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Abstract—We present the design and theoretical analysis of
a novel algorithm termed least recently visited (LRV). LRV
efficiently and simultaneously solves the problems of coverage,
exploration, and sensor network deployment. The basic premise
behind the algorithm is that a robot carries network nodes as a
payload, and in the process of moving around, emplaces the nodes
into the environment based on certain local criteria. In turn, the
nodes emit navigation directions for the robot as it goes by. Nodes
recommend directions least recently visited by the robot, hence,
the name LRV. We formally establish the following two properties:
1) LRV is complete on graphs and 2) LRV is optimal on trees. We
present experimental conjectures for LRV on regular square and
cube lattice graphs and compare its performance empirically to
other graph exploration algorithms. We study the effects of the
order of the exploration and show on a square lattice that with
an appropriately chosen order, LRV performs optimally. Finally,
we discuss the implementation of LRV in simulation and in real
hardware.

Index Terms—Coverage, deployment, exploration, mobile
robots, sensor network.

I. INTRODUCTION

THE COVERAGE problem has been defined [3] as the
maximization of the total area covered by robot’s sensors.

The static coverage problem is addressed by algorithms [4]–[6]
which are designed to deploy robot(s) in a static configuration,
such that every point in the environment is under the robots’
sensor shadow (i.e., covered) at every instant of time. For
complete static coverage of an environment, the robot group
should be larger than a critical size (depending on environment
size, complexity, and robot sensor ranges). Determining the
critical number is difficult or impossible if the environment
is unknown a priori. Dynamic coverage, on the other hand,
is addressed by algorithms which explore and hence “cover”
the environment with constant motion and neither settle to
a particular configuration [7], nor necessarily to a particular
pattern of traversal.
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This paper simultaneously addresses the problems of cov-
erage, exploration, and sensor network deployment via a single
algorithm called least recently visited (LRV). LRV is based on
a robot which can carry network nodes as payload. As the robot
moves, it deposits nodes into the environment based on certain
local criteria. These nodes, once placed in the environment, emit
navigation directions for the robot as it goes by. Nodes recom-
mend directions least recently visited by the robot, hence the
name LRV. In this paper, two formal properties of LRV are
established: completeness on graphs and optimality on trees.
Experimental conjectures for LRV on regular square and cube
lattice graphs are given. We also empirically compare the per-
formance of LRV to other graph exploration algorithms. The ef-
fects of the order of the exploration are studied. LRV is shown
to perform optimally on a square lattice with an appropriately
chosen order. Finally, we discuss the design and implementa-
tion of LRV in simulation and in real hardware.

II. RELATED WORK AND ASSUMPTIONS

In this paper, we consider a single robot in a bounded envi-
ronment whose layout is unknown. The environment is assumed
to be large enough, so that complete static coverage of the en-
vironment is not possible with one robot. The robot must thus
continually move in order to observe all points in the environ-
ment frequently. In other words, we address the dynamic cov-
erage problem with a single robot.

A recent survey of coverage algorithms is provided by Choset
[8]. This survey distinguishes between online algorithms, in
which the map of the environment is not available a priori,
and offline algorithms, in which the map is available (hence,
an optimal assignment is possible). Choset [8] further distin-
guishes between the algorithms based on approximate cellular
decomposition, where the free space is approximated by a grid
of equally spaced cells, and exact decomposition, where the
free space is exactly partitioned.

Exploration, a problem closely related to coverage, has been
extensively studied [9], [10]. The frontier-based approach [9]
concerns itself with incrementally constructing a global occu-
pancy map of the environment. The map is analyzed to locate the
“frontiers” between the free and unknown space. Exploration
proceeds in the direction of the closest “frontier.” The multi-
robot version of the same problem was addressed in [11].

Our algorithm differs from these approaches in a number of
ways. We use neither a map, nor localization in a shared frame
of reference. Our algorithm is based on the deployment of static,
communication-enabled, sensor nodes into the environment by

1552-3098/$25.00 © 2007 IEEE



662 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 4, AUGUST 2007

the robot. For purposes of analysis, we treat this collection of
sensor nodes as the vertices of a graph even though no explicit
adjacency lists are maintained at each node. The graph is thus
purely an aid to our analysis of the coverage and exploration
algorithm, not an entity used by the algorithm itself.

qThe problem of exploration using passive nodes (READ-only
devices) was considered from the graph theoretic viewpoint in
[12] and [13]. In both cases the authors studied the problem of
dynamic single robot coverage on a graph world. The key result
was that the ability to tag a limited number of vertices (in some
cases, only one vertex) with unique passive nodes dramatically
improved the cover time. We note that [12] and [13] consider
the coverage problem, but in the process, also create a topolog-
ical map of the graph being explored. References [12] and [13]
also show that in certain environments exploration is impossible
without tagging. There are four key differences between our al-
gorithm and the work reported in [12] and [13].

1) We do not assume the robot can navigate from one node to
another in any reliable fashion. The robot does not localize
itself, nor has a map of the environment (the structure of
the graph corresponding to the environment is not known
to the robot, nor does it construct it on the fly).

2) We assume the number of sensor nodes available for
dropoff is unlimited; in [12] and [13], a limited number of
nodes are used.

3) We assume that each node being dropped off is capable
of simple computation and communication—the nodes are
active; in [12] and [13], the nodes are passive—they neither
compute nor communicate.

4) We do not assume that nodes need to be retrieved; in
[12] and [13], retrieval and reuse of nodes by the robot is
implied.

Our paper is closely related to the ant robots literature
[14]–[20], where the idea of a node with decaying intensity
(a semi-active node) is used. The robots sense the change in
intensity and are able to change the direction of exploration to
cover environment efficiently. Our algorithm differs from these
approaches—we assume that each deployed node is capable of
sensing, simple computation and communication. We exploit
the computation and communication capabilities of the nodes
to address problems beyond coverage and exploration.

The nodes we use, act as a support infrastructure which the
mobile robot uses to solve the coverage problem efficiently. The
robot explores the environment, and based on certain local cri-
teria, drops a node into the environment, from time to time. Each
node is equipped with sensing, a small processor, and a radio of
limited range. The ensemble of nodes forms a sensor network.
Our algorithm performs the coverage task successfully using
only local sensing and local interactions between the robot and
the sensor network.

The problem of coverage and deployment in the sensor net-
work community was considered from a different perspective.
For example, [21] considers quality of service of the deployed
network, [22] discusses algorithms to achieve low energy de-
ployment. Collaborative target tracking and surveillance is con-
sidered in [23] and [24].

Algorithm 1 Least Recently Visited (LRV) Algorithm—Robot
Loop

—current node and suggested direction;
—set containing data received from nodes in robot’s

vicinity (node id, signal strength, suggested direction);
SHORT—communication range threshold used to
determine when to deploy new nodes;

—function returning direction opposite
to

receive NODE_INFO messages from nodes in vicinity
if out of SHORT communication range with then

node and corresponding direction in
withlargest signal strength}

if then
Send(UPDATE_DIR, , )
Send(UPDATE_DIR, , Opposite( ))

else
deploy sensor node with suggested direction

if no obstacles detected in direction

else
Send(UPDATE_DIR, , )
Wait for response, repeat the check

if moving and obstacle detected
OBSTACLE_AVOIDANCE_RANGE then

if obstacle is large and no nodes in vicinity
deploy sensor node with suggested direction

if obstacles detected in direction then
Send(UPDATE_DIR, , )
Wait for response, repeat the check

else
avoid the obstacle

if then
Move in direction

Algorithm 2 LRV Algorithm—Sensor Node Loop

—set of directions incident to node ; —number
of times direction traversed from this node;

—function returns member of set
according to arbitrary rule

Repeat:
if received UPDATE_DIR message from robot with
direction then

Send(NODE_INFO, , )

III. LRV ALGORITHM

In this section, we present the LRV algorithm for sensor net-
work deployment and maintenance, coverage, and exploration.
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Fig. 1. Modeling the network as a graph. (a) Initial environment. (b) Deployed sensor network and a mobile robot. (c) Graph representation of (a).

As shown in Algorithms 1 and 2, LRV is the concurrent exe-
cution of two algorithms—one on a robot (robot loop) and an-
other on every node (sensor node loop). For every node , let

be the set of directions possible to traverse from . Then,
is the weight (cached on a node) main-

taining the number of times was traversed from . In some
cases, we will refer to the weight of a direction as if the
node is implicit. The function returns a single
element of a set according to some arbitrary rule (i.e., in order,
random, etc).

When a robot is deployed into the environment initially, ac-
cording to Algorithms 1 and 2, it deploys a node because there
is no sensor node within communication range. Over time, LRV
causes a network of nodes to be deployed since every time a new
node is deployed it must be able to communicate with at least
one other sensor node in the network. As shown in Section IX,
maintaining network connectivity is the minimal requirement
that the deployment function should have.

Once deployed, each sensor node starts to emit the locally
least recently visited direction (hence the name LRV), which
is one of the directions with smallest weight (if there are
multiple directions of the same weight, one is picked according
to the function which can be ordered or random).
In practice the number of directions per node is often bounded
and application dependent. In our experimental work (see
Section VI), we set this bound to 4.

Another important aspect of the algorithm is the update of
the weight . The weight of a direction is incremented in two
cases: right before a direction is traversed and on the destination
node right after a direction is traversed. Suppose the robot is in
the vicinity of a node and is suggested to move in direction

. The weight is incremented right before direction
is traversed. Suppose the robot enters node through direction

. The weight is incremented right after direction is
traversed.

IV. GRAPH MODEL

For the purpose of analysis, consider an open (no obstacles)
bounded environment. In this case, given our node deployment
algorithm (LRV) described in Section III, we can model the

steady-state spatial configuration of the nodes as a finite graph
, where is a set of vertices (the deployed nodes)

and is a set of edges such that there is an edge
between and iff 1) and are within communication range
and 2) there is a physical path between and . Consider
the schematic of the environment in Fig. 1(a). We represent
the LRV-deployed network in this environment as a graph

[shown in Fig. 1(c)]. A graph model is a natural
choice because of its flexibility and ubiquity of usage in such
problems.

Before discussing the theoretical properties of LRV, we pro-
vide working definitions for coverage and exploration on graphs
and corresponding performance metrics.

Definition (Coverage on a Graph) 1: Coverage on a graph is
the act of visiting every vertex of a graph.

The performance of a coverage algorithm is measured using
the cover time [25] defined as follows.

Definition (Cover Time) 2: Cover time is the number of edges
traversed such that every vertex of a graph is visited at least once,
i.e., the graph is covered.

In order to cover a graph, a robot needs to at least traverse one
edge per node (consider a spanning tree of a graph). This notion
is distinct from graph exploration or “complete” graph coverage
(where the robot needs to traverse every edge of a graph). This
latter notion is called graph exploration defined as follows.

Definition (Exploration on a Graph) 3: Exploration on a
graph is the act of traversing every edge of the graph.

An exploration algorithm is evaluated using the exploration
time metric defined as follows.

Definition (Exploration Time) 4: Exploration time is the
number of edges traversed such that every edge is traversed at
least once.

It follows from the previous definitions that explo-
ration is a superset of coverage. Therefore, Cover Time

Exploration Time .

A. LRV on Graphs

Given the graph model, we exhibit two important properties
of LRV. First, we show that LRV is complete, and second, we
establish a relationship between its cover time and exploration
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Fig. 2. Illustration for Theorem 1. At every point in time during the execution
of LRV a graph G = G + G , where G is the explored part of G and
G is an unexplored part. An edge e connects G and G .

time. For purposes of this analysis, we are interested in the be-
havior of LRV in the “steady state” when all nodes have been
deployed. In this special case, one can consider a simple ver-
sion of LRV on a graph as follows. For every vertex ,
is the set of edges incident to . For clarity, we identify an
edge in with the node this edge connects node to. Then,

is the weight (cached on node ) main-
taining the number of times edge was traversed from .
Note that in the general case of LRV, described in Algorithms 1
and 2, the weight of an edge is incremented twice: before and
after traversal, but on different nodes. This redundancy is re-
quired for practical purposes: the weights are cached on nodes
and since the environment is dynamic, sensing and actuation
are noisy, starting at the same node and traversing the same di-
rection at different points in time does not guarantee that robot
would arrive at the same node. In the graph model, we study
the steady-state spatial configuration of the nodes on a finite un-
changing graph. Hence, for clarity of presentation,
consider storing the weight associated with transition on
the edge . Note that an edge is undirected. This
weight is identical to the one associated with transition
(e.g., ). We increment the weight just in one
case: right before an edge is traversed and associate it with the
edge .

Algorithm 3 shows this simplified version of LRV on a graph.
Note that the deployment function is removed since we are in the
steady state.

Algorithm 3 LRV Algorithm on a Graph

—current node; the node the robot is at
—next node; the node the robot transitions to

while Covered/Explored the graph FALSE do

We now state and prove two results: completeness of LRV on
finite graphs and the relationship of cover time to exploration
time.

Theorem 1 (Completeness): The exploration time of LRV on
a finite graph is finite.

Proof: The goal is to show that LRV traverses every edge
of any finite graph in finite time. The proof is by contradic-
tion. Suppose the exploration time of LRV is infinite. Therefore,

Fig. 3. Graph as a tree. (a) A map of the environment with an embedded sensor
network with a tree-like topology. (b) Tree isomorphic to embedded sensor net-
work topology of (a).

there is a time after which LRV traverses only those edges that
it traverses infinitely many times (edges of the graph in
Fig. 2). Weights of these edges grow without bound, including
the edge that is considered for traversal infinitely many times
but is never picked after time (edge in Fig. 2). By defini-
tion, LRV will be forced to traverse this edge after time , which
is a contradiction.

Definition (Degree of a Vertex) 5: The number of edges inci-
dent to a vertex is called degree and is denoted as .

Theorem 2: For a graph with maximum de-
gree , if Cover Time , then
Exploration Time .

Proof: Suppose LRV executes on a graph until every
vertex is visited at least once. It is obvious that at least one edge
per vertex is traversed. Thus, after the first execution of the al-
gorithm, the number of untraversed edges at every vertex is at
most . Note, that at a given vertex, while there are untra-
versed edges, LRV will choose one arbitrarily. Hence, after at
most executions of the algorithm every vertex would be cov-
ered and every edge would be traversed. Thus, if Cover Time

, then Exploration Time .

B. LRV on a Tree

In this section, we study the performance of LRV on trees.
Fig. 3(a) shows a map of the environment with an embedded
sensor network. The sensor network has a tree-like topology.
Fig. 3(b) shows the tree which represents the embedding. A tree
differs from other graphs in two major ways: 1) the vertex degree
is not bounded and 2) a tree does not contain cycles. The next
two Lemmas establish local properties of LRV needed for the
main result of this section: performance of LRV on trees is linear
or asymptotically optimal.
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Fig. 4. Illustration for Lemma 1. A tree T at a point of time when a robot enters
vertex v through an incoming edge e .

Definition (Incoming Edge) 6: For a vertex of a graph ,
the incident to edge is called an incoming edge if it is the
first edge traversed to enter vertex .

Lemma 1: In a tree , an incoming edge is traversed twice
iff every other edge incident to is traversed twice.

Proof: Consider a tree . Initially, the weights of all edges
of the tree are zero. Suppose a robot enters vertex through an
incoming edge (refer to Fig. 4). The weight of is incre-
mented and equal 1, whereas the weights of other edges incident
to are 0.

Next, LRV picks one of the 0-weighted edges, say , and
traverses it. The weight of is incremented and equal to 1, the
weight of is equal to 1 and the weights of other edges incident
to are 0. Due to the completeness theorem, eventually the
robot returns back to by traversing an edge . The weight
of is incremented and equals 2, the weight of is equal to
1, and the weights of other edges incident to are 0.

Apply the same reasoning to every other 0-weighted edge in-
cident to . The weight of is equal to 1, whereas the weights
of other edges incident to are 2. At this point, LRV is forced
to pick as the only edge of minimum weight incident to .
Hence, an incoming edge is traversed twice iff every other
edge incident to is traversed twice.

It follows from Lemma 1 that if before traversing an edge ,
the weights of all edges incident to are equal (initially all 0),
then after an incoming edge is traversed twice the weights
of all edges incident to are equal and incremented by two.

Lemma 2: An incoming edge is traversed twice iff in a
subtree every edge is traversed twice.

Proof: Consider a subtree (refer to Fig. 5). LRV starts
at vertex . Applying Lemma 1 to results in every edge in-
cident to traversed twice. Applying Lemma 1 recursively to
every vertex of results in every incident to every vertex edge
traversed twice. Hence, an incoming edge is traversed twice
iff in a subtree every edge is traversed
twice.

Using the results of Lemmas 1 and 2, we can prove the main
result of this section, stated as Theorem 3.

Theorem 3: The exploration time of LRV on a tree is no more
than .

Fig. 5. Illustration for Lemma 2. A tree T at a point of time when a robot enters
vertex v of an unexplored subtree T through an incoming edge e .

Fig. 6. Illustration for Theorem 3. A tree T augmented with a vertex v and an
edge e connecting v to vertex v 2 T .

Proof: Consider a tree (refer to Fig. 6). Augment with
a vertex and an edge connecting to vertex .
Consider LRV on the augmented tree starting at . It follows
from Lemma 2 that the robot executing LRV would traverse
twice when in tree every edge is traversed twice. Hence, the
exploration time of LRV on a tree is no more than .

Theorem 3 asserts that the performance of LRV on trees is
linear or asymptotically optimal. Please note that the proof of
Theorem 3 is general for any vertex of a tree as a starting vertex.
An addition of a vertex and an edge is used purely for the
purposes of a proof. This new vertex is attached to a vertex
which can be any vertex of a tree .

C. LRV on a Square Lattice: Empirical Results From
Simulation

In this section, we consider the performance of LRV on the
following special graph .

1) is undirected.
2) has degree . If all nodes have degree 4, then

is a square lattice, i.e., a regular graph of degree 4.
3) .
We consider this special graph because in practical imple-

mentations of LRV, a physical compass on the sensor node de-
termines direction. If this compass has bits of resolution, then
each node is capable of identifying directions resulting in a
graph of degree . As we shall see in Section VII, our exper-
iments were all done with , resulting in square lattice-like
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deployments. Hence, we analyze LRV on a square lattice. It has
been shown [25] that the cover time of a random walk (RW) on
a regular graph with vertices is bounded below by and
above by . If we assume that passive nodes can be used, and
the graph is known (a topological map is available)
and the robot can drop nodes of three independent colors, then
the problem of coverage can be solved optimally by applying
depth-first search (DFS) which is linear in . DFS assumes that
all resources are available—nodes, map, localization, and per-
fect navigation.

In [12], the problem of coverage is considered in the context
of mapping a graph-like environment with vertices. Their al-
gorithm explores the environment and constructs a topological
map on the fly. The assumptions of the algorithm are that the
robot has nodes, and perfect localization and nav-
igation within the graph. The cover time of their algorithm is
bounded by . It is important to note that the problem ad-
dressed in [12] is more complex than simple coverage, since
they build a map while exploring. We have conducted simula-
tion experiments running RW, DFS, and LRV on graphs with

nodes. For every experiment, the steady
state (or recurrent1) cover time is reported. For all of the algo-
rithms, the tie breaks are resolved randomly. In the case of LRV
or 1-LRTA*, it implies the implementation of as
a random function. The results of the experiments are shown in
Fig. 7. Fig. 7 also shows the curve for reference. These
experiments lead us to the following.

1) Conjecture 1: The asymptotic cover time of LRV is
.

From Fig. 7, it is clear that cover time of LRV is less than
, however, the bound is not tight. In order to establish a

tighter bound and validate Conjecture 1, we use the following
method.

2) Method 1 (Establishing an Empirical Asymptotic Bound):
Assuming that the function representing LRV is monotonic we
can analyze the sequence on the subject of in-
crease (asymptotically ), decrease (asymp-
totically ), or does not change (asymptoti-
cally ).

Using Method 1, we can establish an upper bound for LRV.
The number set at the bottom of the page shows the sequence for

nodes and , .
Note that the sequence increases initially, then stabilizes at value
3.9685 for , and finally decreases. It follows
that in this example and asymptotic cover time of
LRV is . Hence, this supports Conjecture 1 that the
asymptotic cover time of LRV is .

Using Theorem 2 and Conjecture 1, we get the following re-
sult for a square lattice.

1Steady state or recurrent cover time is taken when the cover time does not
change significantly from coverage to coverage.

Fig. 7. Comparison of graph coverage algorithms. The n lnn curve is shown
for reference. (a) Comparison of Cover Time for DFS, RW, and LRV. Then lnn

curve is shown for reference. (b) A comparison between DFS and LRV. This
graph is a magnified view of (a).

3) Conjecture 2: LRV explores the environment in asymp-
totic time .

Let us consider different tradeoffs between the previously
mentioned techniques. As mentioned earlier, the clear perfor-
mance boundaries for the coverage task are given by RW (upper)
and DFS (lower). The more interesting comparisons are be-
tween LRV and DFS and our algorithm and an algorithm with a
limited number of passive node markers [12].
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Fig. 7(b) shows that the asymptotic performance of our al-
gorithm is similar to DFS. Note that in order to determine the
identity of neighboring vertices and to navigate perfectly from
node to node, DFS assumes that a map of the environment is
available and that the robot is perfectly localized. Our algorithm,
on the other hand, does not have access to global information
and the robot does not localize itself. The nodes used in our al-
gorithm are more complicated than those used in DFS and the
cover times are asymptotically somewhat larger than the cover
times of DFS.

In [12], the algorithm builds a topological map of the environ-
ment and assumes perfect navigation (and thus, localization) on
the graph. The node markers are very simple (the only function
is to mark the vertex) and the robot cannot differentiate between
them. In addition, the algorithm assumes that there exists a local
enumeration of edges. The cover time of this algorithm, how-
ever, is bounded by . Our algorithm, on the other hand,
does not have a map and the robot does not localize itself. An-
other important difference is that we assume that the number of
nodes available to us is equal to the number of vertices. In ad-
dition, the nodes used in our algorithm are more complex, since
they keep a certain state per direction and are uniquely iden-
tifiable. The cover time of our algorithm, however, is conjec-
tured to be less than . Thus, the apparent tradeoff is using
a large number of “smart” nodes (and no global information
or localization) versus a limited number of simple nodes (with
mapping and partial localization within the graph). The cover
time achieved by our algorithm is clearly better. However, if the
nodes are a precious resource, the algorithm described in [12]
would be preferred.

Another algorithm we compare LRV to is 1-LRTA* [26].
1-LRTA* is a well known graph search algorithm that can be
applied to graph coverage. Algorithm 4 shows the details of
1-LRTA*. In 1-LRTA*, a weight is associated with a node. The
edge to traverse is chosen based on weights of neighboring
nodes. The weight of a node is incremented with the weight of
a node the robot transitions to. Hence, 1-LRTA* requires nodes
to communicate.

Algorithm 4 1-LRTA* Algorithm on a Graph

—current node; the node the robot is at
—next node; the node the robot transitions to

while Covered/Explored the graph FALSE do

Fig. 8 shows that generally 1-LRTA* outperforms LRV.
However, it should be noted that LRV is a deployment and
exploration algorithm, whereas 1-LRTA* is a graph explo-
ration algorithm which assumes the graph is given. Moreover,
1-LRTA* uses information obtained from the neighbors via
communication, whereas LRV is purely local.

Finally, lets examine how fast LRV, 1-LTRA*, and RW con-
verge to a full coverage. Fig. 9 shows a comparison of the con-
vergence speed for LRV, 1-LRTA*, and RW on a regular

Fig. 8. Comparison of Cover time of DFS, 1-LRTA*, and LRV.

square lattice. In other words, Fig. 9 shows the percentage of
the whole graph covered as the algorithms progress (i.e., visit
more and more nodes or as more actions are taken). Fig. 9 (top)
shows a linear convergence of LRV and 1-LRTA*, whereas,
RW on the interval of 50%–100% of complete coverage [see
Fig. 9 (bottom)] exhibits a nonlinear increase in running time.
The curve for DFS is not included, since the convergence factor
is optimal and the cover time is at most twice the number of
nodes.

D. LRV on a Cube Lattice or LRV in 3-D

In Section IV-C, we considered an application of LRV to the
problem of coverage and exploration on a plane. In the planar
case, the graph representing the network embedding is a square
lattice. In this section, we extend discussion of LRV perfor-
mance to a general 3-D case. In 3-D case, the graph representa-
tion of the deployed sensor network is a graph .

1) is undirected.
2) has degree . If all nodes have degree 6, then

is a cube lattice, i.e., a regular graph of degree 6.
3) .
Fig. 10 shows an example of a cube lattice which represents

possible network embedding in a real 3-D environment. Note
that in comparison with a square lattice representation in the
planar case, a general cube lattice has two more edges incident to
every node. At the same time, we will show that the performance
of LRV scales similarly with the size of the graph.

We have conducted simulation experiments running LRV and
1-LRTA* on graphs with nodes. For every ex-
periment the steady state (or recurrent) cover time is reported.
The tie breaks are resolved randomly (e.g., is a
random function). The results of the experiments are shown in
Fig. 11. As shown on Fig. 11, 1-LRTA* outperforms LRV (as is
the case in the planar case), however, it is also more sensitive to
the initial conditions (various starting points).
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Fig. 9. Comparison of the convergence speed for LRV, 1-LRTA*, and RW.
(a) On the interval 0%–100%. (b) Magnified view of (a), interval 50%–100%.

Fig. 10. Cube lattice representing possible embedding of a sensor network into
3-D environment.

Using Method 1, we can establish an upper bound for LRV on
a cube lattice. The following is the sequence for
nodes and , :

Fig. 11. Comparison of Cover time of 1-LRTA* and LRV on a cube lattice.

Note that the sequence increases to the value 5.5330 ,
and then decreases. It follows that in this example
and asymptotic cover time of LRV is . Hence, Con-
jectures 1 and 2 seem to be valid for LRV on cube lattices as
well.

V. EXPLORING IN ORDER

As was shown in previous sections, LRV is different from
existing techniques like 1-LRTA*, RW, DFS, etc. A common
feature of all these algorithms is that in each case when the algo-
rithm has to pick one of several equally good edges to traverse,
traditionally, this edge is determined randomly. In the case
of LRV, this choice is dictated by the function ,
which returns a single element of a set according to some
arbitrary rule (i.e., in order, random, etc). In Sections IV-C and
IV-D we compared LRV with 1-LRTA* and used a random
order in function.

In this section, we consider the benefits of using ordered rules
in the function. We constrain our discussion to
a square lattice, however, the results can be generalized to the
cube lattice as well. Fig. 12(a) shows a node of a general
square lattice. Node has four incident edges which can be con-
sidered for traversal. We label these edges numerically 0–3 as
shown in Fig. 12(a). We use this labeling to define the order
rule.

Definition (Order Rule) 7: An order rule is a sequence of
labels identifying the order in which a set of equally good edges
should be traversed.

For example, an order rule means that if several edges
are equally good for traversal (say edges 2 and 3), then an edge
appearing first in the order rule would be preferred (i.e., edge 2
in this case).

Without loss of generality, assume that the edges of the square
lattice are aligned with the plane [as in Fig. 12(a)]. Fol-
lowing the labeling of Fig. 12(a), edges 0 and 2 span the
dimension, whereas dimension is spanned by edges 1 and
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Fig. 12. Edge labeling and four possible traversal orders. (a) A typical node
k of a square lattice with four incident edges marked with labels 0 through
3. (b) Random order. An algorithm breaks ties randomly. (c) Cross order. An
order where dimensions traversed in order. (d) Line order. An order where one
dimension is set to be traversed, then interrupted for complete traversal of an-
other dimension, followed by completion of the traversal of the first dimension.
(e) Circle order. An order where half of the two dimensions are traversed in
clockwise or counter-clockwise order.

3. Lets define an edge , where is a dimension drawn from
the set , then is an edge drawn from the set
if and if . Further, define an operator
that takes the remaining value of the set. For example, suppose

draws dimension and an edge 1, then draws
dimension and the value of is drawn from the set .

Likewise, draws dimension and an edge 3.
In the case of a square lattice, each node can have up to four

edges to traverse. Hence, there are 24 order rules possible. We
subdivide these rules into three classes: cross, line, and circle.
Each class consists of eight symmetric order rules.

Definition (Cross Order) 8: An order of the form
is a cross order.

Fig. 12(c) shows a sketch of a cross order. For example, an
order rule class. There are eight sym-
metrical order rules in cross order class, some other examples
are , , , etc.

Definition (Line Order) 9: An order of the form
is a line order.

Fig. 12(d) shows a sketch of a line order. For example, order
rules class.
There are eight symmetrical order rules in line order class al-
together.

Definition (Circle Order) 10: An order of the form
is a circle order.

Fig. 12(e) shows a sketch of a circle order. There are eight
symmetrical order rules in circle order class, some examples
are , , , etc.

The three introduced classes of order rules define 24 possible
orders. Fig. 12(b) shows a sketch of the last kind of order rules
possible—the traditionally used random order. Random order
breaks ties in equally good edges randomly. In case of a square
lattice, random order essentially takes form of one of the three
previously defined classes every time the choice has to be made.
Hence, there are 25 order rules total.

We performed an extensive set of experiments running
LRV with four classes of order rules on a square lattice with

nodes. For each order rule, every node of a graph was
tried as a starting point and the corresponding cover time
recorded. As a result, Fig. 13(a)–(d) show cover time maps for
four possible classes of order rules: random, cross, line, and
circle. The darker shade indicates lower cover time and lighter
shade—higher cover time. Note that the correspondence of
the shade range to the cover times range is different for each
graph. Fig. 13(e) shows a plot of another circle order (1230),
which is a variation of a circle order 0123 [see Fig. 13(d)]. Note
symmetrical change in the plot.

Fig. 13(f) and (g) show a comparison of cover time sta-
tistics for the four possible order classes. As shown in
Fig. 13(f) and (g), the worst performance is demonstrated
by the circle order (0123), the best by cross order (0213).
Random order demonstrates a slightly better performance than
the line order (0132).

The main result is that the order in which ties are resolved
has tremendous impact on the cover time of LRV. In addition, if
we have extra knowledge of where the robot is in the graph (or
in the environment, in general), then an appropriate order rule
can be chosen to achieve the optimal performance. To better
illustrate this idea, consider a square lattice with nodes.
Suppose LRV starts at the leftmost top corner node (0,0). In this
case, LRV should use cross order 0213. Then the resulting cover
time is equal to 9999 traversed edges, which is an optimal result
for this graph. In general, for the square lattices it is enough
to be able to recognize corner nodes in order to apply one of
the symmetric cross orders to obtain optimal results with LRV.
Note that if we would simply use random order, traditionally
used in literature, the optimal cover time is highly unlikely to
be obtained.

VI. LRV IMPLEMENTATION DETAILS

In this section, we describe implementation details associated
with LRV to obtain a system that functions on real hardware and
in simulation. Specifically, we consider a planar coverage and
exploration problem with one robot in a bounded environment.
Loosely put, in LRV, the task of each node is to recommend a
locally preferred direction of movement for the robot within its
communication range. Thus, each node acts as a local signpost
telling the robot which direction to explore next. In practice, the
robot treats this information as a recommendation and combines
it with local range sensing (to avoid obstacles) to make a deci-
sion about which direction to actually pursue.

As shown in Fig. 14, each node has a state associated with
four cardinal directions (South, East, North, West). The choice
of four directions is arbitrary. It implies that each node is
equipped with a 2-bit compass. For each direction, the node
maintains a binary state , a counter , and block which
might be used for additional information. The state can be
either or , signifying whether the particular
direction was explored by the robot previously. The counter

associated with each direction stores the time since that
particular direction was last explored.
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Fig. 13. Possible orders and their effect on cover time. (a)–(d) Four distinctive types of orders possible in the case of a square lattice. Plots show the cover times
of running LRV with representative order on a square lattice with 100 nodes. Every node tried as a starting point. Grayscale pixels in each plot represent a cover
time of LRV using a node at corresponding XY location as a starting node. The darker shade indicates lower cover time and the lighter shade indicates higher
cover time. Note that the correspondence of the color range to the cover times range is different for each graph. (e) Circle order 1230 is a variation of a circle order
0123. Note symmetrical change in the plot. (f)–(g) Comparison of cover times statistic for the four different possible orders presented in (a)–(d). (a) Random order.
(b) Cross (0213) order. (c) Line (0132) order. (d) Circle (0123) order. (e) Circle (1230) order. (f) Comparison of cover times. (g) Magnified view of f).

Fig. 14. Node architecture.

When deployed, a node emits two data packets with different
signal strengths. The packet with the lower signal strength
is called the MIN-packet and the one with the higher signal
strength is called the MAX-packet. The MAX-packet is used for
data propagation within the deployed network. The MIN-packet
contains information about the suggested direction the robot
should take for coverage/exploration. This implies that the
robot’s compass and the node’s compass agree locally on their
measurement of direction. Given the coarse coding of direction
we have chosen, this is not a problem in realistic settings. The
policy used by the nodes to compute the suggested direction for
exploration/coverage to recommend the least recently visited

Fig. 15. System architecture showing robot behaviors.

directions preferentially. All directions are recommended
first (in order from South to West), followed by the
directions with least last update value (least value of C). Note
that this algorithm does not use inter-node communication.

The robot is programmed using a behavior-based approach
[27] with arbitration [28] for behavior coordination. Priorities
are assigned to every behavior a priori. As shown in Fig. 15, the
robot executes four behaviors: ObstacleAvoidance, AtBeacon,
DeployBeacon, and SearchBeacon. In addition to priority, every
behavior has an activation level, which decides, given the sen-
sory input, whether the behavior should be in an active or pas-
sive state (1 or 0, respectively). Each behavior computes the
product of its activation level and corresponding priority and
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Fig. 16. Behavior Switching. (a) The robot is executing SearchBeacon behavior traversing suggested direction (Current Node is 1). (b) The robot is executing
AtBeacon behavior, analyzing sensor readings (Current node is 2). (c) The robot is executing SearchBeacon behavior, supposing the node suggests direction UP
and there are no obstacles detected in the sensor data (Choice of direction at the node (no obstacles)). (d) The robot is executing SearchBeacon behavior traversing
direction, not originally suggested by the node (Choice of actions while in motion (with small obstacles)). (e) The robot is executing SearchBeacon and on its
way encounters a small obstacle. At this point in time ObstacleAvoidance behavior is activated and the robot avoids an obstacle. Finally, if the robot leaves the
range of its current beacon (beacon 2) and there are no nodes in the vicinity, DeployBeacon is executed and a new node is deployed. (f) The robot is executing a
SearchBeacon behavior and encounters a large obstacle on its way. DeployBeacon behavior forces the robot to deploy a new node, which becomes a current node
for the robot (Choice of actions while in motion (with large obstacles)).

Fig. 17. Simulation results for different environment sizes across 50 trials. Our algorithm consistently outperforms random walk by an order of magnitude and is
significantly more stable. (a) 25 m . (b) 49 m . (c) 100 m .

sends the result to the Controller, which picks the maximum
value and assigns the corresponding behavior to command the
Motor Controller for the next command cycle.

During motion, the robot maintains the notion of a current
node [see Fig. 16(a)]. This is the node whose MIN-packets are
received by the robot most frequently. When the robot moves
to the vicinity of a new node, the AtBeacon behavior is trig-
gered and the robot’s current node is updated [see Fig. 16(b)].
AtBeacon analyzes the MIN-packets received from the current
node and orients the robot along the suggested direction con-
tained in those packets. In addition, the robot sends an update
message to the node telling it to mark the direction from which
the robot approached it as . This ensures that the di-
rection of the recent approach will not be recommended soon.
We term this the last-neighbor-update. After the robot has been
oriented in a new direction, it checks its range sensor for ob-
stacles. If the scan does not return any obstacles, the robot pro-
ceeds in the suggested direction [see Fig. 16(c)], while sending
a message to its current node updating the state of the suggested
direction to (the node also resets the corresponding
C value). If, however, the suggested direction is obstructed, the
AtBeacon behavior updates the node with this information and
requests a new suggested direction [see Fig. 16(d)]. The Ob-
stacle Avoidance behavior is triggered if an obstacle is detected
in front of the robot, in which case an avoidance maneuver takes
place. This situation is described on Fig. 16(e). If the obstacle

Fig. 18. Average cover times for three different grid sizes in simulation. Envi-
ronment sizes are 25, 49 and 100 m .

is too large, the DeployBeacon behavior is triggered and a new
node is deployed [see Fig. 16(f)].

Once the robot is oriented in a new direction (whether as a
result of taking the advice of the node or as a result of avoiding
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Fig. 19. Snapshots of the simulation trial of LRV on an environment with obstacles. (a) Environment before the experiment. (b) A robot explores the environment
in the directions suggested by the nodes. Stages that robot goes through are marked on the snapshot. For example, look at transition from stages 1–3. In stage 1,
a robot deploys a node. A node recommends the robot to traverse direction UP. While traversing this direction, the robot encounters a small obstacle and avoids
it (stage marked 2). In stage marked 3, the robot is out of MIN-packet reach of node marked 1 and a new node is deployed. (c) Simulation snapshot after the
deployment. The robot deployed the network into the environment and uses it for continuous coverage in a patrolling fashion.

an obstacle), the SearchBeacon behavior is triggered. Search-
Beacon causes the robot to travel a predetermined distance
without a change in heading (assuming there are no obstacles in
the way). The DeployBeacon behavior is triggered if the robot
does not receive a MIN-packet from any node after a certain
timeout value. In this case, the robot deploys a new node into
the environment.

Two interesting cases are shown on Fig. 16(e) and (f). If the
robot executes a SearchBeacon behavior and on its way encoun-
ters a small obstacle, ObstacleAvoidance behavior is activated
and the robot avoids an obstacle. Finally, if the robot leaves the
range of its current beacon (beacon 2) and there are no nodes
in the vicinity, DeployBeacon is executed and a new node is de-
ployed [see Fig. 16(e)]. Fig 16(f) shows another situation when
the robot is executing a SearchBeacon behavior and encounters
a large obstacle on its way. DeployBeacon behavior forces the
robot to deploy a new node, which becomes a current node for
the robot.

VII. SIMULATION EXPERIMENTS

In our experiments, we used the Player/Stage [29], [30] sim-
ulation engine populated with a simulated Pioneer 2DX mobile
robot equipped with two 180 field-of-view planar laser range
finders positioned back-to-back (equivalent to a 2-D omnidirec-
tional laser range finder), wireless communication, and a set of
nodes.

A. Experiments in an Open Bounded Environment

Values for communication radius and range of the laser were
set to 1500 mm in the simulations. Fig. 17 shows the cover times
for the random walk algorithm and LRV on environments of dif-
ferent sizes: 25, 49, and 100 m . Note that the cover time on a
simulated or a real system is the amount of simulation/real time
in seconds it takes the robot to cover every point of the envi-
ronment under its sensor shadow (laser range finder). For every
grid size 50 experiments were conducted for both algorithms.

The experiments show that our algorithm outperforms random
walk and is more stable. In addition, Fig. 18 shows the average
cover times for three different grid sizes. In comparing the re-
sults of the simulation with those obtained on the graph model
please keep in mind the following.

1) The notion of cover time in the Player/Stage simulations
used in this section are the actual time in seconds it takes
the robot to cover the environment completely with the
sensor (laser range finder), whereas in the graph world, the
cover time is the number of edges the robot traverses to
visit every node at least once.

2) The noise inherently present in the simulations forces the
robot to visit the same nodes several times to make sure that
every point of the environment is covered by the robot’s
sensor, whereas in the graph model the noise is absent.

Note the direct correspondence between the trends in the
results obtained in the graph world and the results of the
simulation.

B. Experiments in a Bounded Environment With Obstacles

We also performed a set of experiments in a bounded envi-
ronment with obstacles to highlight the robustness of the ap-
proach. Fig. 19 shows three snapshots of the experiment. This
experiment demonstrates the robustness of LRV to obstacles in
the environment. In particular, Fig. 19(b) demonstrates simula-
tion examples of LRV when an obstacle avoidance is used in
the deployment cycle. An environment used in this section was
also used in a more elaborate series of experiments with LRV
reported in [31] that modify the environment in the real time,
while the robot is successfully executing coverage and explo-
ration tasks.

VIII. IMPLICIT SENSOR NETWORK REPAIR AND MAINTENANCE

An emergent property of LRV is the ability to perform net-
work repair and maintenance. Since the algorithm is shown to
be complete, it is guaranteed to visit the same node over and
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over again. Suppose that one of the nodes, say node , ran out of
power or was damaged. Further consider a moment in time just
before the robot traverses direction towards the damaged node.
Now, the robot is moving along direction towards node . Ac-
cording to the deployment function that is used, there should be
a communication/sensing gap in the deployed sensor network
(unless the network was over deployed and does not require re-
pair). Hence, while facing the same deployment situation and
using the same deployment function at the location where node

was deployed, the robot simply deploys a new node, thereby
solving the problem of sensor network repair and maintenance
implicitly. Note that if the robot can recognize the nodes then it
can attempt repairing the node first (or retrieving for later repair
at the base) before deploying the new node.

IX. REMARKS ON GENERALIZATION

In this paper, we have presented an algorithm based on the
policy of choosing the least recently visited directions preferen-
tially. At the same time, depending on the application require-
ments, other policies might be better. It is possible to extend
other search/coverage algorithms using physical network em-
bedding to function in unknown, unstructured, dynamic envi-
ronments. The basic idea is to augment a coverage algorithm
with an ability to deploy and maintain physical network infra-
structure, while simultaneously using the network to aid in cov-
erage and exploration. Thus, what we want to highlight is the un-
derlying philosophy of network deployment as an integral part
of coverage and exploration.

Sensor network deployment is one of the building blocks of
this paper. A robot decides when to deploy a node based on a
deployment condition, or more generally, deployment function.
A deployment function should be designed based on the appli-
cation. However, there are two main characteristics that every
deployment function should have: 1) the deployed sensor net-
work is connected (i.e., between any two nodes there should be
a communication path) and 2) deployed static network configu-
ration should be such that static coverage is maximized. In the
proposed implementation of LRV, both characteristics are cap-
tured. The deployment is based on communication range thresh-
olding. Hence, the two consecutive nodes are guaranteed to be
connected (thus, the deployed sensor network is connected) and
we adjusted communication range threshold so that if every
sensor node is equipped with high fidelity sensor, static cov-
erage is maximized. Note that in a general case when the dy-
namic coverage problem is considered, a complete coverage is
achieved by LRV when the deployment distance is less than or
equal to twice the sensing range, which is trivial to visualize
geometrically.

Other deployment functions could also encode such parame-
ters as desired topology (i.e., by specifying the number of nodes
deployed in different directions, etc.), desired boundary, phe-
nomenon density (deploy more nodes in places with high phe-
nomenon density), deploy where landmarks detected, etc.

X. CONCLUSION

In this paper, we have presented an efficient, robust, and scal-
able algorithm to embed an active infrastructure (sensing, com-

munication, and computation) into the environment while si-
multaneously using this infrastructure for coverage and explo-
ration. The algorithm (LRV) is based on visiting the LRV direc-
tions preferentially and is decentralized, scalable, robust, fault
tolerant, and can be used on simple robots. LRV is based on
the idea of deploying sensor nodes from time to time. Once de-
ployed, every node acts like a signpost recording which direc-
tions the robot has explored recently. When a robot is in the
vicinity of a node, it recommends to the robot a direction that
has been least recently visited (hence, the name LRV).

We analyzed the characteristics of LRV theoretically, mod-
eling the static steady state of the deployed sensor network as
a finite graph . We proved that LRV is complete on (i.e.,
the exploration time of LRV on a finite graph is finite). For a
graph with maximum degree , if Cover Time

, then Exploration Time . We proved
that exploration time is (twice the number of edges, or
asymptotically optimal) for the special case, when is a tree.
For another special case, when is a square lattice, we em-
pirically conjectured that both cover and exploration times are
asymptotically . The special case of a square lattice is
also interesting from practical perspective, because in our LRV
implementation and experiments we chose to maintain at most
four directions, which results in a static steady state of the de-
ployed sensor network resembling a square lattice.

We examined the tradeoffs that should be considered in
choosing one exploration algorithm over another to solve this
problem. The bounds for the coverage task are given by random
walk (the robot has no information and explores randomly) and
depth first search (a map of the environment is available in the
form of a graph) which solves the problem optimally.

The data shown in Fig. 7, suggests strongly that our algorithm
asymptotically outperforms the node algorithm presented in
[12].

In addition, it is shown in [12] that if the number of avail-
able nodes reduces, the cover time increases rapidly. Therefore,
in dynamic environments the performance of the algorithm de-
creases drastically even if one node is destroyed. Whereas in our
algorithm, such a problem does not exist, since a new node will
be deployed in place of the destroyed one automatically.

We compared LRV to 1-LRTA* [26]. 1-LRTA* is a well
known graph search algorithm that can be applied to graph
coverage. In 1-LRTA*, a weight is associated with a node. The
edge to traverse is chosen based on weights of neighboring
nodes. The weight of a node is incremented with the weight
of a node the robot transitions to. Hence, 1-LRTA* requires
nodes to communicate. Fig. 8 shows that generally 1-LRTA*
outperforms LRV. However, in reality LRV deploys the net-
work in addition to exploring, whereas 1-LRTA* requires the
graph to operate on. An important result of this chapter is
that it is possible to extend other search/coverage algorithms
using physical network embedding to function in unknown,
unstructured, dynamic environments.

We have extended an analysis of LRV to a cube lattice graph
that represents network embedding in 3-D case. For this special
case, when is a cube lattice, we empirically conjectured that
both cover and exploration times are asymptotically as in square
lattice case and is bounded by .
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Fig. 20. Deployment of nodes in a representative simulation trial. Note that due
to noise added in simulation, the deployed nodes do not form a perfectly square
lattice.

We also studied the benefits of using ordered rules in tie break
resolution (choosing one of equally good edges). In the case of
a square lattice, each node can have up to four edges to traverse.
Hence, there are 24 order rules possible. We proposed classi-
fication of these rules into three classes: cross, line, and circle.
Each class consists of eight symmetric order rules. We have per-
formed extensive experimental trials that showed cross orders
perform better than traditionally used random order. Further-
more, in general, for square lattices it is enough to be able to
recognize corner nodes in order to apply one of the symmetric
cross orders to obtain optimal results with LRV. Note that if we
would simply use random order, traditionally used in literature,
the optimal cover time is highly unlikely to obtain.

We verified the performance of LRV and its asymptotic be-
havior in simulation. There exists a direct correspondence be-
tween the results obtained from the theoretical analysis (cov-
erage on the graph) and the data from simulation experiments.
Note also, that even though the lattice grid was considered as a
graph environment for the theoretical analysis, in practice, the
network of deployed nodes is not required to be a perfect grid.
Fig. 20 shows a series of screen shots taken from one of the trials
of the simulation in the 49 m environment. Note also that the
performance of our algorithm is not affected, since it does not
rely on localization or mapping.

The theoretical analysis on graphs and verification in simu-
lation shows that tradeoffs in the assumptions can affect cover
time significantly. Simple algorithms like RW or DFS can be
used for coverage, but only in the extreme cases as described
previously. In the case where mapping and localization are not
available but the number of available nodes is unlimited, our al-
gorithm appears to outperform others.

The algorithm that we propose and analyze in this paper
(LRV) allows us to deploy and maintain a sensor network, while

covering and exploring the environment. In our paper, we use
LRV as a fundamental system [32] for enabling network-me-
diated robot navigation [33], network-mediated multi-robot
task allocation [34], and the general problem of spatiotemporal
monitoring [35].
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