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Abstract

Energy is defined as the potential to perform work: every sys-
tem that does some work must possess the required energy
in advance. An interesting class of systems, including ani-
mals and recharging robots, has to actively choose when to
obtain energy and when to dissipate energy in work. If work-
ing and collecting energy are mutually exclusive, as is com-
mon in many animal and robot scenarios, the system faces an
essential two-phase action selection problem: (i) how much
energy should be accumulated before starting work; (ii) at
what remaining energy level should the agent switch back to
feeding/recharging? This paper presents an abstract general
model of a energy-managing agent that does time-discounted
work. Analyzing the model, we find solutions to both ques-
tions that optimise’s the value of the work done. This result
is validated empirically by simulated robot experiments that
agree closely with the model.

Introduction
Since the early years of robotics, e.g. Walter (1963), roboti-
cists have been challenged by the need to supply robots with
energy. For mobile robots that carry their own limited en-
ergy store, the key question is “when should the robot re-
fuel/recharge?”. A standard approach in the literature and
in commercial robots is to set a fixed threshold and refuel
whenever the robot’s energy supply drops below this thresh-
old (Silverman et al. (2002), Silverman et al. (2003)). The
simplicity of this approach is appealing, but it may not be the
optimal strategy. For example Wawerla and Vaughan (2007)
showed that, in a realistic surveying task, an adaptive thresh-
old produces a higher overall work rate than a static thresh-
old, and a rate maximizing approach outperforms both by
a large margin. The biologically-inspired rate maximizing
method performs well, but it has some important limitations
discussed below. This paper provides a more sophisticated
model for rational recharging robots.

Robots, by their name1 and nature, are supposed to per-
form some form of labour, e.g. space exploration, enter-
tainment, rescue missions, clean-up, assembly, etc. Most
tasks require execution in a timely manner, though some

1Webster: Czech, fromrobota: compulsory labour

more then others. For example, we may be willing to wait
for a day or two for the latest geological observations from
Mars, while waiting the same time for the rescue of trapped
miners or ordnance disposal might not be acceptable. The
standard method to model the decreasing value of work over
time, and thereby encourage timely execution, is to discount
by some factorβ in discrete timesteps the reward given in
exchange for investment (Varian (1992)), where investment
here is energy dissipated in labour. The inverse of discount
(1/β) is the familiar interest rate, of savings accounts and
credit cards.

The laws of physics dictate that energy cannot be trans-
ferred instantaneously, or in other words, refuelling takes
time and this time cannot be spent working. If a robot spends
an hour refuelling, it starts to work one hour later and since
the reward is discounted over time, it receives a smaller pay-
ment then if it would have started working immediately. But
the initial charging period is strictly required, as no work
can be done without previously obtaining energy. This con-
flict between the mutually exclusive tasks of refuelling and
working raises two interesting questions:

Q1 How much energy should be accumulated before starting
work?

Q2 At what remaining energy level should the agent switch
back to obtaining energy?

Most real-world robot systems avoid these questions by
maintaining a permanent connection to an energy source,
e.g. industrial robotic manipulators wired into the mains
power grid, or solar powered robots which are capable of
gathering energy while performing some task at the same
time. This paper addresses the more interesting class of ma-
chine, including animals and mobile robots, that must obtain
and store energy prior to working. The Q1,Q2 action selec-
tion problem must be solved by every animal and long-lived
robot in some way or another. Further we are only consider-
ing rational agents. Any introductory textbook on decision
making (e.g. Stuart and Peter (2003)) defines an agent to be
rational if it always selects that action, i.e. an answer to Q1
and Q2, that returns the highest expected utility. Here we



assume that utility is proportional to the reward obtained by
working, which is discounted over time.

After considering related work, we analyze the prob-
lem in terms of a simplified abstract model which, when
parametrized to approximate a particular robot system, pre-
dicts the optimal answers to Q1 and Q2. We validate the
model by comparing its predictions with data empirically
obtained from a simulated robot.

To the best of our knowledge, this is the first proposed
solution to this general robotics problem.

Related Work
The literature on robotic energy management has many as-
pects ranging from docking mechanisms, energy-efficient
path-planning, to fuel types. The most relevant aspect to
this work is on action-selection. Perhaps the most stan-
dard and simple way to determine when it is time for the
robot to recharge is to set a fixed threshold. This can ei-
ther be a threshold directly on the energy supply as in Sil-
verman et al. (2002) or on time elapsed since last charg-
ing as in Austin et al. (2001). The latter is usually easier
to implement but less accurate, because one has to have
some model of the energy supply. However, Wawerla and
Vaughan (2007) showed a fixed threshold policy can be im-
proved upon. While it is true that maximizing the energy
intake rate maximizes potential work rate, it does not opti-
mize with respect to when the work is done. It alsoassumes
that recharging is always valuable. This is often true, but not
always, as we show below. Also notable is that all of the
above papers refuel the robot to maximum capacity at each
opportunity, and do not consider that this may not be the best
policy.

Litus et al. (2007) consider the problem of energy efficient
rendezvous as an action selection problem, and so investi-
gate the where, but not the when and how long, to refuel.
Birk (1996) had robots living in a closed ecosystem learn to
‘survive’. Here robots learned to choose between recharging
and fighting off competitors. Birk’s agents’ value function
of ‘survivability’ is different to that considered here. The ra-
tional robot and its owner are interested in gaining maximum
reward by working at the robot’s task, and are indifferent to
the lifespan of the robot. This is a key difference between
the purpose of robots and animals.

Although intended as a wake-up call for psychology
research, Toda’s Fungus Eater thought experiment (Toda
(1982)) has been influential in the robotics literature. The
survival quest of a mining robot on a distant planet con-
tributed significantly to ideas of embodiment and whole
agents (Pfeifer (1996)), but the action selection problem pre-
sented has yet to be solved in more then the trivial way of a
fixed threshold policy.

Spier and McFarland (1997) and McFarland and Spier
(1997) investigate work - refuel cycles, or as they call it ’ba-
sic cycles’, and show a simple rule, based on cue and deficit,

Figure 1: Refuel and time discounted labour model, see text
for details

can solve a two resource problem. The cue-deficit policy
is inherently reactive and thus fails to cope with the cost of
switching between behaviours. Lacking any form of look
ahead or planning, so it is difficult to see how it would han-
dle discounted labour situations.

From McFarland’s work, it is a small step into the vast
literature on behavioural ecology, from which Houston and
McNamara (1999), Stephens and Krebs (1986) and Stephens
et al. (2007) are strongly recommended starting points. Due
to the biological background of these publications, the anal-
ogy to labour and reward in a robotic case is not obvious.
The majority of this work uses dynamic programming (DP)
as a means of evaluating models of animal behaviour. An
exception that does not rely on DP is Hedenström (2003),
who investigates the bio-mechanics of land based animals to
derive models of optimal fuel load during migration. The
model optimizes for migration time, does not map directly
into discounted labour or the cyclic work-charge lifestyleof
the long-lived robot.

It is known that animals prefer a small, immediate reward
to a large delayed reward. So animals seem to do some form
of time discounting. According to Kacelnik and Bateson
(1996) the reason seems to be that animals in general are
risk averse. From a robotics point of view, one major is-
sue with the descriptive models of behavioural ecology is
that they lack the ‘how does the animal actually do it’ pre-
scriptive description and hence do not translate readily into
robot controllers. Work that tries to bridge the gap between
ecology and robotics is Seth (2007). Here Seth uses ALife
methods to evolve controllers that obey Herrnstein’s match-
ing law (roughly: relative rate of response matches relative
rate of reward), which again is in the domain of rate maxi-
mization.

The Model
In this section we describe the behavioural model used in
this work. In order to keep the analysis tractable we choose
an abstract, slightly simplified model. The world is mod-



elled as two distinct spatially separated sites: a work siteand
a refuelling site. Moving between sites has a non-zero cost
(Figure 1). The robot has a energy storage ofE(t), where
0 ≤ E(t) ≤ Emax. If the energy supply drops to zero any-
where but at the refuelling site, the robot looses is abilityto
move or work and can gain no more reward. The robot can
be in one of four states:

• refuelling with a refuelling rate ofėr, to do so the robot
has to be at the refuelling site.

• transitioning from the refuelling site to the work site,
the duration of this transition isτd and the robot has to
spend energy at a rate ofėd, so the transitions cost in term
of energy isτdėd

• working, which gets the robot a reward ofR =
∫ t0+τw

t0
βtdt, wheret0 is it time when the robot starts to

work andτw is the duration the robot works for. There-
fore the reward the robot earns by working is discounted
with a discount factor0 < β < 1. While working the
robot spends energy with a rate of˙ew. In other words,
the robot turns energy into work and therefore reward. In
case where the robot performs several work sessions, the
reward is accumulated and only the overall reward is at in-
terest to the owner of the robot. As with refuelling, work
can only be performed at the work site.

• transitioning from the work site to the refuelling site,
the duration of this transition isτd and the robot has to
spend energy at a rate ofėd

The robot’s goal is to achieve as much reward as possible.
To do so, it has to make two decisions, (1) when to stop
refuelling and resume work and (2) when to stop working
and refuel. We mostly refer to the action of accumulating
energy asrefuellingand not asrechargingbecause we want
to emphasis the general nature of our model.

It is worth pointing out that in a real world scenario all im-
portant variables, namely the energy rates, could be known
in advance or are easily measured by the robot. Here we
assume these variables to be constant, though in an actual
implementation we would use averages as approximations.
It would also be feasible to do some form of piece-wise lin-
ear approximation of the energy rates. The discount factor
can also be assumed to be known, since this factor is task
dependent and, hence, is set by the owner or designer of
the robot or by some external market. As we show below,
even if all else is fixed, the robot owner can use the discount
factor as a control variable that can be tweaked to fine tune
the robot’s behaviour. Everything else is predefined by the
tasks, the robot’s construction or the environment.

In order to improve readability, we need to introduce some
additional notation. k1 = ėr

˙ew

is the ratio of the energy
rate while refuelling to the rate while working. Similarly,

k2 = ėd

˙ew

is the energy rate while transitioning to the en-

ergy rate while working.k3 = ėd

ėr
= k2

k1

is the ratio of
the energy rate while in transition and the energy rate refu-
elling. τr is the time spent refuelling during one refuel-work
cycle. The amount of work the robot can perform is lim-
ited by the energy supply the robot has, so we express the
potential work duration as a function of refuelling and tran-
sitioning time whereτw = τrk1 − 2τdk2, which is basically
the amount of time the robot can work for, given the amount
of energy the robot got from refuelling minus the energy
the robot has to spend to travel to the work site and back to
the charging station. We also introduce the period of time
T = τr +2τd + τw = τr(1+k1)+2τd(1−k2) as the length
of one refuel-work cycle.

When to stop working
Let e(t) be the energy in the robot’s storage at timet. At
what energy levele(t) < ǫw→r should the robot stop work-
ing and transition to the refuelling site? Since the value of
work is time discounted, work that the robot performs now
is always more valuable then the same amount of work per-
formed later. This creates an inherent opportunity cost in
transitioning from the work site to the refuelling site be-
cause it takes time and costs energyτd ˙ew that cannot be
spent working. This implies that the robot needs to work
as long as possible now and not later. Hence the only two
economically rational transitioning thresholds are:

• ǫw→r = τdėd

The robot stops working when it has just enough en-
ergy left to make it to the refuelling station. The robot
will spend the maximum amount of energy, and therefore
time, working, ensuring the highest reward before refu-
elling. Comparatively, should a higher transitional thresh-
old be used, the robot would stop working earlier and re-
fuel earlier, but discounting results in a smaller reward.
Should the transitioning threshold be smaller, the robot
would have insufficient energy to reach the refuelling sta-
tion. In this case, the robot cannot gain any further reward
because it runs out of fuel between the work and refuel
sites.

• ǫw→r = 0
The robot spends all of its energy working and terminates
its functionality while doing so. At first glance this option
seems counter intuitive, but one can imagine highly dis-
counted labour situations, such as rescue missions, where
the energy that would otherwise be spent on approach-
ing a refuelling site is better spent on the task at hand.
This might also be a rational option if the transition cost
is very high, e.g. NASA’s Viking Mars lander took a lot
of energy to Mars in the form of a small nuclear reactor,
rather than returning to Earth periodically for fresh batter-
ies (the recent Mars rovers employ solar cells to recharge
their batteries originally charged on Earth).



Figure 2: General discounting in refuel - work cycles. The
shaded areas are periods in which the robot works and thus
earns a reward. The white areas correspond with time in
which the robot does not obtain any rewards because it either
travels or refuels

Suicide or live forever?

Using our simple model, we can determine whether a robot
in a given scenario should terminate while working or con-
tinue indefinitely with the work-refuel cycle. Let

R0 =

∫ τr+τd+τw

τr+τd

βtdt = βτr+τd
bτw − 1

ln(β)
(1)

be the reward obtained from spendingEmax − ǫw→r energy
or τw time during the first working period (see figure 2).
In this figure the shaded areas correspond to time in which
the robot performs work and thus obtains a reward propor-
tional to the size of the shaded area. Later work periods
are discounted more strongly and hence provide a smaller
reward. White areas correspond to times in which no re-
ward is earned because the robot either travels between the
work and refuelling site or it refuels. The size of this area
is proportional to the opportunity cost, that is, reward that,
in principal, could have been obtained if the time had been
spent working.

Let T be the duration of one full work-refuel cycle, that is
working - transition - refuel - transition, orT = τw + τd +
τr + τd. Therefore, the reward gained in the next cycle is
the initial rewardR0 discounted byT and becomesβτR0.
Subsequent rewards are again discounted byT and so the
reward for the third cycle isβ2T R0. The sum of all rewards
if working infinitely, that is choosingǫw→r = τdk2, is

R∞ = R0

∞
∑

i=0

βiT = R0

1

1 − βT
(2)

In practice no system will last forever, so this analysis is
slightly biased towards infinite life histories.

If the robot choosesǫw→r = 0 it gains the initial reward
R0 plus a one time bonus of

R+ =

∫ τr+τd+τw+τdk2

τr+τd+τw

βtdt = βτr+τd+τw
βτdk2 − 1

ln(β)
(3)

by spending the energy required for transitioning on work-
ing. The reward gained over the live time of the robot (which
is fairly short) isRrip = R0 + R+.

So the answer to Q2 is that the rational robot selects that
thresholdǫw→r that achieves the higher overall reward, so it
picks

ǫw→r =

{

0 : Rrip ≥ R∞

τdėd : Rrip < R∞

(4)

Since the discount function
∫

βtdt belongs to the class of
memory-less functions, we only have to calculate eq. 4 once,
in other words if it is the best option to refuel after the first
work cycle it is always the best option to do so and vice
versa.

How much energy to store
We have shown how to determine a threshold for transition-
ing from work to refuelling. In this section we will analyze
when to stop refuelling and resume work, or phrased dif-
ferently, how much energy to accumulate before starting to
work. Energy and time are interchangeable elements, pro-
vided that we know the rate at which energy is spent and
gained. Since discounting is done in the time domain, our
analysis equates energy with time for simplicity. Based on
this, we can ask the time equivalent of Q1: ‘how long should
the robot refuel for?’ We call this refuelling durationτr.
To be rational, the robot must refuel long enough to gain
enough energy to make the trip to the work site and back,
that is2ėdτd, otherwise it would have to turn around before
reaching the work site and thus will not gain any reward.
Refuelling after the storage tank is full is time wasted that
would better be spent obtaining a reward. Therefore the re-
fuelling time is limited to2τdk3 ≤ τr ≤ Emaxėr

−1. In the
following we assume, without loss of generality, the robot
starts at the refuelling site with an empty fuel tank. Assum-
ing differently will just result in shift of the analysis by a
constant factor, but will not change the overall conclusions.

Acyclic tasks
First we examine situations in which the robot has to refuel
for a task that has to be done only once, that is the robot
refuels, performs the task, and returns to the refuelling site.
Depending on the time spent refuelling the robot obtains the
following reward during the upcoming work period.

R(τr) =

∫ τr+τd+τw

τr+τd

βtdt = βτr+τd

∫ τrk1−2τdk2

0

βtdt

(5)



Figure 3: Reward depending on refuelling time with an ex-
ample configurationk1 = 0.5, k2 = 0.5, β = 0.97, τd =
85s

Next we need to find thêτr that maximizesR(τr), which is

τ̂r = argmax(R(τr)) =
logβ

(

1

k1+1

)

+ 2τdk2

k1

(6)

Figure 3 shows an example reward function (eq. 5) depend-
ing on the refuelling durationτr. Using eq. 6 we calculate
that for this particular configuration the reward is maximized
when the robot refuels for̂τr = 86.6234.... If the fuel tank
is filled before that time, the best the robot can do is re-
turn to work. This will give it the highest reward achievable,
but the designer should keep in mind that there might ex-
ist a class of robots with a larger fuel tank that will achieve
a higher reward. Note that if the robot stops refuelling at
τ̂r even if its energy store is not full to capacity, and transi-
tions to working, it earns the highest reward possible. To our
knowledge this has not been stated explicitly in the robotics
literature before. It is generally assumed that robots should
completely recharge at each opportunity, but this is not al-
ways the optimal strategy.

Cyclic tasks
In cyclic tasks a robot is required to always return to work af-
ter resupplying with energy. Here the analysis is slightly dif-
ferent then in the acyclic case because the refuelling time of
the current cycle not only influences the duration and length
of the work period of this cycle but of all cycles to come.
Hence, we should select a refuelling threshold that maxi-
mizes the overall reward. The overall reward is calculated
by (see fig. 2)

R∞(τr) = R0

∞
∑

i=0

βiT =
(βτw − 1)βτr+τd

(1 − βT ) ln(β)
(7)

Unfortunately, it seems impossible to find a closed form so-
lution to τ̂r = argmax(R∞(τr)). However, eq. 7 can easily

Figure 4: Office like environment with a charging station
’C’ and a work site ’W’. The red line is the stylized path the
robot travels on.

be evaluated for a givenτr and so calculating the reward for
each of a finite set of values forτr and selecting the one that
maximizes the reward is quite practical. In any real appli-
cation the number ofτr to be tested is limited and possibly
rather small, in the order of a few thousand. This is because
any real robot will have a finite energy storage and any prac-
tical scenario will require only limited sampling due to the
resolution of the fuel gauge, the uncertainty in the environ-
ment, etc. In the case of our Chatterbox Robot (see below),
the battery capacity is 2.8 Ah and the fuel gauge has a res-
olution of 1mA, resulting in less than 3000 calculations for
an exhaustive search.

Experiments
In this section we present experiments to validate the the-
oretical results described in detail above. All experiments
were performed using the robot simulator Stage2. The sim-
ulated robot uses simulated electrical energy, where we as-
sume charging and discharging to be linear, with constant
current for chargingIc, workingIw and drivingId. We fur-
ther ignore any effects caused by the docking mechanism,
change in battery chemistry or ambient temperature.

In all experiments we roughly model a Chatterbox robot,
a robot designed and built at SFU based on an iRobot Create
platform. This robot has a battery capacity of approximately
2.8Ah and draws about 2A while driving. We defined an
abstract work task which consumes 4A of current. Once at
a charging station, the robot docks reliably and recharges
with 2A. The world the robot operates in is office-like with
one charging station and one work site shown in fig. 4. The
obstacle avoidance and navigation controller drives the robot
from the charging station to the work site and vice versa in

2http://playerstage.sourceforge.net



Figure 5: Comparing analytical and simulation results for
accumulated reward from acyclic task depending on refu-
elling time with an example configurationIc = 2.0, Id =
2.0, Iw = 4.0, β = 0.9997, τd ≈ 85

approximatelyτd = 85s. Due to naturally occuring noise
in the experimental setup the travel time may vary by up to
6 seconds. While working, the robot receives one unit of
reward per second, discounted byβ. Discounting occurs on
a one second basis.

Cyclic Task

The goal of this experiment is to evaluate how closely our
analysis from section matches a robot in a simulated envi-
ronment. In this experiment the robot’s task is to recharge
for some timeτr, proceed to the work site, work until the
battery energy drops toǫw→r = τdId, return to the charg-
ing station, and repeat the process. The reward for work is
discounted byβ = 0.9997. To find out whichτr maximizes
the reward we varied the threshold for leaving the charging
stationǫr→w = τrIc in each try. A trial lasted for 50000
seconds (≈ 13.8 hours). Figure 5 compares the accumu-
lated reward gained overτr from the simulation and from
the best solution obtained from the model by iterating over
eq. 7. The recharging time that maximizes the reward is pre-
dicted by the model to bêτr = 1219 and in the simulation
τ̂r = 1170. The difference comes from the variation in time,
and therefore energy, the robot requires to travel between the
charging station and the work site. Not only does this change
the starting time of work which influences the reward, it also
makes it necessary to give the robot a small amount of spare
energy to ensure it would not run out of battery. This, in turn,
delays charging and thereby influences the reward gained.
However, the empirical results agree qualitatively with the
values predicted by the model, and the optimal recharging
time predicted by the model was within 4% of that observed
in the simulation.

Figure 6: Comparing analytical and simulation results for
accumulated reward from anacyclic task depending on re-
fuelling time with an example configurationIc = 2.0, Id =
2.0, Iw = 4.0, β = 0.9997, τd ≈ 85

Acyclic Task
As before, we perform this experiment in order to compare
the theoretical results with a simulation. The setup is the
same as in the cyclic task experiment with the difference that
the robot only has to perform one charge-work cycle. Figure
6 compares the simulation results to the analytical results.
Where the general shape of the curve is similar to that in the
cyclic task, it is worth to point out that the maximum reward
is gained with a larger charging threshold. This is intuitively
correct as the robot has only once chance to obtain a reward.
It can be (depending on the discount factor) beneficial to
begin work later, but to work for a longer period. For our
configuration, the most profitable theoretical charging time
is τ̂r = 2872.7 and the best simulation results were obtained
with τ̂r = 2880. Again the difference between the theoret-
ical and experimental results, barely visible in the plot, are
due to imprecision in the robot simulation.

Once or forever
In a further experiment we investigate the circumstances un-
der which it is more profitable, and hence rational, for the
robot to fully deplete its energy supply while working and
when it is better to choose a perpetual refuelling policy. As
in the previous experiments we use a simulated Chatterbox
robot with the previously described parameters in the office-
like environment. For this scenario, we vary the discount
rate between 0.9850 and 0.9999 in 0.0005 increments and
run two sets of simulations. In the first, the robot depletes
it’s energy supply while working, that is, we choose the
leave work thresholdǫw→r = 0. For the second set, we
chooseǫr→w = τdėd, a leave work threshold that causes the
robot to keep performing work-refuel cycles forever. Since



Figure 7: Reward obtained for different discount factors
with two leave work thresholds. ConfigurationIc =
2.0, Id = 2.0, Iw = 4.0, τd ≈ 85

we change the discount rate we have to adapt the leave refu-
elling site threshold in order for the robot to earn the highest
possible reward. For this determine the optimal threshold
in the same way as for the previous experiments. Figure 7
depicts the rewards obtained for different discount factors
with each policy. As the graph further shows, for higher dis-
counting (smaller discount rate), it is beneficial for the robot
to choose a one time work policy. Conversely, for smaller
discounting (higherβ), it pays to keep working. The theo-
retical discount rate for switching the policy from one work
period to an infinite work refuel cycle isβ = 0.9979, which,
as the graph shows, closely resembles the experimental re-
sult.

Discussion and Conclusion
We outlined a theoretical analysis of when to refuel and for
how long to refuel a robot in situations where the reward
for the robot’s objective is discounted over time. This dis-
counting is, more often then not, ignored in robotics liter-
ature, although it is at the very base of rational behaviour
(Stuart and Peter (2003)). We took theoretical results and
demonstrated that they apply to a simulated robot. In these
simulations we assumed the location of and the distance be-
tween work and refuelling station to be known. This is rea-
sonable in the state of the art in mapping and localization,
in a wide range of scenarios. We further assumed the aver-
age energy spending rates to be constant and known, some-
thing achievable in most cases. One assumption made that
simplifies a real-world robot scenario is the refuelling rate.
Gasoline-powered vehicles which refuel from a standard gas
station have a constant refuelling rate, or close to it. How-
ever, the charging rate of a battery may depend on many fac-
tors including the charging method used, temperature, bat-

tery chemistry, and the current capacity of the battery. One
useful extension of our model would be to include a realistic
chemical battery recharge transfer function.

This paper has presented and analyzed a core action se-
lection problem for autonomous agents such as animals and
mobile robots: how much to fuel before working, and when
to abandon working and return to fuelling, such that the
value of discounted work is maximized. A simple model
readily provides answers to these questions and closely pre-
dicts the observed behaviour of a robot simulation. While
the model is simple, it is very general, and these results sug-
gest that it could be of practical as well as theoretical inter-
est. We propose it as a baseline to build upon.
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