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When processes in a network communicate, the messages they exchange define a partial ordering of 
externally visible events. While the significance of this partial order in distributed computing is well 
understood, it has not been made an explicit part of the communication substrate upon which 
distributed programs are implemented. This paper describes a new interprocess communication 
mechanism, called Psync, that explicitly encodes this partial ordering with each message. The paper 
shows how Psync can be efficiently implemented on an unreliable communications network, and it 
demonstrates how conversations serve as an elegant foundation for ordering messages exchanged in 
a distributed computation and for recovering from processor failures. 
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1. INTRODUCTION 

An interprocess communication (IPC) mechanism provides an abstraction 
through which processes that do not necessarily share an address space can 
exchange messages. While there exists considerable experience with IPC mech- 
anisms for one-to-one communication-examples of such mechanisms include 
datagrams, virtual circuits, remote procedure calls [5], and channels [llJ-much 
less is understood about IPC mechanisms for many-to-many communication. 
Work in this area includes low-level broadcast protocols [7] and high-level 
programming toolkits [3,4]. 

This paper introduces a new IPC protocol, called Psync (for “pseudosynchron- 
ous”), that supports the exchange of messages among a well-defined set of 
processes. Psync explicitly preserves the partial ordering of messages exchanged 
among a collection of processes in the presence of communication and processor 
failures. Because of the fundamental nature of this partial order, Psync has 
several desirable characteristics: it can be implemented on an unreliable network 
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with performance comparable to conventional one-to-one protocols like UDP 
[19] and TCP [28], it supports elegant implementations of a wide range of 
existing communication protocols, it allows applications to directly access infor- 
mation not made available by other IPC mechanisms, and it facilitates recovery 
from processor failure. 

Psync is a low-level protocol designed to support a variety of high-level 
protocols and distributed applications. This design has two implications [23]. 
First, Psync makes very few assumptions about the underlying network. For 
example, it does not assume expensive mechanisms such as reliable broadcast 
are available. Second, Psync defers to higher levels any functionality that not all 
applications need. In other words, Psync only maintains the partial order among 
messages; a collection of “library routines” enforce various ordering disciplines 
using Psync. 

The paper is organized as follows. The next two sections describe Psync: 
Section 2 gives a formal definition of the abstraction upon which Psync is based, 
and Section 3 describes an algorithm for implementing Psync in a distributed 
system. By analogy with virtual circuits, we first define a FIFO queue and then 
describe the sliding window protocol by which a queue can be implemented on 
two processors connected by an unreliable network. Section 4 then demonstrates 
several applications of Psync, and Section 5 shows how Psync can be extended 
to support the reintegration of failed processes into an ongoing conversation. 
Finally, Section 6 reports on the performance of Psync, Section 7 comments on 
related work, and Section 8 offers some conclusions. 

2. ABSTRACTION 

Psync is based on a conversation abstraction that provides a shared message 
space through which a collection of processes exchange messages. The general 
form of this message space is defined by a directed acyclic graph that preserves 
the partial order of the exchanged messages. For the purpose of this section, we 
view a conversation as an abstract data type that is implemented in shared 
memory; Section 3 gives an algorithm for implementing a conversation in an 
unreliable network. 

A conversation behaves much like any connection-oriented IPC abstraction: a 
well-defined set of processes-called participants-explicitly open a conversation, 
exchange messages through it, and close the conversation. Only processes that 
have been identified as participants may exchange messages through the conver- 
sation, and this set is fixed for the duration of the conversation. Processes begin 
a conversation with the operations: 

conv = active-open (participant-set) 
conv = passive-open (pid) 

The first operation actively begins a conversation with the specified set of 
participants. The operation creates an empty conversation-that is, one that 
contains no messages-and the invoking process is not blocked. The second 
operation passively begins a conversation. The argument identifies the invoking 
process. This process is blocked until some active process starts a conversation 
that contains the invoking process in its participant set. Pending conversations 
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for a process, those for which the process has not invoked passive-open, are 
queued on the passive-open operation. The conv returned by the two operations 
can be thought of as an external handle for that process’ view of the conversation. 
A process closes its view of a conversation with a 

close(conv) 

operation. 
Once a process possesses a conv handle, it can send and receive messages using 

the operations: 

node = send(msg, conv) 
node, msg = receive(conv) 

where msg is an actual message-an untyped block of data-and node is a handle 
or capability for that message. Each participant is able to receive all the messages 
sent by the other participants in the conversation, but it does not receive the 
messages it has sent. Fundamentally, each process sends a message in the context 
of those messages it has already sent or received. Informally, “in the context of” 
defines a relation among the messages exchanged through the conversation. This 
relation is represented in the form of a direct acyclic graph, called a content 
graph. The semantics of send and receive are defined in terms of this graph. 

Formally, let P denote the set of participants in a conversation and let M 
denote the set of messages they exchange. Each element of M encapsulates both 
the actual message and the sender’s identity. Define < (read “precedes”) to be a 
transitive relation on M, such that m < m’ if and only if message m’ is sent in 
the context of message m; that is, the process that sent m’ had either sent m or 
already received m. Let G, denote the directed acyclic graph representation 
of -c. A context graph, denoted G = (M, E), is taken to be the transitive reduction 
of G, [2]. That is, G contains all the vertices and none of the redundant edges of 
G,, where edge (m, m’) is redundant if G, also contains a path from m to m’ of 
length greater than one. 

Figure 1 gives G, and G for a conversation in which m, was the initial message 
of the conversation; m2 and m3 were sent by processes that had received m,, but 
independent of each other; m4 was sent by a process that had received ml and 
m3, but not m2; and m5 was sent in the context of all the other messages. We 
refer to the nodes to which a given message is attached in G as the message’s 
immediate predecessors. For example, m2 and m4 are the immediate predecessors 
of m5. Also, two messages that are not in the context of the other are said to 
have been sent at the same logical time. For example, m2 and m3 were sent at the 
same logical time. 

Each participant in a conversation has a view of the context graph that 
corresponds to those messages it has sent or received. Let M,, C M denote the 
subset of messages sent or received by participant p E P. Process p’s view, 
denoted V,, is a restriction of G to the vertices in M, and the edges in E incident 
upon those vertices. A process with a view equal to G has received all the messages 
sent by other participants. Messages outside the participant’s view, that is, those 
in the set (M - M,), are said to be outstanding. For example, at the time a 
participant sent m4, its view consisted of ml and ma; m2 was outstanding. 
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Fig. 1. Example context graph. 

When process p invokes the receive operation, the “earliest” outstanding 
message is returned. Formally, receive returns an outstanding message m in G 
such that there is no other outstanding message m’ for which rn’ < m. Also, VP 
is extended to include m. The receive operation blocks if there are no outstanding 
messages. The abstraction has the important property that for any pair of 
messages m and m’ received by a process, m is received before message m’ if 
m -C m’. Thus, when a process receives a given message, it is guaranteed to have 
already received all messages that precede it in the context graph. For example, 
(ml, m 2, m3, m4, md, (ml, m3, m2, w, mg), and (ml, m3, m4, m2, 4, are all 

valid total orderings for returning the messages in Figure 1, where different 
participants might see a different ordering. 

When processp applies the send operation to message m, m is added to M and 
the edge (m,, m) is added to E for each node ml that is a leaf of VP. Also, p’s view 
is extended to include m, even though a participant never receives a message it 
sent. Note that the data structures that represent a conversation include a single 
“shared,, context graph and a “private” view of each participant. It is therefore 
accurate to think of the context graph as the principal data structure and 
each view as a window on G. That is, while the leaves of VP are used to deter- 
mine how a message sent by p is inserted into the conversation, the message 
is attached to G, and as a consequence, available for the other participants 
to receive. 

Notice that the send and receive operations modify the context graph in such 
a way that G remains the transitive reduction of G,. Two conditions must be 
satisfied for this to be true. First, it must be the case that a path from ml to m2 
in G implies m, < m2. To see this, observe that a given process always receives 
message m before m’ if m -C m’. As a consequence, the participant’s view is 
always a connected subgraph of G, and it is therefore not possible to send a 
message in the context of one message that is not also in the context of all 
messages that precede it in the graph. Second, it must be the case that the 
existence of a path of length greater than one from node ml to node m2 implies 
that there cannot exist an edge from ml to m2. To see this, observe that each 
new message is attached to the leaves of the sending participant’s view. Because 
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Fig. 2. Another example context graph. 

these nodes are leaves, there cannot also be a path through another node to the 
new node. 

Also note that a message sent by a given process is, by definition, in the context 
of the previous message sent by that same process. Therefore, it is not possible 
to have an edge in G leading from a given message to two or more messages sent 
by the same participant. Likewise, a given message cannot have two or more 
immediate predecessors sent by the same participant. These two observations 
imply that the outdegree and indegree of any node in G is bounded by the number 
of participating processes. 

The context graph contains information about which processes have received 
what messages. In particular, receipt of a message implies that the sender has 
seen all its predecessor messages. Thus, if some message m is followed in the 
context graph by a message from all the participants except for m’s sender, then 
m is necessarily in each participant’s view. Formally, message m, sent by process 
p is said to be stable if for each participant q # p, there exists vertex my in G sent 
by q, such that m,, i m,. Intuitively, each m, serves as an acknowledgment of m, 
from some process q. For a message to be stable implies that all processes other 
than the sender have received it; therefore, it follows that all future messages 
sent to the conversation must be in the context of the stable message; i.e., they 
cannot precede or be at the same logical time as the stable message. 

For example, suppose the context graph depicted in Figure 2 is associated with 
a conversation that has three participants, denoted a, b, and c, where a,, a2, . . . 
denotes the sequence of messages sent by process a, and so on. Messages al, bl, 
and c1 are the only stable messages. Also, participant a has sent two unstable 
messages: a, and a:{. 
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Because the context graph provides such useful information, the conversation 
abstraction supports the following operations for traversing G and querying the 
state of nodes in G: 

node = root(conv): root vertex of V,,. 

node-set = leaves(conv): set of leaf vertices of V,. 

process-id = sender(node): process that sent node. 

participant-set = participants(conv): set of participating processes. 

node-set = next(node): set of vertices to which there is an edge from node 
in V,. 

node-set = prev(node): set of vertices from which there is an edge to node 
in V,. 

outstanding(conv): true if V, # G. 

precedes(node, , node*, conv): true if V, contains a path from node, to node,. 

stable(node, conv): true if node is stable. 

3. PROTOCOL 

This section describes the Psync protocol (algorithm) that implements conver- 
sations in a distributed system. While more than one implementation strategy is 
possible-for example, sending and receiving messages could be implemented as 
atomic transactions on replicated copies of the context graph-Psync replicates 
G throughout a network in a way that preserves the important properties of the 
conversation abstraction without incurring the high cost of atomic updates. 
Psync is designed this way because it is intended to be a low-level IPC protocol 
upon which a wide range of other mechanisms can be built. 

To simplify the discussion, we describe the protocol in three stages. First, we 
present a basic protocol that accommodates varying communication delays; this 
description assumes an infinite amount of memory at each processor. Second, we 
augment the basic protocol to account for network and host failures; this 
discussion also assumes infinite memory. Finally, we remove the infinite memory 
assumption by considering garbage collection and flow control. Throughout the 
discussion, Psync uses internal identifiers to denote the three basic objects: it 
assigns a networkwide unique cid to each conversation, it assigns a conversation- 
wide unique mid to each message, and it uses a network-dependent pid to identify 
each participant. For simplicity, we assume each pid can be divided into a host 
part and a local part; i.e., it is possible to determine the host on which a process 
resides given its pid. 

3.1 Basic Protocol 

We begin by describing the implementation of a conversation on a set of hosts 
connected by an asynchronous message-passing facility with varying communi- 
cation delays between hosts. For the purpose of this discussion, assume no 
network or host failures. 

3.1.1 Distributed Images. Psync maintains a copy of a conversation’s context 
graph G at each of a set of hosts on which a participant in P resides. The copy 
of G on host h is called an image and is denoted Ih. Psync at each host also 
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SC cid pid,...pid, message 

Fig. 3. Start conversation message. 

maintains the view for each local participant. For simplicity, assume there is a 
one-to-one relationship between hosts and participants; i.e., there is a single 
image and a single view at each host. While context graph G still exists in the 
abstract, in practice only the individual images are implemented, and Psync only 
guarantees that the union of the I,, for all hosts h is equal to G given no host 
failures; it does not attempt to keep all the images equivalent. Messages in the 
abstract context graph G but not in some image Ih correspond to messages sent 
by some participant that are still in transit to host h. Messages in I,, but not in 
the local participant’s view correspond to messages that have arrived at host h 
but have not yet been received by the participant. 

3.1.2 Opening and Closing Conversations. The active-open operation creates 
an empty local image, but no messages are exchanged and the invoking process 
is not blocked. The information necessary to establish the conversation at those 
hosts on which a process invoked the passive-open operation is piggybacked on 
the first message sent by the process that actively opened the conversation. The 
arrival of this message at a given host initializes the local image, which in turn 
causes the local participant’s invocation of passive-open to complete. The format 
of a conversation’s first message, called an SC (start conversation) message, is 
given in Figure 3; pid, . . . pid, identifies the participating processes (pidl is the 
message sender) and the message’s mid is the same as the conversation’s cid. 

Psync exchanges no messages when a process closes a conversation. Therefore, 
it is possible for a process to close its view of a conversation before the other 
processes are finished sending messages, implying that new messages may arrive 
later for that conversation. From the perspective of the remaining processes, the 
process that closed the conversation too early will appear to have failed (see 
Section 3.2). We expect applications for which such early closings are not 
acceptable to implement a “termination agreement” protocol on top of Psync. 

3.1.3 Sending and Receiving Messages. When process p on host h invokes the 
send operation, the new message is attached to image I,, according to the 
definitions given in Section 2, and a copy of the message-along with information 
specifying the edges that connect the message to the context graph-is propagated 
to each remote host. This message can be delivered using either a point-to-point 
delivery mechanism or a broadcast mechanism. When process p on host h 
executes the receive operation, an outstanding message from I,, is returned. The 
receive operation blocks until Ih contains an outstanding message. 

The format of each message sent to an existing conversation, called an AN 
(add node) message, is given in Figure 4; each pred-.mid is the unique identifier 
for one of the message’s immediate predecessors in the context graph, andpidsend,, 
identifies the sending participant. Note that the number of predecessor messages 
identified in the message is bounded by the number of participants in the 
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AN cid mid P%nder pred-mid,. .pred-mid, ’ message 

Fig. 4. Add node message. 

conversation, corresponding to the bound on the indegree of each vertex. Each 
AN message that arrives at a host h for which the predecessor message set is 
present in I,, is immediately inserted in I,,. If one or more of the predecessor 
messages have not yet arrived, then the message is placed in a holding queue 
until all the predecessors are present. Such messages are not considered attached 
to I,,, and therefore cannot be returned by the receive operation. When all 
preceding messages have arrived, the earlier message is removed from the holding 
queue and incorporated into I,,. Observe that each message in G is contained in 
at least its sender’s image, even though the multiple images of G are not equivalent 
while messages are in transit. 

Finally, note that the Psync operations that allow a process to inspect the 
context graph are defined relative to the participant’s view and the local image, 
not in terms of the abstract graph G. For example, the stable operation reports 
on the stability of a message in a given participant’s view, where stability in VP 
implies stability in G. 

3.2 Failures 

Implementing conversations in a distributed environment is in practice compli- 
cated by three factors: the underlying network fails to deliver messages, hosts 
fail, and host failures are indistinguishable from network partitions and hosts 
that are slow to respond. This section extends the basic protocol to account for 
these factors. For the purpose of this section, we assume that when a host does 
in fact fail, it remains failed for the duration of the conversation; techniques for 
recovering and reintegrating failed processes into an on-going conversation are 
described in Section 5. 

3.2.1 Transient Network Failures. Consider the possibility of transient net- 
work failures. Such failures imply that for a given message sent from one host to 
another, zero or more copies of the message are delivered to the destination host. 
For the purpose of this discussion, assume hosts do not fail. 

Recall that Psync places any message received out-of-order in a holding queue 
until all messages upon which it depends arrive. Let m be a message sent by a 
participant on host h in the context of m’, and let h’ be a host that receives m 
but has not yet received m’; i.e., m is placed in the holding queue on h’. Psync 
associates a timer with each message in the holding queue. When the timer for 
message m expires, a request to retransmit m’ is sent to h. That host is guaranteed 
to have m’ in its image because a local participant just sent a message in the 
context of m’. This is true even if the participant that originally sent m’ does 
not reside on h. 

The retransmission request, called an RR message, is schematically depicted 
in Figure 5. Because it is possible that the predecessors’ predecessors are also 
missing, the retransmission request identifies the subgraph of G that needs to be 
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RR cid mid leaf_mid,...leaf_mid, 

Fig. 5. Retransmission request message. 

retransmitted, not just the message(s) known to be missing. The set of leuf_mid’s 
identify the current leaves of the local image and micl identifies the message 
whose predecessors are missing. The leaf set and the last received message 
effectively define the boundary of the missing portion of G. When a host receives 
an RR message, it responds by resending all messages between the leaf set and 
the out-of-order message, exclusive. If a mid is not given, the host responds with 
all messages sent in the context of the leaf set. An empty leaf set implies that 
the root node(s) should be retransmitted. 

3.2.2 Lust ACK Problem. Although Psync automatically recovers from missing 
messages upon which some other message depends, it is possible for the last 
message sent-i.e., a message upon which no messages depend-to be lost. We 
characterize this as an instance of a general “last ACK problem” faced by many 
protocols. To help applications accommodate this possibility, Psync is augmented 
to allow its blocking operations-passive-open and receive-to include a timeout 
argument. The return code then indicates whether the operation was successful 
or the timeout expired. Processes use a timeout larger than the maximum 
communication delay to and from all participating hosts. 

In addition, Psync provides a 

resend(node) 

operation. Applying this operation to a node causes an exact duplicate of the 
corresponding message to be sent to all hosts maintaining an image of G. The 
resent version of the message is identical to the original copy of the message- 
i.e., it is an SC or an AN message with the same mid-except that it is flagged as 
having been resent. Should a host that receives a resent message already have a 
copy of the message, it (1) discards the duplicate copy, and (2) resends all the 
messages in its image that are immediate successors of the duplicate message. 
Finally, should a participant apply resend to a stable message, Psync does 
nothing; i.e., it does not resend the message as instructed. This is because 
resending a stable message is unnecessary: by definition, a stable message 
has been delivered to all participants and a reply has been received from all 
participants. 

The resend operation is used by a process that has reason to believe a message 
it sent earlier was never delivered; i.e., if it sent a message and timed-out while 
waiting for a reply message. A generalization of waiting for a reply message is to 
wait for a message to become stable. One can therefore implement a “synchronous 
send” routine that does not return until the sent message has stabilized. If the 
message does not stabilize because it was not delivered to all applications, then 
the routine would resend it several times. Figure 6 defines a send-stable routine 
as a library protocol implemented on top of Psync. Note that if send-stable 
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aend-stable (meaa8ge, conv) 
{ 

send-node = sendbessage, conv); 
for (try=O; try<LItdIT; try++) 

{ 
no&, m8g = receive (conv, timeout) ; 
while (outstanding (conv) ) 

no&, m8g = receive(conv, timeout); 
if (stable(sendnode)) 

return(SUCCESS); 
else 

reaend(node); 

1 
return(FAILURE); 

1 

Fig. 6. Library routine for sending a stable message. 

returns FAILURE, the application is likely to conclude that one or more hosts 
have failed (see Section 3.2.4). Also note that send-stable works correctly if one 
of the reply messages, as opposed to the sender’s message, was lost. This is 
because if a host receives a duplicate copy of the resent message, it responds with 
all the messages that immediately depend on the resent message; i.e., Psync 
automatically resends the reply message. 

3.2.3 Host Failures. Now consider the effect host failures have on the main- 
tenance of the context graph. For the purpose of this discussion, assume hosts 
fail silently without undergoing incorrect state transitions or generating spurious 
messages; it is not necessary that such failures be accurately detectable. 

Psync guarantees two things about the context graph in the presence of host 
failures: 

-All running processes are able to continue exchanging messages. 
-A message contained in any running host’s image will eventually be incorpo- 

rated into every running host’s image if host failures are infrequent. 

The first condition is easy to guarantee because each process depends only on 
the local state of the conversation. Thus, a participant can successfully invoke 
send because being able to send a message depends only on the leaves of the 
participant’s view. Also, a participant’s ability to successfully receive messages 
sent by another running process depends only on the host’s ability to incorporate 
new messages into the local image. The host, in turn, can always incorporate 
messages received from another running host into its image because the only 
prerequisite for doing so is that all the predecessor messages be present. Should 
some of the predecessor messages not be present, the receiving host can retrieve 
them from the sending host. The sending host is guaranteed to have all the 
preceding messages because it just sent a message that depends on them. 

The key to satisfying the second condition is to correctly deal with a host 
failing after it has sent a message. Psync addresses this problem with the following 
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extension to the retransmission request strategy defined in Section 3.2.1: when 
a host does not receive a response to an RR message that it sent to a particular 
host, it broadcasts the RR message to all the hosts. Should the broadcast RR 
message fail to yield the missing message, the message that triggered the retrans- 
mission request is discarded. Given this extension to the protocol, consider how 
the second condition is satisfied for two different quantifications of “infrequent.” 

First, assume a single host failure. Without loss of generality, suppose host h 
fails immediately after sending message m in the context of message m’. There 
are three cases to consider. 

-Case 1. No other host receives m. Message m does not appear in any running 
host’s image. 

-Case 2. All hosts receive m. 

Subcase a. No host has m’ in its image; thus, the broadcast RR fails, Neither 
messages m’ nor m appear in any host’s image. Note that m’ must have 
been sent from host h, otherwise, at least one running host (the sending 
host) would have a copy of it. 

Subcase b. All hosts have m’ in their image. Message m can be successfully 
incorporated in each host’s image. 

Subcase c. Some hosts have m’ in their image. Broadcasting the RR message 
retrieves m’, and both m and m’ are incorporated into each host’s image. 

-Case 3. Some hosts receive m. A host that receives m incorporates it into its 
image as in case 2. A host that does not receive m will at some future time 
receive message mN in the context of m, causing the host to retrieve m from 
the host that sent m”. 

Thus, the same set of messages are incorporated into all images when a single 
host fails. 

Second, suppose there are multiple host failures. Psync continues to incorpo- 
rate messages into all images unless there are “too many” failures, where “too 
many” is precisely quantified as follows. A message m is defined to be n-stable if 
n - 1 processes other than the sender of m have sent a message in the context 
of m. For a message to be n-stable implies that a copy of m is contained in at 
least n images, assuming a one-to-one correspondence between images and 
processes. Thus, a copy of m can be retrieved from some image in the presence 
of up to n - 1 host failures. A message that is stable is contained in all images. 

Note that the preceding discussion does not assume perfect knowledge of when 
a particular host has failed; i.e., it can be implemented using a simple timeout 
and retry strategy. In the worst case, a given host might decide that another host 
is down when it is not, but this does not affect the correctness of the protocol, 
For example, suppose a host that receives m incorrectly decides that h is down. 
Sending the broadcast RR message is wasteful but not incorrect. As another 
example, suppose a host that receives m decides to ignore m’ and all the messages 
that depend on it (case 2b), but some host that has a copy of m’ is still running. 
A new message will eventually arrive that directly or indirectly depends on m’, 
and the recovery procedure outlined in Section 3.2.1 will be exercised. 
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3.2.4 Application-Level Support. From the application’s perspective, host fail- 
ure involves two issues: determining when a host has failed and deciding what to 
do about a failure. In the case of the first issue, Psync provides no explicit 
mechanism for detecting host failures. Instead, each participant determines on 
its own that some other process has failed. For example, a given participant 
might decide that a host has failed because a routine like send-stable returns 
FAILURE. In the case of the second issue, Psync allows processes on any subset 
of running hosts to continue exchanging messages when one or more other hosts 
have failed. Whether a given participant chooses to stop executing or continue 
executing when it detects a host failure depends on the application. 

For applications that choose to continue when processes fail, each participant 
must be able to remove the failed process from its definition of the participant 
set. This is necessary so that messages will eventually stabilize relative to the 
currently running set of participants. In other words, if the failed participant is 
not removed from the working definition of P, then messages will never stabilize 
because a message from the failed participant will never arrive. Psync provides a 

mask-out(participant) 

operation for this purpose. A process invokes this operation to remove a partici- 
pant from its working definition of P. Once a given participant has masked out 
some other participant p, Psync ignores (discards) all messages m, received from 
p unless it has in its holding queue a message m4 from some participant q # p 
such that m, is in the context of mp. An inverse operation, 

mask-in(participant) 

is provided to return a participant back into the local definition of P. Note that 
both operations “mask” the participant set; they do not permanently delete 
existing participants or add new participants. 

Note that in practice it is impossible to determine with absolute certainty that 
a particular host has failed, it may be slow to respond or it may be isolated by a 
network partition. This is a critical observation because it is possible for a process 
that is thought to have failed to start sending messages again. As a consequence, 
it is necessary for the running processes to be able to agree as to when a particular 
process has failed. While Psync does not provide a direct mechanism for doing 
this, algorithms for agreement about failure have been developed [lo], and they 
can be implemented on top of Psync, analogous to the send-stable routine. A 
more thorough description of a delete protocol that specifies the actions to be 
taken by functioning participants when another participant fails is presented 
elsewhere [ 181. 

3.3 Memory Management 

The previous discussion implies that the entire history of a conversation is 
maintained throughout the lifetime of the conversation. While preserving some 
or all the history is necessary if failed processes are allowed to rejoin as described 
in Section 5, in many cases maintaining the entire context graph is unnecessary. 
This section outlines how to garbage-collect portions of the context graph and 
how to implement flow control. 
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It is useful to think of each node in an image as having two parts: an entry in 
the data structure that implements the graph-this entry is a few dozen bytes 
long and contains the message sender, the message’s id, pointers to other nodes, 
and so on-and a buffer that holds the message itself. In the case of the actual 
message, the buffer is reclaimed as soon as the corresponding node becomes 
stable. This is because a host cannot be asked to retransmit a message that is 
stable; such messages are already contained in all images of G. In the case of the 
graph node, no simple rule exists. This is because an application process may 
inquire about any node in the graph; e.g., it may apply the msg-sender operation 
to an arbitrary node. While reclaiming graph nodes is not as critical as reclaiming 
message buffers, some mechanism is necessary if conversations are to support 
arbitrarily many messages. One solution is to provide a free-node operation that 
explicitly causes a particular node, along with all of its predecessors, to be 
reclaimed. An application would invoke this operation whenever it finishes with 
a particular portion of the context graph. Another solution is to let the application 
set some threshold parameter 0, such that the application is only permitted to 
invoke operations on the last 0 messages sent to the conversation. This latter 
approach is practical because applications can reasonably choose a value for 0 
that is proportional to the number of participants in the conversation. 

In addition, Psync has three flow-control limitations. First, because it is 
possible for an application to send many messages without any of them becoming 
stable, Psync limits the amount of buffer space allocated to each conversation; 
the send operation blocks, and newly arriving messages are discarded if this limit 
is exceeded. Second, only a fixed number of pending conversations’ are allowed 
to queue for any single process, where only one message associated with each 
such conversation is stored; all additional messages belonging to a pending 
conversation are discarded. Third, only a fixed number of out-of-order messages 
are saved in each conversation’s holding queue; additional messages are discarded. 
Note that in all three cases, newly arriving messages that exceed buffer limits 
are simply discarded, since discarding a message is indistinguishable from 
a transient network failure. As a consequence, the mechanisms described in 
Section 3.2 are later used to recover the messages. 

3.4 Remarks 

Psync has been designed to include only that functionality essential to maintain- 
ing context information; all other functionality has been pushed onto higher level 
protocols. For example, rather than support a send-stable operation, we have 
built a library version of the operation on top of Psync. As another example, 
rather than support a conversation-wide operation for removing failed processes, 
Psync provides only mask-out and mask-in operations that modify the local 
definition of P; one can build conversation-wide remove-process and 
add-process routines on top of Psync. Other useful library routines include 
a quorum-stable routine that determines if a majority of processes have received 
and responded to a particular message and initialize and terminate routines that 

1 A pending conversation is one that has been actively opened, but for which the local process has 
not invoked a corresponding passive-open. 
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employ a three-way handshake protocol to begin and end a conversation. The 
important point is that the list of useful library routines is both large and diverse. 
Because different applications use different combinations of these routines, we 
chose to implement them on top of Psync rather than embed them in Psync. In 
other words, our design draws an explicit line between the mechanism that 
preserves ordering information and higher level protocols that enforce a particular 
ordering policy. 

4. ORDERING MESSAGES 

The context graph explicitly records the partial ordering of messages exchanged 
in a distributed computation. Participants enforce a particular ordering discipline 
on the context graph based on the requirements of the application. This section 
gives several examples of how the context graph supports elegant implementa- 
tions of a variety of ordering policies. These policies can be thought of as “filters” 
placed on top of Psync. 

4.1 Conventional Protocols 

Psync supports efficient implementations of well-known communication proto- 
cols due to the fundamental nature of the context relation. For example, the 
unreliable datagram corresponds to a degenerate context graph that contains a 
single vertex, a reliable datagram causes an acknowledgment message to be sent 
in the context of a datagram, and an RPC mechanism sends a result message in 
the context of a request message and subsequent request messages in the context 
of previous reply messages. This section makes three observations about imple- 
menting conventional protocols on top of Psync. 

First, while one could argue that it would be more efficient to implement a 
virtual circuit protocol or an RPC protocol directly on the underlying network 
rather than on top of Psync, it is nonetheless interesting to observe that the 
context graph provides a useful mental tool for thinking about such protocols. 
Consider, for example, a virtual circuit protocol. The context graph that models 
a virtual circuit grows in a “nearly linear” manner, where the breadth of the 
graph intuitively corresponds to the number of unstable messages sent by the 
local participant. A process stops sending data when the number of unstable 
messages it has sent exceeds the size of the circuit’s sliding window. Thus, a 
linear context graph would result if a stop-and-wait protocol is employed [27]. 
Moreover, as long as both sides have data to send, the act of sending a message 
in the context of received messages effectively acknowledges those messages, 
thereby providing a natural implementation of the piggyback optimization. 

Second, Psync offers an alternative IPC paradigm to applications that currently 
use whatever existing IPC mechanism provides the “best fit,” even if that 
mechanism does not provide exactly the semantics that the application needs. 
Consider, for example, a distributed program that exhibits an interactive com- 
munication pattern in which a client process sends a request message, a server 
process replies, the client responds to the server’s reply, and so on. Such a pattern 
is commonly called conversational continuity and can be viewed as a generalization 
of the message transaction paradigm. The mail protocol SMTP is an example of 
an application that exhibits conversational continuity [21]. Psync is an ideal 
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communication substrate for the conversational continuity paradigm because it 
maintains the desired connectivity from message to message without duplicating 
the efforts of the application. In contrast, virtual circuits-the IPC mechanism 
conventionally used for such applications, including SMTP-send an acknowl- 
edgment message for each application message, even though the application-level 
response sent in the context of the request message is sufficient acknowledgment. 
While virtual circuit protocols are usually optimized to piggyback acknowledg- 
ments, such optimizations are a heuristic because the virtual circuit protocol has 
no knowledge of when or if the application will send its next message. Also, 
opening and closing a virtual circuit causes overhead messages to be exchanged 
even though the application is able to determine, on the basis of its own state 
and the last message sent from the other process, that no more messages will be 
exchanged and the conversation can be safely closed. 

Third, because Psync supports a many-to-many communication paradigm, its 
behavior is subtly different from conventional one-to-one protocols that have 
been augmented to support one-to-many (multicast) communication. Consider, 
for example, a simple message transaction in which a client sends a request 
message to a collection of servers, and one or more of the servers receive the 
request and sends a reply message [B]. Because Psync distributes all messages to 
all participants, the servers will receive each other’s reply messages. In contrast, 
only the client receives the reply messages in the case of a multicast. The former 
mechanism is desirable if a server is able to avoid doing unnecessary work because 
it can detect that another server has already responded. 

4.2 Ordered Broadcast 

As an example of how Psync provides an elegant base for implementing various 
ordering disciplines in a many-to-many communication paradigm, consider the 
following implementation of an ordered broadcast. Such a broadcast ensures that 
messages sent in a many-to-many communication are received by all participating 
processes in the same order. Ordered broadcasts are commonly used by a set of 
processes that are applying operations to a set of replicated data objects, where 
operations are encapsulated in messages. Because each process receives the 
messages (processes the operations) in the same order, they are able to maintain 
consistent copies of the object. 

One typical implementation of an ordered broadcast is to assign a timestamp 
from a virtual clock to each message when the message is sent. The receivers 
then order the messages based on the timestamps. In contrast, Psync supports a 
partial ordering that can be used to give a total ordering if all participants do the 
same topological sort of the context graph. The topological sort must be incre- 
mental in the sense that each process waits for a portion of its view to stabilize 
before allowing the sort to proceed. This must be done to ensure that no future 
messages sent to the conversation will invalidate the total ordering. For simplic- 
ity, the following discussion distinguishes between the process that directly uses 
the context graph to implement the ordered broadcast (called the participant) 
and the application process that expects a total ordering of messages (called the 
application). 

As schematically depicted in Figure 7, each participant’s view is conceptually 
partitioned into committed and uncommitted subgraphs, denoted Vi and Vi, 

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989. 



232 l L. L. Peterson et al. 
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last wave 

current wave 

Fig. 7. Committed and uncommitted partitions of VP. 

respectively. Dotted lines denote a path between two message nodes. Subgraph 
Vi corresponds to those messages that have been totally ordered and committed 
to the application. (Messages in Vi would also satisfy the definition of queue 
stability [23].) Subgraph V; corresponds to the set of messages yet to be consid- 
ered. Each iteration of the incremental topological sort moves through VP in 
waues, where a wave is a maximal set of messages sent at the same logical time; 
i.e., the context relation does not hold between any pair of messages in a wave. 
As soon as the wave is known to be complete-i.e., the participant is certain that 
no future messages will arrive that belong to the wave-the messages in the wave 
are ordered according to some deterministic sorting algorithm and passed to the 
application. The messages in the wave are also moved from V; to Vi. Note that 
defining a wave to be the roots of Vi results in a breadth-first traversal of the 
context graph.’ 

The important remaining problem is determining when all possible roots of 
Vz are present. Recall that when a message is stable, all future messages must 
follow it in the context graph. Thus a single stable message in a given wave 
implies that all possible members of the wave are contained in the participant’s 
view. In other words, as soon as a single root of Vi becomes stable, all the roots 
of Vi can be sorted and committed to the application. In contrast, consider both 
a weaker and stronger condition for committing. On the one hand, it is not 
correct to commit a message as soon as it becomes stable. This is because the 
order in which messages become stable in two different views may differ due to 
varying communication delays, thereby resulting in potentially different total 
orderings. On the other hand, it is not necessary to wait for all messages in the 
wave to become stable before committing the wave; a single stable message in 
the wave is sufficient. 

Figure 8 gives the procedure broadcast that implements the algorithm just 
described. The procedure interfaces with the application process by a pair of 

’ An alternative is to do a depth-first traversal, in which case the entire disjoint branch of the context 
graph rooted at each node in the wave is committed in order. 
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broadcaat() 

{ 
conv, 188t-w8v* = initirlirr(); 
while (TRUE) 

anhwmathing = FALSE; 
rev-mnnathing - FALSE; 
currenixw8vo = 0; 
fat (e8Ch nodr E 188teW8Va) 

currentr8va = current-w8vo U next(noda): 
if (3 node E currant-w8va, 8.t. st8ble(noda, conv)) 

{ 
18sLw8va = current-w8vm; 
sort(currenta8ve); 
for (e8ch noda E currant-w8ve) 

8nd-toqu~u~(m8g~,); 

1 
w8itA.nput(); 
whilr (out8tmding(conv)) 

i 
no&,m8g = recoivr( conv); 

rcv-rronmthing = TRW; 

1 
while (!empty(8ndqumo)) 
t 

mug = rev-frcaquour(); 
8end @8g, conV) : 

8ntioPPsthing = TRUE; 

I 
if (!8nd-8OIIKkhing LL rev-8cmothing) 

8and (AC& conv) ; 

Fig. 8. Ordered broadcast procedure. 

message queues and the operations snd-to-queue and rev-from-queue. 
A wait-input operation is used to allow the process to block waiting for input 
from multiple sources. To simplify the presentation, procedure broadcast does 
not include any error recovery code. 

At the heart of the procedure are the two node sets last-wave and current- 
wave, corresponding to the leaves of Vi and the roots of Vi, respectively. When 
started, the procedure first calls an initialize routine similar to the one mentioned 
in Section 3.4. This routine also initializes last-wave. Next comes the algorithm’s 
main loop. First, it adds all the known dependents of the nodes in last-wave to 
current-wave. Second, it checks to see if any of the nodes in current-wave are 
stable. If any are, current-wave is assigned to last-wave, the sort routine is called 
to order the messages in current-wave, and the sorted messages are sent to the 
application. Assume the sort routine weeds out any messages in current-wave 
that are not meant for the application, e.g., ACK messages, but it does not filter 
messages sent by the local process. The same sort routine must be applied by all 
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participants; for example, it might sort the messages based on the sender’s id. If 
none of the messages are stable, then the algorithm waits for new messages to 
arrive and checks the stability of current-wave the next time around the loop. 
Finally, any new input that has arrived is processed at the bottom of the main 
loop. Note that rev-from-queue is invoked after receiving any outstanding 
messages from the conversation. This causes any new messages sent to acknowl- 
edge all the received messages. An explicit acknowledgment is sent only if a 
message is received but none are sent. 

4.3 Replicated Objects 

Although the total ordering of messages guaranteed by an ordered broadcast 
mechanism provides a foundation for synchronizing distributed computations, 
there are certain cases in which the same total ordering is not necessary at each 
host [13]. Suppose, for example, that a data object is replicated at n hosts, where 
a process running at each host manages the local copy. Furthermore, suppose 
that some of the operations that may be applied to the object are commutative 
with respect to other invocations of the same operation. In this scenario, the n 
processes can participate in a single conversation and implement operations on 
the data object by sending messages to the conversation. The partial ordering of 
messages (operations) preserved in the context graph is sufficient for ordering 
the commutative operations. The processes only have to synchronize with each 
other on the noncommutative operations, which they do by waiting for the 
corresponding message to become stable in the context graph. A detailed descrip- 
tion of an algorithm that employs this idea is presented elsewhere [Ml. 

To see how an ordering policy might take advantage of commutative operations, 
consider an object that supports operations (Y and /3, where multiple invocations 
of (Y can be executed in an arbitrary order with respect to each other. For example, 
(Y might insert an element into a set and @ might perform some computation on 
the set and then clear the set. Because one is usually interested in applying the 
operations in an order that is consistent with the order in which the operations 
are invoked, the ordering policy is similar to the one given for the ordered 
broadcast in Section 4.2; that is, it moves through each participant’s view in 
waves. The key difference is that we can gain additional concurrency by not 
waiting for the wave to be complete before executing some of the operations in 
the wave. 

Consider the three graphs in Figure 9, where each message is denoted by the 
operation it represents and the previous operations that have been executed are 
omitted. Dotted lines denote a path between two message nodes. In (a), the 
current wave contains five operations that were invoked at the same logical time. 
Assuming the ordering policy gives preference to LY operations over ,6 operations, 
the local participant can execute all the a! operations in any order before knowing 
that the wave is complete; i.e., before any message in the wave becomes stable. 
Once the wave is complete and all the cy operations have been executed, the /I 
operations can be sorted and executed serially. In general, it is possible for one 
or more other participants to not receive the p operations in the wave for some 
time, and for those participants to continue to invoke LY operations, as depicted 
in (b). In this case, as long as those (Y operations do not depend on a ,6 operation 
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Fig. 9. Example operation invocations. 

that has not yet been executed, the local participant may continue to execute the 
CY operations. Notice that newly arriving (Y operations continue to be executed 
even after a /3 operation is present in the local view. Finally, (c) shows the 
condition that terminates the set of LY operations: Each participant has a p 
operation in its view that has not been executed. Once this happens, all future 
operations sent to the conversation by that participant must be in the context of 
the ,6 operation, and therefore must follow it in the total order of operations 
executed by that participant. The example illustrates two possible scenarios: a 
participant sends a /I operation or it sends an CY operation in the context of some 
other participant’s 0 operation. 

5. REINTEGRATING FAILED PARTICIPANTS 

When a processor fails, one or more participants may depart from an ongoing 
conversation. Section 3 describes the Psync mechanisms that can be used to 
accommodate situations where the participants remain failed for the duration of 
the conversation. Although this situation is common, there are also cases where 
it is necessary for a participant to recover and rejoin a conversation. For example, 
the two-phase commit protocol used to maintain consistency between copies of a 
replicated database despite failures requires that the processes implementing the 
protocol recover to guarantee that changes to the database are applied to all 
copies [ 121. 

Although the specifics of participant reintegration are highly application 
dependent, there are generally two tasks that must be accomplished before normal 
processing can continue. First, the functioning participants must be notified that 
the failed participant wants to be reintegrated into the conversation. This 
notification facilitates the execution of an application-level join protocol, the 
inverse of the delete protocol mentioned in Section 3.2.4. The join protocol 
typically causes each functioning participant to return the recovering participant 
into its active participant set by invoking the mask-in operation. One example 
of such a protocol can be found in [ 181. 

Second, an appropriate internal state of the participant must be restored. This 
state includes the application’s local variables, the local image of the context 
graph, and the participant’s view of the conversation. One common way to 
facilitate the restoration of the local variables is for the participant to checkpoint 
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them onto nonvolatile storage; the participant then reads the checkpoint upon 
host restart. Psync is responsible for restoring the local image. The application 
and Psync share responsibility for restoring the participant’s view. 

This section describes Psync support for participant reintegration. It first 
focuses on support provided for checkpoint-based techniques. It then discusses 
an alternative in which the internal state of the participant is recreated by 
rebuilding the local context graph image and reexecuting the process from its 
initial state. 

5.1 Using Checkpoints 

Recovery schemes that use checkpoints depend on the participant periodically 
writing its state to nonvolatile storage. Following a failure, the participant reads 
this saved state to recover its local variables. It then executes the Psync restart 
operation to initiate recovery of the context graph. The form of this operation is 
as follows: 

conv = restart(cid, pid, participant-set, leaf-mid-set) 

Analogous to active-open, restart returns a handle for the conversation. The first 
argument is the system-wide unique identifier (cid) for the conversation, the 
second argument identifies the invoking participant, the third identifies the 
conversation’s participant set, and the fourth gives the conversation-wide unique 
identifiers (mids) for the set of messages that are to form the leaves of the 
participant’s view of the context graph upon recovery. Specifying the view is 
important because it defines the point at which the process starts receiving new 
messages. The restart operation is issued by a recovering participant in lieu of 
the standard operations for opening a new conversation. For example, it might 
be used in recovery code that is executed immediately upon processor restart, 
instead of some standard prologue code charged with opening tiles and establish- 
ing conversations on the initial execution. 

The values used as arguments to restart are typically included in the checkpoint 
so that they will be available following a failure. Psync provides operations that 
allow the application to retrieve the values into local variables. The participant 
set is retrieved by the participants operation described in Section 2. The cid and 
mids are retrieved using the following two operations: 

cid = get-cid(conv) 
mid-set = get-mids(node-set, conv) 

respectively. The node-set given as an argument to get-mids is the collection of 
nodes for which identifiers are desired, i.e., the set of messages the process wants 
to form the leaves of its view upon recovery. The related issues of which mids to 
include in the checkpoint and when checkpoints should be taken are addressed 
below. 

The restart operation serves two purposes: to inform other participants that 
the invoking participant has restarted and to initiate reconstruction of the local 
image of the context graph. Psync accomplishes this by sending a special RS 
(restart) message to all hosts on which a participant resides. The form of an RS 
message is shown in Figure 10. The cid field is the identifier for the conversation 
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II Fig. 10. An RS message. 

and thepid field identifies the invoking participant; both are given as an argument 
to restart. 

When an RS message is received at a host, the local instance of Psync performs 
two actions. First, it notifies the local participant of the restart event; this is 
implemented as an out-of-band control message that is delivered to the local 
participant. As outlined above, this notification usually results in the local 
participant returning the recovering participant to its active participant set using 
the mask-in operation. The notified process might also initiate the execution of 
an application-level join protocol. 

Second, the local instance of Psync transmits the messages that make up the 
leaves of its context graph image to the participant that sent the restart message; 
these messages are sent as standard AN messages. As these messages are received 
at the restarting host, the local instance of Psync reconstructs the lost context 
graph image according to the standard lost message protocol described in 
Section 3.2. That is, upon receipt of the first retransmitted messages m, Psync 
transmits an RR to the sender of m requesting the contents of the graph from 
the root to the node representing m. Should that request fail, the request is 
broadcast to all participants. Portions of the graph that are not in the context of 
m (e.g., siblings of m) are retrieved as required to fill in the missing context of 
other messages as additional messages arrive from other hosts, Note that this 
procedure recovers the host’s image of the context graph. Once the image has 
been recovered, the local participant’s view is trivially reestablished as specified 
by the set of mids given as an argument to restart. 

It is possible, given additional failures, that the entire graph will not be 
retrieved even when the request is broadcast. Define the failure period of a 
participant to be the time period beginning at the time of the failure and ending 
at the point when the participant’s state and view have been reconstructed. If 
the failure period of n - 1 other participants overlap with the failure period of a 
recovering participant p, it can be guaranteed only that the portion of the graph 
from the root to the lowest n-stable messages will be available upon recovery.” 
To see this, consider such an n-stable message m,. Since m,q is in the context of 
messages sent by n - 1 participants in addition to the participant that sent m,, 
at least n context graph images will contain all messages from the root to m,q. 
Given that only n - 1 participants have overlapping failure periods, one of the 
images containing that portion of the graph is assured to be available. It is worth 
emphasizing that the above is a worst-case scenario; it is possible that messages 
below m, in the context graph will be retrieved, depending on exactly which 
participants fail when. 

As described so far, the recovering host depends entirely on the retransmission 
of messages from other hosts to reconstruct its image. In fact, each host is able 

” This discussion assumes a one-to-one correspondence between images and participants. 
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to reduce its dependency on the other hosts by saving a copy of the messages in 
its image to nonvolatile storage. Thus, a restarting host first directly recovers a 
portion of its image from nonvolatile storage and then “falls back” on the above 
procedure to recover the rest of the image. An appealing aspect of this scheme is 
that the changes to the image on nonvolatile storage can be performed asynchron- 
ously. There is no requirement that the volatile and nonvolatile images be updated 
atomically or even that the changes to the nonvolatile copy keep pace with 
changes to the copy in volatile memory. Upon recovery, those portions not 
available in nonvolatile storage can be retrieved from other images as described 
above. Moreover, because a given host might be asked to retransmit an early part 
of its context to a recovering host, it cannot free stable messages as described in 
Section 3.3. In other words, the garbage collection mechanism must be modified 
to write messages to nonvolatile storage rather than free them. 

On a related topic, the copy of the context graph on nonvolatile storage need 
not be allowed to grow infinitely large. Two things can be done to limit the size 
of a context graph. First, Psync can easily be extended to allow participants to 
explicitly free portions of the graph. Second, the participants in a conversation 
can reach agreement to close the current conversation and start a new 
conversation. 

Finally, consider the issue of which message identifiers should be saved for 
later use in the restart operation and the related question of checkpoint frequency. 
To a large degree, the answers depend on how much reexecution, if any, the 
application can tolerate. This results from the fact that messages in the context 
graph between the nodes saved in the checkpoint and the leaves at the time of 
failure will be rereceived-and presumably reprocessed-following recovery. One 
conservative strategy would be to take a checkpoint following each message 
transmission. At this point, there is only one leaf in the view, minimizing the 
number of message identifiers that must be saved on nonvolatile storage. Also, 
since any additional state transitions made by the participant prior to a failure 
cannot have had any external effect, it is usually straightforward for an applica- 
tion to reexecute that portion of the computation. A less conservative strategy is 
discussed in the next section. 

5.2 Using Participant Reexecution 

As noted above, a typical recovery scenario involves having the participant start 
executing at the most recent checkpoint, with messages being received again and 
reprocessed if they arrived after the checkpoint but prior to the failure. It is 
possible to carry this notion of reexecution to its logical conclusion by reexecuting 
the failed participant from its initial state, thereby avoiding the need to check- 
point altogether. If the same sequence of messages is used as input, this technique 
will, under certain assumptions, reestablish the same state and conversation view 
as existed when the failure occurred. As detailed below, Psync provides an 
attractive and automatic alternative for achieving the same functionality. Not 
only does the context graph encapsulate the entire communication history of the 
recovering process, but its realization as a collection of replicated images allows 
recovery of messages despite multiple host failures. We note in passing that 
similar functionality has been implemented elsewhere by logging messages onto 
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nonvolatile storage as they are received [24], logging them at a monitor site [22], 
or by retaining copies of messages in the volatile storage of sending processes 
[15, 16, 251. 

There are two conditions that must be satisfied to guarantee recreation of the 
appropriate state and view. One is that each participant in a conversation must 
be deterministic. For our purposes, this means that a process’s state transitions 
and generated messages (i.e., its output) are determined solely by the sequence 
of messages it receives (i.e., its input). This assumption is satisfied by most 
applications. 

The second condition is that a sequence of messages received during reexecu- 
tion of a participant must be exactly the same as the sequence received during 
its original execution. In other words, the same total ordering of messages must 
be presented to the application during the two executions. Since the context 
graph only directly preserves the appropriate partial ordering of messages, an 
application must impose an ordering filter on the conversation, e.g., the ordered 
broadcast filter described in Section 4.2. In general, any filter that preserves the 
total ordering at a given participant in subsequent executions is sufficient. The 
use of ordered broadcast is actually slightly stronger than necessary since its 
guarantees an identical total ordering at all participants. 

The restart operation described above also serves as the mechanism to initiate 
message replay. This is achieved by specifying a null value for the leaf-mid-set 
argument to restart. When invoked in this manner, the local image of the context 
graph will be reconstructed exactly as described above, but the participant’s view 
will be reinitialized to the empty graph. In other words, the participant will begin 
receiving messages again starting at the root of the graph. 

Following completion of restart, the participant reestablishes its internal state 
and conversation view simply by executing normally. Messages sent by the 
application that are already in the context graph are suppressed at the sending 
host. This suppression is actually an optimization. If Psync assigns the same 
identifiers to messages during reexecution that it did during the initial execution, 
then the messages can be sent because they are automatically discarded as 
duplicates at the receiving host. 

6. PERFORMANCE 

We have implemented Psync in the x-kernel: an operating system kernel designed 
to facilitate experimentation with network protocols [ 141. The implementation 
corresponds to the protocol described in Section 3; it does not currently support 
the reintegration of failed processes as described in Section 5. The implementa- 
tion is both substantial and robust: it allows processes on the same host to share 
a conversation, it has supported conversations with tens of thousands of mes- 
sages, and has successfully recovered from significant rates of packet loss. By 
implementing Psync in the x-kernel, we have been able to evaluate it under 
conditions that match its intended role as a low-level IPC mechanism, and, in 
particular, we have been able to make meaningful performance comparisons with 
other kernel-based protocols. This section reports on the performance of Psync 
and comments on several implementation details that affect its performance. 
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6.1 Experiments 

The first set of experiments involve measuring the round trip delay for Psync, 
as well as three other IPC protocols: an unreliable datagram protocol (UDP), a 
remote procedure call protocol [I], and a virtual circuit protocol (TCP). Note 
that although Psync supports communication among more than two processes, 
experimenting with Psync in the one-to-one case is a good measure of the 
overhead it imposes on sending and receiving messages. 

For the purpose of the experiments, the x-kernel was configured as follows: 
one-byte messages were exchanged between a pair of user processes, all four 
protocols were implemented on top of IP [20], and the tests were run on a pair 
of Sun 3/75s connected by a lightly loaded 1OMbs ethernet. The results are 
presented in Table I. The numbers were derived by running each experiment for 
10,000 round trips (20,000 total messages) and reporting the elapsed time every 
1,000 round trips. Each of these measurements was then divided by 1,000 to 
produce an average round trip delay. Although we do not report the standard 
deviation of the various samples, they were observed to be small. 

Psync’s round trip delay of 4.0 msec is what one would expect: it falls between 
a trivial protocol (UDP) and a rather complex protocol (TCP). That Psync has 
lower latency than TCP is encouraging: it means that Psync is a viable alternative 
protocol for one-to-one communication, especially considering that there is no 
overhead involved in starting a conversation. However, that Psync has a greater 
latency than RPC is disappointing. One (correctable) factor that we believe 
contributes to Psync’s greater latency is that it incurs a moderate amount of 
overhead for allowing multiple processes on the same host to participate in a 
given conversation. 

A second set of experiments measures Psync’s performance with more than 
two participants. The experiments involve running an application program that 
passes a token among a set of processes that execute on different hosts. For 
comparative purposes, we implemented the same application program on top of 
TCP. In the TCP case, each process establishes a distinct virtual circuit to each 
of the other processes. Thus, each time an application process sends a message, 
it actually sends a copy of the message to all of the other participants using each 
of these circuits. To make the experiment fair, we configured Psync to use 
point-to-point message passing rather than take advantage of the Ethernet’s 
broadcast facility. That is, whenever an application process sends a Psync 
message, Psync in turn sends an IP datagram to each of the participating hosts. 

The results are given in Table II. The numbers were derived by allowing each 
application process to send and receive 20,000 messages, with each process 
reporting the elapsed time every 1,000 messages. Each of these measurements 
was then divided by 1,000 to produce the average delay per message. As in the 
first set of experiments, the variation in the elapsed times was observed to be 
small. Note that in the case of two participants, the token-passing application 
program is equivalent to the round-trip program used in the first set of experi- 
ments. However, the times reported in Table I are twice those reported in 
Table II. This is because the Table I times are based on 1,000 round trips 
(2,000 messages), while the Table II times are based on 1,000 messages. 
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Table I. Comparing Psync with other 
Protocols 

Protocol 

UDP 
RPC 
Psync 
TCP 

Latency 

2.9 ms 
3.4 ms 
4.0 ms 
4.6 ms 

Table II. Token Passing with Many Hosts 

Hosts Psync 

2 2.0 ms 
4 3.0 ms 
6 3.8 ms 
8 4.5 ms 

TCP 

2.3 ms 
3.6 ms 
4.8 ms 
7.0 ms 

First, observe that Psync continues to perform well as more and more partici- 
pants (hosts) are added to a conversation. Of particular importance is the fact 
that the incremental cost for each additional process is less for Psync than it is 
for TCP. This is the case even though Psync provides a more powerful abstrac- 
tion: it preserves the relationship among messages from all participants, whereas 
TCP provides no information about messages that arrive on different virtual 
circuits. 

Second, observe that TCP’s performance grows unexpectedly worse in the 
eight-host case. This performance drop is a result of a measurable increase 
in the rate at which packets were lost. Specifically, because we were sending 
point-to-point messages, the load on the Ethernet became substantial as addi- 
tional hosts were added to the experiment. This heavy load, in turn, exposed a 
timing bug in the Ethernet driver that caused packets to be dropped. Both Psync 
and TCP experienced negligible packet loss in the two- and four-host cases, 1 in 
1000 messages were lost in the six-host case, and 1 in 150 messages were lost in 
the eight-host case. TCP’s performance suffers more from message loss than 
does Psync’s because for every lost message TCP has to wait for a timer to expire 
before it can request a retransmission, whereas Psync is able to request the 
retransmission as soon as a message that is in the context of the missing message 
arrives from another participant. 

6.2 Implementation Issues 

The data structures and algorithms used to implement the context graph are 
tuned for the send and receive operations. Specifically, a hash table is used to 
map message identifiers (mids) into the corresponding graph nodes, and a list of 
pointers to the leaf nodes of a view is maintained for each participant. This 
means that both send and receive can be implemented in linear time proportional 
to the number of participants in the conversation-i.e., the upper bound on the 
indegree/outdegree of each node-but independent of the size of the graph. Also, 
because Psync piggybacks the conversation establishment information on the 
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first data message and no termination messages are exchanged, the cost to begin 
and end a conversation is negligible. 

The current implementation can be configured to use either host-specific 
addresses or broadcast addresses. In the former case, a given Psync message is 
sent to each unique host on which a participant resides. In the latter case, a 
single Psync message is broadcast to all hosts. For the purpose of the experiments, 
host-specific addresses were used so as to facilitate a fair comparison with TCP. 
On a related note, while Psync’s active-open operation is described as taking a 
set of participant ids as an argument, it could just as well take a single group id 
instead. To do so, however, the membership of the group must remain constant 
throughout the lifetime of the conversation and it must be possible to expand 
the group id into a set of individual process ids at each host. This is because 
Psync must be able to enumerate all the participants in the conversation in order 
to implement the stable operation. 

Finally, because it is desirable to encapsulate what the application views as a 
logical message in a single Psync message, Psync uses an underlying blast protocol 
to send large messages. The interesting aspect of this blast mechanism is that it 
is encapsulated as a distinct protocol rather than embedded in Psync [ 11. 

7. RELATED WORK 

Recent work on interprocess communication has explored several dimensions of 
the problem space, including support for group communication [8], the exchange 
of very large messages [9, 291, alternative send/receive semantics [6], guarantee- 
ing a consistent order on message delivery in a many-to-many communication 
[3, 41, and techniques for logging messages so as to facilitate recovery from 
processor failure [15, 16, 22, 24, 251. The work presented in this paper addresses 
the latter two issues. 

Psync is most closely related to the ISIS protocol suite-ABCAST (atomic 
broadcast), CBCAST (causal broadcast), and GBCAST (group broadcast) [3,4]. 
From Psync’s perspective, ABCAST and CBCAST are specific message-ordering 
disciplines that can be implemented on top of the context graph: ABCAST 
supports a total ordering of messages similar to the ordered broadcast mechanism 
described in Section 4.2, and CBCAST supports the same partial ordering as 
Psync. In fact, Psync can be viewed as an optimistic implementation of CBCAST. 
This is because Psync only transmits the messages from the context of a given 
message when the context messages are missing at a given image. In contrast, 
the original implementation of CBCAST sent a sufficient set of predecessor 
messages (rather than just message ids) along with each message. This technique 
was further optimized so that unnecessary messages would not be piggybacked 
on a given message whenever the sending host had direct knowledge that it (as 
opposed to some other host) had already sent those messages. CBCAST is 
currently being reimplemented to more closely adhere to the protocol described 
in Section 3. 

A more important difference is that CBCAST does not explicitly preserve the 
context graph and make it available to the application. Thus, it would not be 
possible to implement ABCAST on top of CBCAST in the same way one can 
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implement an ordered broadcast on top of Psync. Also, instead of being able to 
use a single protocol (i.e., Psync) to implement the replicated object application 
outlined in Section 4.3, the application would have to use a combination of 
ABCAST and CBCAST. 

Also, because ISIS is designed to be used directly by application programs, it 
provides functionality not directly available in Psync. For example, the ISIS 
protocols provide elaborate failure detection and group management support, 
whereas Psync off-loads much of this functionality to library protocols. In fact, 
much of the complexity of GBCAST is concerned with inserting process failure 
and group join events into ABCAST and CBCAST message orderings in a 
consistent way. In other words, ISIS is designed to subsume a large amount of 
functionality in a single package, whereas Psync is explicitly designed to provide 
only the necessary support for maintaining the ordering among messages; library 
protocols take advantage of this ordering to implement various levels of service. 

In addition to ordering messages, the context graph very naturally lends itself 
to preserving the history of messages exchanged in a distributed application. 
Similar to message-logging systems, Psync records the message history across 
multiple machines; i.e., each host’s image preserves a portion of the context 
graph. It is also the case that the cost of logging messages in Psync does not 
impact the performance of the application when there are no failures. This is 
because messages can be written to nonvolatile storage asynchronously; the 
nonvolatile copy of the context graph need not be kept identical to the volatile 
copy. Psync differs from message-logging systems in that it integrates the logging 
of messages with the preservation of a meaningful ordering among messages. 
That is, whereas logging systems generally augment an existing many-to-many 
communications protocol, logging in Psync is an automatic by-product of main- 
taining the context graph. 

Finally, note that many of the ideas underlying Psync are founded in the space- 
time view of distributed computing. For example, the context relation can be 
viewed as a variation of the happened before relation [17]. As another example, 
when a message is stable, it is as if it has been fully acknowledged [26]; that is, 
an acknowledgment message from all other participants has been received. 

8. CONCLUSIONS 

One of the most difficult issues facing designers of distributed systems is the 
level at which the timing and message-ordering problem should be addressed: 
within the communication system or by the application. The underlying thesis 
of this paper is that the mechanism that preserves timing information should be 
implemented within the communication system, but the policy that dictates how 
the timing information is used to enforce various synchronization constraints 
belongs in the application. One of the contributions this paper makes is to 
distinguish between policy and mechanism. In particular, it shows how the 
conversation abstraction can be provided in the communication system at little 
cost and how it can be used to implement various application-dependent com- 
munication and synchronization paradigms. 
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Psync is a low-level IPC protocol that implements the conversation abstraction 
in a distributed environment. Psync can be built directly on an unreliable 
communications network at little cost. This is because messages are sent asyn- 
chronously, extra protocol messages are only exchanged in the case of failure, 
constant-time algorithms are used for manipulating the context graph, and the 
amount of timing information sent with each message is insignificant. Experi- 
ments substantiate this claim: Psync’s performance falls between that of a simple 
datagram protocol (UDP) and a virtual circuit protocol (TCP). 

Our experience using conversations suggests that Psync, taken together with 
a collection of library routines, offers a simple and elegant solution to the 
communication needs of a broad spectrum of distributed applications. We believe 
this is due to the fundamental nature of the partial ordering of messages in 
interprocess communication. The context graph not only provides a powerful 
mental tool for thinking about other protocols, but also a sound programming 
base for implementing them. For example, distributed applications do not have 
to pay for a total ordering of messages when a partial ordering is sufficient. As 
demonstrated by the replicated object example, being able to inspect the context 
graph allows the application to choose the partial order when it is sufficient, yet 
synchronize by waiting for a message to stabilize when a total order is necessary. 
This information is not made available by any other single mechanism. 

Finally, because of the way Psync automatically distributes the history of a 
conversation over multiple hosts, it lends itself to building applications that are 
able to recover from processor failures. The storage demands of preserving this 
history over long periods of time are significant, however. For example, to support 
applications that do not need to recover from processor failures, the current 
implementation stores only those messages that have not yet become stable. In 
contrast, an implementation that supports participant reintegration must store 
the entire context graph. Although the messages in the graph can be off-loaded 
to nonvolatile storage, this still involves a significant cost. Our belief that the 
mechanism should be separated from the policy argues that the implementation 
should allow the application to specify to what extent the context graph should 
be preserved, rather than having the storage policy mandated by the implemen- 
tation. We will maintain this philosophy as we extend the implementation of 
Psync to support the participant reintegration. 

ACKNOWLEDGMENTS 

Greg Andrews, Norm Hutchinson, and the referees made valuable comments on 
earlier drafts of this paper, leading to significant improvements in the presenta- 
tion. Vie Thomas, Shivakant Mishra, David Bakken, and Peter Druschel have 
contributed to Psync’s implementation. 

REFERENCES 

1. ABBOTT, M., HUTCHINSON, N., O’MALLEY, S., AND PETERSON, L. RPC in the x-kernel: 
Evaluating design alternatives. To appear in Proceedings of the 12th Symposium on Operating 
System Principles, Dec. 1989. 

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989. 



Preserving and Using Context Information 245 

2. AHO, A., CAREY, M., AND ULLMAN, 3. The transitive reduction of a directed graph. SIAM J. 
Comput. (1972), 131-137. 

3. BIRMAN, K., AND JOSEPH, T. Reliable communication in the presence of failures. ACM Trans. 
Comput. Syst. 5, 1 (Feb. 1987), 47-76. 

4. BIRMAN, K., AND JOSEPH, T. Exploiting virtual synchrony in distributed systems. In Proceed- 
ings of the 11th Symposium on Operating System Principles (Austin, Tex., Nov. 8-11, 1987). 
ACM, 1987, pp. 123-138. 

5. BIRRELL, A., AND NELSON, B. Implementing remote procedure calls. ACM Trans. Comput. 
Syst. 2, 1 (Feb. 1984), 39-59. 

6. CARRIERO, N., AND GELERNTER, D. The S/Net’s Linda kernal. ACM Trans. Comput. Syst. 4,2 
(May 1986), 110-129. 

7. CHANG, J., AND MAXEMCHUK, N. Reliable broadcast protocols. ACM Trans. Comput. Syst. 2, 3 
(Aug. 1984), 251-273. 

8. CHERITON, D., AND ZWAENEPOEL, W. Distributed process groups in the V kernel. ACM Trans. 
Comput. Syst. 3, 2 (May 1985), 77-107. 

9. CHERITON, D. VMTP: A transport protocol for the next generation of communications systems. 
In Proceedings of SIGCOMM ‘86 Communications, Architectures and Protocols (Stowe, Vt., Aug. 
5-7, 1986). ACM, New York, 1986, pp. 406-415. 

10. CRISTIAN, F. Agreeing on who is present and who is absent in synchronous distributed systems. 
In Digest of Papers, Fault Tolerant Computing Systems 18. IEEE Computer Society Press, New 
York, June 1988,206-211. 

11. GIFFORD, D., AND GLASSER, N. Remote pipes and procedures for efficient distributed commu- 
nication. ACM Trans. Comput. Syst. 6, 3 (Aug. 1988), 258-283. 

12. GRAY, J. Notes on database operating systems. In Lecture Notes in Computer Science 60, 
Springer-Verlag, Berlin, 1987, 393-481. 

13. HERLIHY, M. Extending multiversion time-stamping protocols to exploit type information. 
IEEE Trans. Comput. C-36,4 (Apr. 1987), 443-448. 

14. HUTCHINSON, N., AND PETERSON, L. Design of the x-kernel. In Proceedings of SIG- 
COMM ‘88-Symposium on Communication Architectures and Protocols (Stanford, Calif., Aug. 
16-18, 1988). ACM, New York, 1988, pp. 65-75. 

15. JOHNSON, D., AND ZWAENEPOEL. Sender-based message logging. In Proceedings of the Seuen- 
teenth International Symposium on Fault-Tolerant Computing (June 1987), pp. 14-19. 

16. JOHNSON, D., AND ZWAENEPOEL. Recovery in distributed systems using optimistic message 
logging and checkpointing. In Proceedings of the 7th PODC (Aug. 1988), to appear. 

17. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 
21, 7 (July 1978) 558-565. 

18. MISHRA, S., PETERSON, L., AND SCHLICHTING, R. Implementing fault-tolerant replicated 
objects using Psync. To appear in the 8th Symposium on Reliable Distributed Systems, Oct. 1989. 

19. POSTEL, J. User datagram protocol. In Request For Comments 768, USC Information Sciences 
Institute, Marina de1 Rey, Calif., Aug. 1980. 

20. POSTEL, J. Internet protocol. In Request For Comments 791, USC Information Sciences Insti- 
tute, Marina de1 Rey, Calif., Sept. 1981. 

21. POSTEL, J. Simple mail transfer protocol. In Request for Comments 821, USC Information 
Sciences Institute, Marina de1 Rey, Calif., Aug. 1982. 

22. POWELL, M., AND PRESOTTO, D. Publishing: A reliable broadcast communication mechanism. 
In Proceedings of the 9th Symposium on Operating System Principles (Bretton Woods, N.H., 
Oct. 11-13, 1983). ACM, 1983, pp. 100-109. 

23. SALTZER, J., REED, D., AND CLARK, D. End-to-end arguments in system design. ACM Trans. 
Comput. Syst. 2,4 (Nov. 1984), 277-288. 

24. STROM, R., AND YEMINI, S. Optimistic recovery in distributed systems. ACM Trans. Comput. 
Syst. 3,3 (Aug. 1985), 204-226. 

25. STROM, R., BACON, D., AND YEMINI, S. Volatile logging in n-fault-tolerant distributed systems. 
In Proceedings of the Eighteenth International Symposium on Fault-Tolerant Computing (June 
1988), to appear. 

26. SCHNEIDER, F. Synchronization in distributed programs. ACM Trans. Program. Lang. Syst. 4, 
2 (Apr. 1982), 125-148. 

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989. 



246 - L. L. Peterson et al. 

27. TANENBAUM, A. Computer Networks. 2nd ed., Prentice-Hall, Englewood Cliffs, N.J., 1988. 
28. USC INFORMATION SCIENCES INSTITUTE. Transmission control protocol. In Request For Com- 

ments 793, Marina de1 Rey, Calif., Sept. 1981. 
29. ZWAENEPOEL, W. Protocols for large data transfers over local networks. In Proceedings of the 

Ninth Data Communications Symposium (Aug. 1985), pp. 22-32. 

Received June 1988; revised May 1989; accepted May 1989 

ACM Transactions cm Computer Systems, Vol. 7, No. 3, August 1989 


