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ABSTRACT

A new real-time obstacle avoidance method for mobile robots has been developed and
implemented. This method, named the vector field histogram (VFH), permits the detection of
unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward
the target. 

The VFH method uses a two-dimensional Cartesian histogram grid as a world model. This world
model is updated continuously with range data sampled by on-board range sensors. The VFH
method subsequently employs a two-stage data-reduction process in order to compute the desired
control commands for the vehicle. In the first stage the histogram grid is reduced to a one-
dimensional polar histogram that is constructed around the robot's momentary location. Each
sector in the polar histogram contains a value representing the polar obstacle density in that
direction. In the second stage, the algorithm selects the most suitable sector from among all polar
histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with
that direction.

Experimental results from a mobile robot traversing densely cluttered obstacle courses in smooth
and continuous motion and at an average speed of 0.6 0.7m/sec demonstrate the power of the
VFH method.
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1. INTRODUCTION

Obstacle avoidance is one of the key issues to successful applications of mobile robot
systems. All mobile robots feature some kind of collision avoidance, ranging from primitive
algorithms that detect an obstacle and stop the robot short of it in order to avoid a collision,
through sophisticated algorithms, that enable the robot to detour obstacles. The latter
algorithms are much more complex, since they involve not only the detection of an obstacle,
but also some kind of quantitative measurements concerning the dimensions of the obstacle.
Once these have been determined, the obstacle avoidance algorithm needs to steer the robot
around the obstacle and proceed toward the original target. Usually,  this procedure requires
the robot to stop in front of the obstacle, take the measurements, and only then resume
motion. Obstacle avoidance (also called reflexive obstacle avoidance or local path planning)
may result in non-optimal paths [5], since no prior knowledge about the environment is used.

A brief survey of relevant earlier obstacle avoidance methods is presented in Section 2, while
Section 3 summarizes the virtual force field (VFF), an obstacle avoidance method 
developed earlier by our group at the University of Michigan [5]). While the VFF method
provides superior real-time obstacle avoidance for fast mobile robots, some limitations
concerning fast travel among densely cluttered obstacles were identified in the course of our
experimental work [18]. To overcome these limitations, we developed a new method, named
vector field histogram (VFH), which is introduced in Section 4. The VFH method eliminates
the shortcomings of the VFF method, yet retains all advantages of its predecessor (as will be
shown in Section 4). A comparison of the VFH method to earlier methods is given in Section
5, and Section 6 presents experimental results obtained with our VFH-controlled mobile
robot.

2. SURVEY OF EARLIER OBSTACLE AVOIDANCE METHODS

This section summarizes relevant obstacle avoidance methods, namely edge-detection,
certainty grids, and potential field methods.

2.1 Edge-Detection Methods

One popular obstacle avoidance method is based on edge-detection. In this method, an
algorithm tries to determine the position of the vertical edges of the obstacle and then steer the
robot around either one of the "visible" edges. The line connecting two visible edges is
considered to represent one of the boundaries of the obstacle. This method was used in our
very early research [4], as well as in several other works [11,21,22,28], all using ultrasonic
sensors for obstacle detection. A disadvantage with current implementations of this method is
that the robot stops in front of obstacles to gather sensor information. However, this is not an



Page 3

inherent limitation of edge-detection methods; it may be possible to overcome this problem
with faster computers in future implementations.

In another edge-detection approach (using ultrasonic sensors), the robot remains stationary
while taking a panoramic scan of its environment [13,14]. After the application of certain
line-fitting algorithms, an edge-based global path planner is instituted to plan the robot's
subsequent path.

A common drawback of both edge-detection approaches is their sensitivity to sensor
accuracy. Ultrasonic sensors present many shortcomings in this respect:

Poor directionality limits the accuracy in determining the spatial position of an edge to 10-
50 cm, depending on the distance to the obstacle and the angle between the obstacle surface
and the acoustic axis.

Frequent misreadings are caused by either ultrasonic noise from external sources or stray
reflections from neighboring sensors (i.e., crosstalk). Misreadings cannot always be filtered
out and they cause the algorithm to falsely detect edges.

Specular reflections occur when the angle between the wavefront and the normal to a
smooth surface is too large. In this case the surface reflects the  incoming ultra-sound waves
away from the sensor, and the obstacle is either not detected, or "seen" as much smaller than it
is in reality (since only part of the surface is detected).

Any one of these errors can cause the algorithm to determine the existence of an edge at a
completely wrong location, oftentimes resulting in highly unlikely paths.

2.2 The Certainty Grid for Obstacle Representation

A method for probabilistic representation of obstacles in a grid-type world model has been
developed at Carnegie-Mellon University (CMU) [13,23,24]. This world model, called
certainty grid,  is especially suited to the accommodation of inaccurate sensor data such as
range measurements from ultrasonic sensors.

In the certainty grid, the robot's work area is represented by a two-dimensional array of
square elements, denoted as cells. Each cell contains a certainty value (CV) that indicates the
measure of confidence that an obstacle exists within the cell area. With the CMU method,
CVs are updated by a probability function that takes into account the characteristics of a given
sensor. Ultrasonic sensors, for example, have a conical field of view. A typical ultrasonic
sensor [25] returns a radial measure of the distance to the nearest object within the cone, yet
does not specify the angular location of the object. (Fig. 1 shows the area A in which an
object must be located in order to result in a distance measurement d). If an object is detected
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Figure. 1: Two-dimensional projection of the conical
field of view of an ultrasonic sensor. A range reading d
indicates the existence of an object somewhere within
the shaded region A (Carnegie Mellon's method).

by an ultrasonic sensor, it is more likely that this object is closer to the acoustic axis of the
sensor than to the periphery of the conical field of view [4]. For this reason, CMU's
probabilistic function C  increases CVs in cells close to the acoustic axis more than CVs inx

cells at the periphery. 

In CMU's applications of this method
[23,24], the mobile robot remains
stationary while it takes a panoramic scan
with its 24 ultrasonic sensors. Next, the
probabilistic function C  is applied to eachx

of the 24 range readings, updating the
certainty grid. Finally, the robot moves to
a new location, stops, and repeats the
procedure. After the robot traverses a
room in this manner, the resulting
certainty grid represents a fairly accurate
map of the room. A global path-planning
method is then employed for off-line
calculations of subsequent robot paths. 

2.3 Potential Field Methods

The idea of imaginary forces acting on a
robot has been suggested by Khatib [16].
In this method, obstacles exert repulsive
forces, while the target applies an
attractive force to the robot. A resultant
force vector R, comprising the sum of a
target-directed attractive force and
repulsive forces from obstacles, is
calculated for a given robot position. With R as the accelerating force acting on the robot, the
robot's new position for a given time interval is calculated, and the algorithm is repeated.

Krogh [19] has enhanced this concept further by taking into consideration the robot's velocity
in the vicinity of obstacles.  Thorpe [27] has applied the potential field method to off-line path
planning and Krogh and Thorpe [20] suggest a combined method for global and local path
planning, which uses a "Generalized Potential Field" approach. Newman and Hogan [15]
introduce the construction of potential functions through combining individual obstacle
functions with logical operations. 

Common to these methods is the assumption of a known and prescribed  world model, in
which simple, predefined geometric shapes represent obstacles and the robot's path is gen-
erated off-line.



      We use the term "probability" in the literal sense of "likelyhood."1
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While each of the above methods features valuable refinements, none have been implemented
on a mobile robot with real sensory data. By contrast, Brooks [8,9] and Arkin [1]  use a
potential field method on experimental mobile robots (equipped with a ring of ultrasonic
sensors).  Brooks' implementation treats each ultrasonic range reading as a repulsive force
vector. If the magnitude of the sum of the repulsive forces exceeds a certain threshold, the
robot stops, turns into the direction of the resultant force vector, and moves on. In this
implementation, however, only one set of range readings is considered, while previous
readings are lost. Arkin's robot employs a similar method; his robot was able to traverse an
obstacle course at 0.12 cm/sec (0.4 feet/sec).

3. THE VIRTUAL FORCE FIELD (VFF) METHOD

The Virtual Force Field (VFF) method is our earlier real-time obstacle avoidance method for
fast-running vehicles [5]. Unlike the methods reviewed above, the VFF method allows for
fast, continuous, and smooth motion of the controlled vehicle among unexpected obstacles,
and does not require the vehicle to stop in front of obstacles.

3.1 The VFF Concept

 The individual components of the VFF method are presented below.

a. The VFF method uses a two-dimensional Cartesian histogram grid C for obstacle
representation. Like in CMU's certainty grid concept, each cell (i,j) in the histogram grid
holds a certainty value, c , that represents the confidence of the algorithm in the existencei,j

of an obstacle at that location. 

The histogram grid differs from the certainty grid in the way it is built and updated.
CMU's method projects a probability profile onto those cells that are affected by a range
reading; this procedure is computationally intensive and would impose a heavy time-
penalty if real-time execution on an on-board computer was attempted.  Our method, on
the other hand, increments only one cell in the histogram grid for each range reading,
creating a "probability" distribution with only small computational overhead. For1

ultrasonic sensors, this cell corresponds to the measured distance d (see Fig. 2a) and lies on
the acoustic axis of the sensor. While this approach may seem to be an oversimplification,
a probabilistic distribution is actually obtained by continuously and rapidly sampling each
sensor while the vehicle is moving. Thus, the same cell and its neighboring cells are
repeatedly incremented, as shown in Fig. 2b. This results in a histogramic probability
distribution, in which high certainty values are obtained in cells close to the actual location
of the obstacle.
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Figure 2:
a. Only one cell is incremented for each range reading. With ultrasonic
sensors, this is the cell that lies on the acoustic axis and corresponds to
the measured distance d.
b. A histogramic probability distribution is obtained by continuous and
rapid sampling of the sensors while the vehicle is moving

b. Next, we apply the
potential field idea to the
histogram grid, so the
probabilistic sensor
information can be used
efficiently to control the
vehicle. Fig. 3 shows
how this algorithm
works:

As the vehicle moves, a
window of w xw  cellss s

accompanies it,
overlying a square
region of C. We call this
region the "active
region" (denoted as C*),
and cells that
momentarily belong to
the active region are
called "active cells"
(denoted as c* ). In ouri,j

current implementation, the size of the window is 33x33 cells (with a cell size of
10cmx10cm), and the window is always centered about the robot's position. Note that a
circular window would be geometrically more appropriate, but is computationally more
expensive to handle than a square one.

Each active cell exerts a virtual repulsive force F  toward the robot. The magnitude of thisi,j

force is proportional to the certainty value c*  and inversely proportional to d , where d isi,j
x

the distance between the cell and the center of the vehicle, and x is a positive real number
(we assume x=2 in the following discussion). At each iteration, all virtual repulsive forces
are added up to yield the resultant repulsive force F . Simultaneously, a virtual attractiver

force F  of constant magnitude is applied to the vehicle, "pulling" it toward the target.  Thet

summation of F  and F  yields the resulting force vector R. In order to compute R, up tor t

33x33=1089 individual repulsive force vectors F  must be computed and accumulated. i,j

The computational heart of the VFF algorithm is therefore a specially developed algorithm
for the fast computation and summation of the repulsive force vectors.
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Figure 3: The Virtual Force Field (VFF) concept: Occupied cells exert repulsive forces onto the robot; the
magnitude is proportional to the certainty value c  of the cell and inversely proportional to d .i,j

2
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c. Combining the above two concepts (a.) and (b.) in real-time enables sensor data to
influence the steering control immediately. In practice, each range reading is recorded into
the histogram grid as soon as it becomes available, and the subsequent calculation of R
takes this data-point into account. This feature gives the vehicle fast response to obstacles
that appear suddenly, resulting in fast reflexive behavior imperative at high speeds.

3.2 Shortcomings of the VFF Method

The VFF method has been implemented and extensively tested on-board a mobile robot
equipped with a ring of 24 ultrasonic sensors (see Section 6). Under most conditions, the
VFF-controlled robot performed very well. Typically, it traversed an obstacle course at an
average speed of 0.5m/sec, provided the obstacles were placed at least 1.8m apart (the robot
diameter is 0.8m). With less clearance between two obstacles (e.g., a doorway), some
problems were encountered. Sometimes, the robot would not pass through a doorway,
because the repulsive forces from both sides of the doorway resulted in a force that pushed
the robot away.

Another problem arose out of the discrete nature of the histogram grid. In order to efficiently
calculate repulsive forces in real-time, the robot's momentary position is mapped onto the
histogram grid. Whenever this position changes from one cell to another, drastic changes in
the resultant R may be encountered. The following numeric example explains this point.
Consider a repulsive force generated by a cell (m,n) and applied to the robot's momentary
position at (m,n+6), which is six cells away (i.e., 0.6 m, with a cell size of 10x10cm). The
magnitude of this particular force vector is |F |=k/0.6 =2.8k. As the robot advances by onem,n

2

cell, and its position corresponds to cell (m,n+5), the new force vector is |F' |=k/0.5 =4k. Them,n
2

change is 42%. Changes of this magnitude cause considerable fluctuations in the steering
control. The situation is even worse when the magnitude of the target-directed constant
attractive force F  lies between the directions of the two successive forces |F| and |F'| (thist

condition is in fact most likely, because it corresponds to the "steady state" condition when
the robot travels alongside an obstacle). In this situation, the direction of the resultant R may
fluctuate by up to 180 . For this reason it is necessary to smooth the control signal to the steer-o

ing motor by adding a low-pass filter to the VFF control loop [5]. This filter, however, intro-
duces a delay that adversely affects the robot's steering response to unexpected obstacles. 

Finally, we also identified a problem that occurs when the robot travels in narrow corridors.
When traveling along the center-line between the two corridor walls, the robot's motion is
stable. If, however, the robot strays slightly to either side of the center-line, it experiences a
strong virtual repulsive force from the closer wall. This force usually "pushes" the robot
across the center-line, and the process repeats with the other wall. Under certain conditions,
this process results in oscillatory and unstable motion [17,18].



      For symmetrically shaped vehicles, the VCP is easily defined as the geometric center of the vehicle.2

For rectangular vehicles, it is possible to chose two VCPs, e.g., one each at the center-point of the front
and rear axles.
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4. THE VECTOR FIELD HISTOGRAM (VFH) METHOD

Careful analysis of the shortcomings of the VFF method reveals its inherent problem:
excessively drastic data reduction that occurs when the individual repulsive forces from
histogram grid cells are added up to calculate the resultant force vector F . Hundreds of datar

points are reduced in one step to only two items: direction and magnitude of F .r
Consequently, detailed information about the local obstacle distribution is lost. 

To remedy this shortcoming, we have developed a new method called the vector field
histogram (VFH).  The VFH method employs a two-stage data reduction technique, rather
than the single-step technique used by the VFF method. Thus, three levels of data
representation exist: 

a. The highest level holds the detailed description of the robot's environment. In this level, the
two-dimensional Cartesian histogram grid C is continuously updated in real-time with
range data sampled by the on-board range sensors. This process is identical to the one
described in Section 3 for the VFF method.

b. At the intermediate level, a one-dimensional polar histogram H is constructed around the
robot's momentary location. H comprises n angular sectors of width α. A transformation
(described in Section 4.1, below) maps the active region C* onto H, resulting in each
sector k holding a value h  that represents the polar obstacle density in the direction thatk

corresponds to sector k.

c. The lowest level of data representation is the output of the VFH algorithm: the reference
values for the drive and steer controllers of the vehicle.

The following sections describe the two data reduction stages in more detail.

4.1 First Data Reduction and Creation of the Polar Histogram

The first data-reduction stage maps the active region C* of the histogram grid C onto the
polar histogram H, as follows: As with our earlier VFF method, a window moves with the
vehicle, overlying a square region of w xw  cells in the histogram grid (see Fig. 4). Thes s

contents of each active cell in the histogram grid are now treated as an obstacle vector, the
direction of which is determined by the direction β from the cell to the Vehicle Center Point
(VCP)2
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(1)

and the magnitude is given by

mi,j = (c*i,j)2 (a - bdi,j) (2)

where
a,b Positive constants.
c*i,j     Certainty value of active cell (i,j).
di,j     Distance between active cell (i,j) and the VCP.
mi,j Magnitude of the obstacle vector at cell (i,j).
x0, y0 Present coordinates of the VCP.
xi, yj Coordinates of active cell (i,j).
βi,j Direction from active cell (i,j) to the VCP.

Notice that
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a. c*  is squared. This expresses our confidence that recurring range readings represent actuali,j

obstacles, as opposed to single occurrences of range readings, which may be caused by
noise.

b. m  is proportional to -d. Therefore, occupied cells produce large vector magnitudes wheni,j

they are in the immediate vicinity of the robot, and smaller ones when they are further
away. Specifically, a and b are chosen such that a-bd =0, where d  = 2 (w -1)/2 ismax max s

the distance between the farthest active cell and the VCP. This way m =0 for the farthesti,j

active cell and increases linearly for closer cells.

H has an arbitrary angular resolution α such that n=360/α is an integer (e.g., α=5  and n=72).o

Each sector k corresponds to a discrete angle  quantized to multiples of α, such that =kα,
where k = 0,1,2,...,n-1. Correspondence between c*  and sector k is established throughi,j

k = INT(β /α) (3)i,j

For each sector k, the polar obstacle density h  is calculated byk

h  =  m (4)k i,ji,j

Each active cell is related to a certain sector by equations (1) and (3). In Fig. 4, which shows
the mapping from C* into H, all active cells related to sector k have been highlighted. Note
that the sector width in Fig. 4 is α=10  (not α=5 , as in the actual algorithm) to clarify theo o

drawing.

Because of the discrete nature of the histogram grid, the result of this mapping may appear
ragged and cause errors in the selection of the steering direction (as explained in Section 4.2).
Therefore, a smoothing function is applied to H, which is defined by

h +2h +...+lh +...+2h +hk-l k-l+1 k k+l-1 k+lh'  = -------------------------- (5)k 2l+1

where h'  is the smoothed polar obstacle density  (POD).k

In our current implementation, l=5 yields satisfactory smoothing results.
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Figure 6: 
a. Polar obstacle density represented in the
smoothed polar histogram H'(k) ) relative to the
robot's position at O (in Fig. 5b).
b. The same polar histogram as in a, shown in
polar form and overlaying part of the histogram
grid of Fig. 5b.Figure 5: a. Example of an obstacle course.

b.The corresponding Histogram grid representation.

 Fig. 5a shows a typical obstacle setup in our lab. Note that the gap between obstacles B and
C is only 1.2m and that A is a thin pole of 3/4" diameter. The histogram grid obtained after
partially traversing this obstacle course is shown in Fig. 5b. The (smoothed) polar histogram
corresponding to the momentary position of the robot O is shown in Fig. 6a. The directions

(in degrees) in the polar histogram
correspond to directions measured
counterclockwise from the positive x-axis of
the histogram grid. The peaks A, B, and C in
the polar histogram result from obstacle
clusters A, B, and C in the histogram grid. 
Fig. 6b shows the polar form of the exact
same polar histogram as Fig. 6a, overlaying
part of the histogram grid of Fig. 5b.
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4.2 Second Data Reduction and Steering Control

The second data-reduction stage computes the required steering direction    θ. This section explains
how θ is computed.

As can be seen in Fig. 6, a  smoothed polar
histogram  typically has "peaks," i.e., sectors
with high PODs, and "valleys," i.e., sectors
with low PODs. Any valley comprised of
sectors with PODs below a certain threshold
(see discussion in Sec. 4.3) is called a
candidate valley.  Fig. 7 visualizes the match
between candidate valleys  and the actual
environment:  Based on the threshold and the
polar histogram of Fig. 6, candidate valleys
are shown as lightly shaded sectors in Fig.  7,
while unsafe directions (i.e., those with PODs
above the threshold) are shown in darker
shades.

Usually there are two or more candidate
valleys and the VFH algorithm selects the one
that most closely matches the direction to the target t ktarg (an exception to this rule is discussed in
Section 4.5). Once a valley is selected, it is further necessary to choose a suitable sector within
that valley. The following discussion explains how the algorithm finds this sector and thus the
required steering direction.

At first, the algorithm measures the size of the selected valley  (i.e., the number of consecutive
sectors with PODs  below the threshold). Here, two types of   valleys are distinguished, namely,
wide and narrow ones. A valley is considered wide if more than smax consecutive sectors fall below
the threshold (in our system smax=18).  Wide valleys  result from wide gaps between obstacles or
from situations where only one obstacle is near the vehicle. Fig.   8 shows a typical obstacle con-
figuration that produces a  wide valley  . The sector that is nearest to  ktarg and below the threshold is
denoted kn and represents the near border  of the valley. The far border  is denoted as kf and is
defined as kf=kn+smax. The desired steering direction  θ is then defined as  θ=(kn+kf)/2. Figure 8
demonstrates why this method results in a stable path when traveling   i   alongside an obstacle: If the
robot approaches the obstacle too closely (Fig. 8a), θ points away from the obstacle. If the robot
is further away from the obstacle,  θ allows the robot to approach the obstacle more closely (Fig.
8b). Finally, when traveling at the proper distance   ds from the obstacle (Fig. 8c), θ is parallel to
the obstacle boundary and small disturbances from this parallel path are corrected as described
above.  Note that the distance  ds is mostly determined by smax.  The larger smax, the further the
robot will keep from an obstacle, under steady state conditions.

Figure 7: A Threshold on the polar histogram determines the
candidate directions for subsequent travel.
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Figure 8: Obtaining a stable path when traveling alongside an obstacle:
a. θ points away from the obstacle when the robot is too close.
b. θ points toward the obstacle when the robot is further away.
c. Robot runs alongside the obstacle when at the proper distance d .s

steady state conditions. 

The second case, a narrow valley, is created when the mobile robot travels between closely
spaced obstacles, as shown in Fig. 9. Here the far border k  is less than s  sectors apart fromf max

k . However, the direction of travel is again chosen as θ = (k +k )/2 and the robot maintains an n f

course centered between obstacles. 

Note that the robot's ability to pass through narrow passages and doorways results from the
ability to identify a narrow valley and to choose a centered path through that valley. This
feature is made possible through the intermediate data representation in the polar histogram.
Our earlier VFF method and other potential field methods, by contrast, lack this ability [18].
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Figure 9: Finding the steering reference direction θ when k  istarg

obstructed by an obstacle.

Another important benefit from this method is the elimination of the vivacious fluctuations in
the steering control (a problem associated with the VFF method). With the averaging effect of
the polar histogram and the additional smoothing by Eq. (5), k  and k  (and consequently θ)n f

vary only mildly between sampling intervals. Thus, the VFH method does not require a low-
pass filter in the steering control loop and is therefore able to react much faster to unexpected
obstacles. Similarly, a VFH-controlled robot does not oscillate when traveling in narrow
corridors (as is the case with potential field methods, under certain circumstances [18]).

4.3 The Threshold

As mentioned above, a threshold is
used to determine the candidate
valleys.  While choosing the
proper threshold is a critical issue
for many sensor-based systems,
the performance of the VFH
method is largely insensitive to a
fine-tuned threshold.  This
becomes apparent when
considering Fig. 6:  Lowering or
raising the threshold even by a
factor of 3 or 4 only affects the
width of the candidate valleys. 
This, in turn, has only a small
effect on narrow valleys, since the
steering direction is chosen in the
center of the valley.  In wide
valleys, only the distance d  froms

the obstacle is affected.

Severe maladjustments of the
threshold have the following effect on the system performance:

a. If the threshold is much too large (e.g., higher than peak 'A' in Fig. 6a), the robot is not
"aware" of that obstacle and approaches it on a collision course.  However, during the
approach additional sensor readings further increase the CVs representing that obstacle,
while the distance d to the affected cells decreases.  As is evident from Eq. (2), this results
in higher PODs and consequently in a higher "peak" that eventually exceeds the threshold. 
However, in this case robot may approach the obstacle too closely (especially when
traveling at high speed) and collide with the object. 
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b. If, on the other hand, the threshold is much too low, some potential candidate valleys will
be precluded and the robot will not pass through narrow passages. 

In summary, it can be concluded that the VFH-system needs a fine-tuned threshold only for
the most challenging applications (e.g., travel at high speed and in densely cluttered
environments); under less demanding conditions the system performs well even with an
unprecisely set threshold.

One way to optimize performance is to set an adaptive threshold from a higher hierarchical
level, e.g., as a function of a "global" plan. For example, during normal travel the threshold is
set to a very safe, low level. If the global plan calls for passing through a narrow passage
(e.g., a doorway), the threshold is temporarily raised while the travel speed is lowered.

4.4 Speed Control

The robot's maximum speed V  can be set at the beginning of a run. The robot tries tomax

maintain this speed during the run unless forced by the VFH algorithm to a lower instan-
taneous speed V, which is determined in each sampling interval as follows:

The smoothed polar obstacle density in the current direction of travel is denoted as h' .  h'>0c c

indicates that an obstacle lies ahead of the robot. Large values of h'  mean a large obstacle liesc

ahead or an obstacle is very close to the robot. Either case is likely to require a drastic change
in direction, and a reduction in speed is necessary to allow the steering wheels to turn into the
new direction. This reduction in speed is implemented by the following function:

V' = V  (1 - h''/h ) (8)max c m

where
h'' = min(h' , h ) (9)c c m

and h  is an empirically determined constant that causes a sufficient reduction in speed. Notem

that Eq. (9) guarantees V'  0, since h''  h .c m

While Eqs. (8) and (9) reduce the speed of the robot in anticipation of a steering maneuver,
speed can be further reduced proportionally to the actual steering rate Ω:

V = V'(1 - Ω/Ω ) + V (10)max min

where Ω  is the maximal allowable steering rate for the mobile robot (in our systemmax

Ω =120 /sec).max
o

Note that V is prevented from going to zero by setting a lower limit for V, namely V V ; inmin

our implementation V =4cm/sec. min
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4.5 Limitations and Remedies
 
The VFH method is a local path planner, i.e., it does not attempt to find an optimal path (an
optimal path can only be found if complete environmental information is given). Furthermore,
a VFH controlled robot may get "trapped" in dead-end situations (as is the case with other
local path planners). When trapped, mobile robots usually exhibit what has been called
"cyclic behavior," i.e., going around in circles or cycling between multiple traps (typical
examples for cyclic behavior are discussed in [5]). While it is possible to devise a set of
heuristic rules that would guide the robot out of trap-situations and resolve cyclic behavior
[5], the resulting path is still not optimal. 

To resolve these problems, we have introduced a path monitor that works as follows: If the
robot diverts from the target direction k  (see Fig. 9) the path monitor records this as eithertarg

left (as is the case in Fig. 9) or right diversion mode. Subsequently, when looking for the near
border of the closest candidate valley, k  (see Section 4.2), the VFH algorithm searches to then

left or right of k , according to the original diversion mode. If k  cannot be found withintarg n

n=180 /α=36 sectors, the path monitor flags a trap-situation. Once a certain diversion modeo

has been set, it is only cleared if the robot faces again into the target direction.

When a trap-situation is flagged, the robot slows down (and may come to a complete halt),
while the VFH algorithm is temporarily suspended. A global path planner (GPP) algorithm is
then invoked to plan a new path based on the available information in the histogram grid [29].
The new path comprises a set of via-points that are then presented as intermediate target
locations to the VFH algorithm. 

The maximum travel speed of a VFH-controlled robot is limited by the sampling rate of the
ultrasonic sensors, and not by the computation time of the algorithm. In our system, it takes
160 msec to have all 24 ultrasonic sensors sampled and processed once. We estimate that with
our current computing hardware (see Section 6) a travel speed of up to 1.5m/sec is possible if
the sampling rate of the sensors could be doubled.  The relationship between
sampling time, robot travel speed, signal-to-noise ratio, and the resulting certainty values is
rather complicated and cannot be treated here because of space limitations (a thorough
discussion of this problem is given in [6] and [7]).

5. COMPARISON TO EARLIER METHODS

During our research in obstacle avoidance for mobile robots [2,3,4,5] we implemented and
evaluated some of the methods discussed in Section 2. This section compares the performance
of our new VFH method to these earlier methods.
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5.1 Comparison to Edge-Detection Methods

The blurry and inaccurate data produced by ultrasonic sensors does not provide the sharply
defined contours required by edge-detection methods. Consequently, misreadings or
inaccurate range measurements may be interpreted as part of an obstacle, thereby distorting
the perceived shape of the obstacle. 

The VFH method, on the other hand, reacts to clusters of range readings. As soon as a range
reading has been sampled, it becomes available to the steering controller (via the histogram
grid) and can influence the path of the vehicle immediately. A single range reading will have
only minor influence on the path, while repeated range readings in a confined area (cluster)
will cause a more drastic change of direction for the vehicle. 

The force field method developed by Brooks [8,9] and the similar method developed by Arkin
[1], do function in experimental real-time systems, using actual sensory data [8,9]. However,
these methods are somewhat oversimplified, since a threshold determines if an object is at a
safe distance or too close. In the latter case, and because of the binary character of the
threshold, the robot must stop and rotate away from the object before resuming motion. An
additional shortcoming of these methods is their susceptibility to misreadings (due to
ultrasonic noise, crosstalk, etc.) since they take into account only one set of range readings
(one reading from each ultrasonic sensor). Consequently, misreadings and correct readings
(i.e., those produced by actual obstacles) have the same weight. Therefore, a single
misreading can cause the resultant force to exceed the threshold level and "scare" the robot
away from a possibly safe, free path. Our method, on the other hand, also takes into account
past measurements by means of the histogram grid, thereby increasing the weight of recurring
measurements, while minimizing the weight of randomly occurring misreadings. In addition,
the smoothing function (Eq. 5) reduces the weight of false readings. Thus, the VFH method
results in much more robust and error-resistant control. An additional advantage of the VFH
method is the permanent map information contained in the histogram grid after a run. Brooks'
and Arkin's methods, on the other hand, do not produce a permanent record.

A critical discussion of both simulated and experimental potential field methods is given in
[18].  Also, based on a rigorous mathematical analysis, [18] discusses six inherent
shortcomings of potential field methods.

5.4 Reflexive vs. Reactive Control

On a more abstract level, researchers are beginning to distinguish between two fundamentally
different approaches to mobile robot obstacle avoidance.  The "conventional" approach,
reactive control, is based on the traditional artificial intelligence model of human cognition. 
Reactive control algorithms reason about the robot's perception (sensor data) while building
elaborate world models (memory) and subsequently plan the robot's actions.  This approach
requires large amounts of computation and decision making, resulting in a relatively slow
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response of the system.  Reflexive control (with Brooks as one of its foremost proponents),
eliminates cognition altogether.  In reflexive control there is no planning and reasoning; nor
are there world models.  Simple reflexes tie actions to perceptions, resulting in faster response
to outside stimuli.

At first glance it may seem that our VFH method is a typical example of reactive control,
considering the histogram grid world model and even a second model, the polar histogram. 
However, some distinctions should be made.  Our world model, the histogram grid, has two
different functional properties, namely a short term effect and a long term effect. The long
term effect is provided by the whole histogram grid, as described in Section 3. The
information stored in the histogram grid may serve for map building purposes and for the
global path planner (see Section 4.5). A large histogram grid, however, is not necessary for
our algorithm to work properly. It is the short term effect of the histogram grid that is
important for the VFH algorithm. As explained in Section 4.1, only cells within the active
window influence the VFH computations. Since the active window travels with the robot, cells
are only briefly inside the window and have thus only a temporary (short term) effect. Also,
since the ultrasonic sensors are limited to only 2m look-ahead (about the size of the active
window), only cells inside the window are updated with sensor information. Therefore, the
VFH algorithm would work equally well if all information was lost from cells that are outside
of the active window. Through the concept of the active window, the histogram grid becomes
sort of a "short term memory," where readings are retained briefly (while the active window
sweeps through the area) to enhance the accuracy by accumulating multiple sensor readings.
In a way, this process is similar to the short term memory associated with human hearing:
Without this mechanism, people would hear but not necessarily comprehend all speech.

6. EXPERIMENTAL RESULTS

We implemented and tested the VFH method on our mobile robot CARMEL (Computer-
Aided Robotics for Maintenance, Emergency, and Life support). CARMEL is based on a
commercially available mobile platform [12], as seen in Fig. 10. This platform has a
maximum travel speed of V  = 0.78 m/sec, a maximum steering rate of Ω = 120 deg/sec, andmax

weighs (in its current configuration) about 125 kg. The platform has a hexagonal structure and
a unique three-wheel drive (synchro-drive) that permits omnidirectional steering. A Z-80 on-
board computer serves as the low-level controller of the vehicle. Two computers were added:
a PC-compatible single-board computer to control the sensors, and a 20 Mhz, 80386-based
AT-compatible that runs the VFH algorithm. 
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Figure 10: CARMEL, The University of Michigan's Cybermotion
K2A robot, dashes through an obstacle course at 0.8 m/sec.

CARMEL is equipped with a ring
of 24 ultrasonic sensors [25]. The
sensor ring has a diameter of 0.8m,
and objects must be at least 0.27m
away from the sensors to be
detected. Therefore, the theoretical
minimum width for safe travel in a
passage-way is
W =0.8 + 2x0.27 = 1.34 m.min

In extensive tests, we ran the VFH-
controlled CARMEL through
difficult obstacle courses. The
obstacles were unmarked,
commonplace objects such as
chairs, partitions, and bookshelves.
In most experiments, CARMEL
ran at its maximum speed
V =0.78m/sec. This speed wasmax

only reduced when an obstacle was approached head-on (see discussion of speed control in
Section 4.4).

Fig. 11 shows the histogram grid after a run through a particularly challenging obstacle
course of 3/4"-diameter vertical poles spaced at a distance of about 1.4m from each other. The
actual location of the rods is indicated by (+) symbols in Fig. 11. It should be noted that none
of the obstacle locations were known to the robot in advance: the CV-clusters in Fig. 11
gradually appeared on the operator's screen while CARMEL was moving.

To test the performance limits of our system, we performed a variety of experiments with
other slender obstacles. For example, 1/2" diameter poles were still detected, but not reliably
so when approached at CARMEL's maximum speed. Unreliable detection would also result
when 1"x1" square rods were used. Larger objects, such as 2" diameter cylinders, square
shaped cardboard boxes, furniture, and even slowly walking people are reliably detected and
avoided. These obstacles are easier to detect than the 3/4" poles in the experiment described
here.

Each blob in Fig. 11 represents one cell in the histogram grid. In our current implementation,
certainty values (CVs) range from 0 to 15 and are indicated in Fig. 11 by blobs of varying
sizes. CV = 0 means no sensor reading has been projected onto the cell during the run (i.e., no
blob), while CVs > 0 indicate the increasing confidence in the existance of an object at that
location.  CARMEL traversed this obstacle course at an average speed of 0.58 m/sec without
stopping for obstacles.  Note that this is a typical experimental run, and similar performance
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Figure 11: Histogram grid representation of a run
through a field of densely spaced, thin vertical poles. 
The average speed in this run was V  = 0.58m/sec.avrg

has been routinely obtained in countless experiments and demonstrations, using different
kinds of obstacles at random layouts.

An indication of the real-time performance
of the VFH algorithm is the sampling time T
(i.e., the rate at which the steer and speed
commands for the low-level controller are
issued). The following steps occur during T:

a. Obtain sonar information from the sensor
controller.

b. Update the histogram grid.
c. Create the polar histogram.
d. Determine the free sector and steering

direction.
e. Calculate the speed command.
f. Communicate with the low-level motion

controller (send speed and steer
commands and receive position update).

On an Intel 80386-based PC-compatible
computer running at 20 Mhz, T = 27 msec.

7. CONCLUSIONS

This paper presents a new obstacle
avoidance method for fast-running vehicles.
This approach, called the vector field histogram (VFH) method, has been developed and
successfully tested on our experimental mobile robot CARMEL. The VFH algorithm is
computationally efficient, very robust and insensitive to misreadings, and it allows continuous
and fast motion of the mobile robot without stopping for obstacles. The VFH-controlled
mobile robot traverses very densely cluttered obstacle courses at high average speeds and is
able to pass through narrow openings (e.g., doorways) or negotiate narrow corridors without
oscillations.

The VFH method is based on the following principles:

a. A two-dimensional Cartesian histogram grid is continuously updated in real-time with
range data sampled by the on-board range sensors. 

b. The histogram grid is reduced to a one-dimensional polar histogram that is constructed
around the momentary location of the robot. The polar histogram is the most significant
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distinction between the VFF and the VFH method as it allows a spatial interpretation
(called polar obstacle density) of the robot's instantaneous environment.

c. Consecutive sectors with a polar obstacle density below threshold are called "candidate
valleys."  The candidate valley  closest to the target direction is selected for further
processing.

d. The direction of the center of the selected candidate direction is determined and the
steering of the robot is aligned with that direction.

e. The speed of the robot is reduced when approaching obstacles head-on. 

The characteristic behavior of a VFH-controlled mobile robot is best described as follows:
The response of the vehicle is dependent on the likelihood for the existence of an obstacle. In
the histogram grid, this likelihood is expressed in terms of size and certainty values of a
cluster. This information is transformed into height and width of an elevation in the polar
histogram. The strength of the VFH method lies thus in its ability to maintain a statistical
obstacle representation at both the histogram grid level as well as at the intermediate data
level, the polar histogram. This feature makes the VFH method especially suited to the
accommodation of inaccurate sensor data, such as that produced by ultrasonic sensors, as well
as sensor fusion. 
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Footnotes

1. We use the term "probability" in the literal sense of "likelihood."

2. For symmetrically shaped vehicles, the VCP is easily defined as the geometric center of the
vehicle. For rectangular vehicles, it is possible to chose two VCPs, e.g., one each at the
center-point of the front and rear axles.


