot performed
the task successfully 97 times out of 100. All three failures occurred from the same
starting position furthest from the triangle and, in each case, the circumstances were
similar. Having turned away from the wall, the robot failed to lock on to the triangle
but continued spinning on the spot. It would spin past the square, past its original
starting orientation, and back around to face the triangle. In two of three of the

cases, it then locked on to the triangle and started to move directly toward it, running
out of time before it reached the success zone. In the third case, it failed to lock on

again and ran out of time before it could spin right around to face the triangle for

7 In practice, because of the propensity of the mechanics of the gantry robot to cease and the software controlling it to
crash, the testing procedure had to be watched continuously and restarted (from where it had crashed) on a number
of occasions. 
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a third attempt. In all three cases, if more time had been allowed, the robot would
almost certainly have reached the target. ,

6 Conclusions i 
. &dquo; &dquo;::1!

In the first part of this article, a theoretical investigation was made into the circum-
stances under which evolved robot controllers are able to cross the reality gap. It

was suggested that a sufficient condition is that evolved controllers are both base
set exclusive and base set robust. The radical envelope-of-noise hypothesis then was
stated: If random variation is applied in specific ways to all aspects of the simulation,
then control architectures that evolve to be reliably fit within the simulation will be
base set robust and base set exclusive and therefore will successfully cross the reality
gap. It was further argued that if the hypothesis were well founded, then it would be
possible to create minimal simulations that were easy to build and computationally
cheap.

The second part of the article detailed two sets of experiments that together
provide some evidence for the hypothesis. In the first set, controllers with internal
state were evolved to solve a simple T-maze task using a minimal simulation of a

Khepera robot. In the second set, controllers were evolved to discriminate visually
between two shapes using the Sussex University gantry robot. In both cases, evolved
controllers were able successfully to cross the reality gap, exhibiting extremely ro-
bust behaviors when downloaded onto the real robots. In particular, the controllers
evolved for the gantry robot performed significantly better than any others that had
been evolved previously using alternative evolutionary methodologies.

In Mataric and Cliff (1996), the authors suggest that as robots and the behaviors
we want to evolve for them become more and more complex, simulations will
become either so computationally expensive that all speed advantages over real-world
evolution will be lost or so difficult to design that the time taken in development will
outweigh the time saved in reality. This article has contributed to showing that for
certain types of behaviors and robots, at least, this will not be the case. The reasons
for this are explained briefly here.

First, for complex behaviors: The experiment with the Khepera robot (section 4)
does not involve the evolution of a behavior that is particularly complicated in itself,
but it does prove that it is possible to evolve complicated behaviors in a minimal
simulation (at least as far as the simulation is concerned). To illustrate this, consider
a slightly extended version of the minimal simulation described in section 4. In this
version, the Khepera robot is not presented with merely a single junction at the end
of the first corridor but with a whole series of turnings and junctions that together
add up to a complex maze. In the first corridor, furthermore, the Khepera does not
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pass just a single light signal but a whole series, placed one after another, some on the
left and some on the right, that together signal the correct path through the maze
that follows. This behavior would be extremely complicated by today’s standards
of what can and cannot be evolved, and yet the minimal simulation would remain

simple and fast. It therefore is possible to build minimal simulations for the evolution
of complex behaviors. ,

Second, for complex robots, we need only look at the experiments of section 5
for proof that it is possible to create minimal simulations for robots that employ
complex sensory modalities such as vision. As for complex motor modalities, recent
experiments carried out at Sussex involving a minimal simulation of an octapod
robot have succeeded in evolving neural network controllers that allow the octapod
not only to walk smoothly and robustly in a straight line but also to turn away from
obstacles that it senses using its infrared sensors and to back away from obstructions
that are sensed by way of its front bumper or whiskers (Jakobi, 1997b). It therefore

is possible to create minimal simulations for robots that employ complex motor
modalities.

The point is that whether a minimal simulation is easy to construct and runs fast

depends not on the complexity of the behavior we want to evolve when using it,
nor on the complexity of the robot that it simulates, but only on the complexity of
the base set of robot-environment interactions necessary to underlie the behavior.

Provided these are simple enough, then the behavior or the robot (or both) can be
arbitrarily complex.

Worries as to whether minimal simulation techniques will scale up can therefore
be reduced to worries about whether the robot-environment interactions employed
by the robots and control architectures of the future will be prohibitively complex.
It is too early to say whether this will or will not be the case, but consider two points:
(1) that results in insect and invertebrate neuroscience suggest that many complex
behaviors often are accomplished by way of simple interactions with the environ-
ment rather than complicated ones (Wehner, 1987; Horridge, 1992; Collett, 1996);
and (2) that control strategies grounded in complex robot-environment interactions
can lead to prohibitively heavy real-time processing requirements (Brooks, 1991).
This latter fact has fueled the trend in mobile robotics over the last few years from

the internal world model-making robots of the seventies (Nilsson, 1984) to the cur-
rent low-level behavior-based robotics of the present day (Chiel, Beer, Quinn, &

Espenschied, 1992).

, I&dquo; 
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