
Preserving and Using Context Information
in Interprocess Communication

LARRY L. PETERSON, NICK C. BUCHHOLZ, and RICHARD D. SCHLICHTING

University of Arizona

When processes in a network communicate, the messages they exchange define a partial ordering of
externally visible events. While the significance of this partial order in distributed computing is well
understood, it has not been made an explicit part of the communication substrate upon which
distributed programs are implemented. This paper describes a new interprocess communication
mechanism, called Psync, that explicitly encodes this partial ordering with each message. The paper
shows how Psync can be efficiently implemented on an unreliable communications network, and it
demonstrates how conversations serve as an elegant foundation for ordering messages exchanged in
a distributed computation and for recovering from processor failures.

Categories and Subject Descriptors: C.2.4 [Computer Communication Networks]: Distributed
Systems-distributed applications, distributed databases, network operating systems; D.4.5 [Operating
Systems]: Reliability-checkpoint/restart, fault-tolerance

General Terms: Design, Reliability
Additional Key Words and Phrases: Context graph, happened before

1. INTRODUCTION

An interprocess communication (IPC) mechanism provides an abstraction
through which processes that do not necessarily share an address space can
exchange messages. While there exists considerable experience with IPC mech-
anisms for one-to-one communication-examples of such mechanisms include
datagrams, virtual circuits, remote procedure calls [5], and channels [llJ-much
less is understood about IPC mechanisms for many-to-many communication.
Work in this area includes low-level broadcast protocols [7] and high-level
programming toolkits [3,4].

This paper introduces a new IPC protocol, called Psync (for “pseudosynchron-
ous”), that supports the exchange of messages among a well-defined set of
processes. Psync explicitly preserves the partial ordering of messages exchanged
among a collection of processes in the presence of communication and processor
failures. Because of the fundamental nature of this partial order, Psync has
several desirable characteristics: it can be implemented on an unreliable network

This work was supported in part by NSF grants DCR 8402090 and CCR-8701516, and Air Force
Office of Scientific Research grant AFOSR-84-0072.
Authors’ address: Department of Computer Science, University of Arizona, Tucson, AZ 85721.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0734-2071/89/0800-0217 $01.50

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989, Pages 217-246.

218 . L. L. Peterson et al.

with performance comparable to conventional one-to-one protocols like UDP
[19] and TCP [28], it supports elegant implementations of a wide range of
existing communication protocols, it allows applications to directly access infor-
mation not made available by other IPC mechanisms, and it facilitates recovery
from processor failure.

Psync is a low-level protocol designed to support a variety of high-level
protocols and distributed applications. This design has two implications [23].
First, Psync makes very few assumptions about the underlying network. For
example, it does not assume expensive mechanisms such as reliable broadcast
are available. Second, Psync defers to higher levels any functionality that not all
applications need. In other words, Psync only maintains the partial order among
messages; a collection of “library routines” enforce various ordering disciplines
using Psync.

The paper is organized as follows. The next two sections describe Psync:
Section 2 gives a formal definition of the abstraction upon which Psync is based,
and Section 3 describes an algorithm for implementing Psync in a distributed
system. By analogy with virtual circuits, we first define a FIFO queue and then
describe the sliding window protocol by which a queue can be implemented on
two processors connected by an unreliable network. Section 4 then demonstrates
several applications of Psync, and Section 5 shows how Psync can be extended
to support the reintegration of failed processes into an ongoing conversation.
Finally, Section 6 reports on the performance of Psync, Section 7 comments on
related work, and Section 8 offers some conclusions.

2. ABSTRACTION

Psync is based on a conversation abstraction that provides a shared message
space through which a collection of processes exchange messages. The general
form of this message space is defined by a directed acyclic graph that preserves
the partial order of the exchanged messages. For the purpose of this section, we
view a conversation as an abstract data type that is implemented in shared
memory; Section 3 gives an algorithm for implementing a conversation in an
unreliable network.

A conversation behaves much like any connection-oriented IPC abstraction: a
well-defined set of processes-called participants-explicitly open a conversation,
exchange messages through it, and close the conversation. Only processes that
have been identified as participants may exchange messages through the conver-
sation, and this set is fixed for the duration of the conversation. Processes begin
a conversation with the operations:

conv = active-open (participant-set)
conv = passive-open (pid)

The first operation actively begins a conversation with the specified set of
participants. The operation creates an empty conversation-that is, one that
contains no messages-and the invoking process is not blocked. The second
operation passively begins a conversation. The argument identifies the invoking
process. This process is blocked until some active process starts a conversation
that contains the invoking process in its participant set. Pending conversations
ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information l 219

for a process, those for which the process has not invoked passive-open, are
queued on the passive-open operation. The conv returned by the two operations
can be thought of as an external handle for that process’ view of the conversation.
A process closes its view of a conversation with a

close(conv)

operation.
Once a process possesses a conv handle, it can send and receive messages using

the operations:

node = send(msg, conv)
node, msg = receive(conv)

where msg is an actual message-an untyped block of data-and node is a handle
or capability for that message. Each participant is able to receive all the messages
sent by the other participants in the conversation, but it does not receive the
messages it has sent. Fundamentally, each process sends a message in the context
of those messages it has already sent or received. Informally, “in the context of”
defines a relation among the messages exchanged through the conversation. This
relation is represented in the form of a direct acyclic graph, called a content
graph. The semantics of send and receive are defined in terms of this graph.

Formally, let P denote the set of participants in a conversation and let M
denote the set of messages they exchange. Each element of M encapsulates both
the actual message and the sender’s identity. Define < (read “precedes”) to be a
transitive relation on M, such that m < m’ if and only if message m’ is sent in
the context of message m; that is, the process that sent m’ had either sent m or
already received m. Let G, denote the directed acyclic graph representation
of -c. A context graph, denoted G = (M, E), is taken to be the transitive reduction
of G, [2]. That is, G contains all the vertices and none of the redundant edges of
G,, where edge (m, m’) is redundant if G, also contains a path from m to m’ of
length greater than one.

Figure 1 gives G, and G for a conversation in which m, was the initial message
of the conversation; m2 and m3 were sent by processes that had received m,, but
independent of each other; m4 was sent by a process that had received ml and
m3, but not m2; and m5 was sent in the context of all the other messages. We
refer to the nodes to which a given message is attached in G as the message’s
immediate predecessors. For example, m2 and m4 are the immediate predecessors
of m5. Also, two messages that are not in the context of the other are said to
have been sent at the same logical time. For example, m2 and m3 were sent at the
same logical time.

Each participant in a conversation has a view of the context graph that
corresponds to those messages it has sent or received. Let M,, C M denote the
subset of messages sent or received by participant p E P. Process p’s view,
denoted V,, is a restriction of G to the vertices in M, and the edges in E incident
upon those vertices. A process with a view equal to G has received all the messages
sent by other participants. Messages outside the participant’s view, that is, those
in the set (M - M,), are said to be outstanding. For example, at the time a
participant sent m4, its view consisted of ml and ma; m2 was outstanding.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

220 - L. L. Peterson et al.

\
I

/ m4

G< G

Fig. 1. Example context graph.

When process p invokes the receive operation, the “earliest” outstanding
message is returned. Formally, receive returns an outstanding message m in G
such that there is no other outstanding message m’ for which rn’ < m. Also, VP
is extended to include m. The receive operation blocks if there are no outstanding
messages. The abstraction has the important property that for any pair of
messages m and m’ received by a process, m is received before message m’ if
m -C m’. Thus, when a process receives a given message, it is guaranteed to have
already received all messages that precede it in the context graph. For example,
(ml, m 2, m3, m4, md, (ml, m3, m2, w, mg), and (ml, m3, m4, m2, 4, are all

valid total orderings for returning the messages in Figure 1, where different
participants might see a different ordering.

When processp applies the send operation to message m, m is added to M and
the edge (m,, m) is added to E for each node ml that is a leaf of VP. Also, p’s view
is extended to include m, even though a participant never receives a message it
sent. Note that the data structures that represent a conversation include a single
“shared,, context graph and a “private” view of each participant. It is therefore
accurate to think of the context graph as the principal data structure and
each view as a window on G. That is, while the leaves of VP are used to deter-
mine how a message sent by p is inserted into the conversation, the message
is attached to G, and as a consequence, available for the other participants
to receive.

Notice that the send and receive operations modify the context graph in such
a way that G remains the transitive reduction of G,. Two conditions must be
satisfied for this to be true. First, it must be the case that a path from ml to m2
in G implies m, < m2. To see this, observe that a given process always receives
message m before m’ if m -C m’. As a consequence, the participant’s view is
always a connected subgraph of G, and it is therefore not possible to send a
message in the context of one message that is not also in the context of all
messages that precede it in the graph. Second, it must be the case that the
existence of a path of length greater than one from node ml to node m2 implies
that there cannot exist an edge from ml to m2. To see this, observe that each
new message is attached to the leaves of the sending participant’s view. Because
ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context information l 221

Fig. 2. Another example context graph.

these nodes are leaves, there cannot also be a path through another node to the
new node.

Also note that a message sent by a given process is, by definition, in the context
of the previous message sent by that same process. Therefore, it is not possible
to have an edge in G leading from a given message to two or more messages sent
by the same participant. Likewise, a given message cannot have two or more
immediate predecessors sent by the same participant. These two observations
imply that the outdegree and indegree of any node in G is bounded by the number
of participating processes.

The context graph contains information about which processes have received
what messages. In particular, receipt of a message implies that the sender has
seen all its predecessor messages. Thus, if some message m is followed in the
context graph by a message from all the participants except for m’s sender, then
m is necessarily in each participant’s view. Formally, message m, sent by process
p is said to be stable if for each participant q # p, there exists vertex my in G sent
by q, such that m,, i m,. Intuitively, each m, serves as an acknowledgment of m,
from some process q. For a message to be stable implies that all processes other
than the sender have received it; therefore, it follows that all future messages
sent to the conversation must be in the context of the stable message; i.e., they
cannot precede or be at the same logical time as the stable message.

For example, suppose the context graph depicted in Figure 2 is associated with
a conversation that has three participants, denoted a, b, and c, where a,, a2, . . .
denotes the sequence of messages sent by process a, and so on. Messages al, bl,
and c1 are the only stable messages. Also, participant a has sent two unstable
messages: a, and a:{.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

222 l L. L. Peterson et al.

Because the context graph provides such useful information, the conversation
abstraction supports the following operations for traversing G and querying the
state of nodes in G:

node = root(conv): root vertex of V,,.

node-set = leaves(conv): set of leaf vertices of V,.

process-id = sender(node): process that sent node.

participant-set = participants(conv): set of participating processes.

node-set = next(node): set of vertices to which there is an edge from node
in V,.

node-set = prev(node): set of vertices from which there is an edge to node
in V,.

outstanding(conv): true if V, # G.

precedes(node, , node*, conv): true if V, contains a path from node, to node,.

stable(node, conv): true if node is stable.

3. PROTOCOL

This section describes the Psync protocol (algorithm) that implements conver-
sations in a distributed system. While more than one implementation strategy is
possible-for example, sending and receiving messages could be implemented as
atomic transactions on replicated copies of the context graph-Psync replicates
G throughout a network in a way that preserves the important properties of the
conversation abstraction without incurring the high cost of atomic updates.
Psync is designed this way because it is intended to be a low-level IPC protocol
upon which a wide range of other mechanisms can be built.

To simplify the discussion, we describe the protocol in three stages. First, we
present a basic protocol that accommodates varying communication delays; this
description assumes an infinite amount of memory at each processor. Second, we
augment the basic protocol to account for network and host failures; this
discussion also assumes infinite memory. Finally, we remove the infinite memory
assumption by considering garbage collection and flow control. Throughout the
discussion, Psync uses internal identifiers to denote the three basic objects: it
assigns a networkwide unique cid to each conversation, it assigns a conversation-
wide unique mid to each message, and it uses a network-dependent pid to identify
each participant. For simplicity, we assume each pid can be divided into a host
part and a local part; i.e., it is possible to determine the host on which a process
resides given its pid.

3.1 Basic Protocol

We begin by describing the implementation of a conversation on a set of hosts
connected by an asynchronous message-passing facility with varying communi-
cation delays between hosts. For the purpose of this discussion, assume no
network or host failures.

3.1.1 Distributed Images. Psync maintains a copy of a conversation’s context
graph G at each of a set of hosts on which a participant in P resides. The copy
of G on host h is called an image and is denoted Ih. Psync at each host also
ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information l 223

SC cid pid,...pid, message

Fig. 3. Start conversation message.

maintains the view for each local participant. For simplicity, assume there is a
one-to-one relationship between hosts and participants; i.e., there is a single
image and a single view at each host. While context graph G still exists in the
abstract, in practice only the individual images are implemented, and Psync only
guarantees that the union of the I,, for all hosts h is equal to G given no host
failures; it does not attempt to keep all the images equivalent. Messages in the
abstract context graph G but not in some image Ih correspond to messages sent
by some participant that are still in transit to host h. Messages in I,, but not in
the local participant’s view correspond to messages that have arrived at host h
but have not yet been received by the participant.

3.1.2 Opening and Closing Conversations. The active-open operation creates
an empty local image, but no messages are exchanged and the invoking process
is not blocked. The information necessary to establish the conversation at those
hosts on which a process invoked the passive-open operation is piggybacked on
the first message sent by the process that actively opened the conversation. The
arrival of this message at a given host initializes the local image, which in turn
causes the local participant’s invocation of passive-open to complete. The format
of a conversation’s first message, called an SC (start conversation) message, is
given in Figure 3; pid, . . . pid, identifies the participating processes (pidl is the
message sender) and the message’s mid is the same as the conversation’s cid.

Psync exchanges no messages when a process closes a conversation. Therefore,
it is possible for a process to close its view of a conversation before the other
processes are finished sending messages, implying that new messages may arrive
later for that conversation. From the perspective of the remaining processes, the
process that closed the conversation too early will appear to have failed (see
Section 3.2). We expect applications for which such early closings are not
acceptable to implement a “termination agreement” protocol on top of Psync.

3.1.3 Sending and Receiving Messages. When process p on host h invokes the
send operation, the new message is attached to image I,, according to the
definitions given in Section 2, and a copy of the message-along with information
specifying the edges that connect the message to the context graph-is propagated
to each remote host. This message can be delivered using either a point-to-point
delivery mechanism or a broadcast mechanism. When process p on host h
executes the receive operation, an outstanding message from I,, is returned. The
receive operation blocks until Ih contains an outstanding message.

The format of each message sent to an existing conversation, called an AN
(add node) message, is given in Figure 4; each pred-.mid is the unique identifier
for one of the message’s immediate predecessors in the context graph, andpidsend,,
identifies the sending participant. Note that the number of predecessor messages
identified in the message is bounded by the number of participants in the

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

224 l L. L. Peterson et al.

AN cid mid P%nder pred-mid,. .pred-mid, ’ message

Fig. 4. Add node message.

conversation, corresponding to the bound on the indegree of each vertex. Each
AN message that arrives at a host h for which the predecessor message set is
present in I,, is immediately inserted in I,,. If one or more of the predecessor
messages have not yet arrived, then the message is placed in a holding queue
until all the predecessors are present. Such messages are not considered attached
to I,,, and therefore cannot be returned by the receive operation. When all
preceding messages have arrived, the earlier message is removed from the holding
queue and incorporated into I,,. Observe that each message in G is contained in
at least its sender’s image, even though the multiple images of G are not equivalent
while messages are in transit.

Finally, note that the Psync operations that allow a process to inspect the
context graph are defined relative to the participant’s view and the local image,
not in terms of the abstract graph G. For example, the stable operation reports
on the stability of a message in a given participant’s view, where stability in VP
implies stability in G.

3.2 Failures

Implementing conversations in a distributed environment is in practice compli-
cated by three factors: the underlying network fails to deliver messages, hosts
fail, and host failures are indistinguishable from network partitions and hosts
that are slow to respond. This section extends the basic protocol to account for
these factors. For the purpose of this section, we assume that when a host does
in fact fail, it remains failed for the duration of the conversation; techniques for
recovering and reintegrating failed processes into an on-going conversation are
described in Section 5.

3.2.1 Transient Network Failures. Consider the possibility of transient net-
work failures. Such failures imply that for a given message sent from one host to
another, zero or more copies of the message are delivered to the destination host.
For the purpose of this discussion, assume hosts do not fail.

Recall that Psync places any message received out-of-order in a holding queue
until all messages upon which it depends arrive. Let m be a message sent by a
participant on host h in the context of m’, and let h’ be a host that receives m
but has not yet received m’; i.e., m is placed in the holding queue on h’. Psync
associates a timer with each message in the holding queue. When the timer for
message m expires, a request to retransmit m’ is sent to h. That host is guaranteed
to have m’ in its image because a local participant just sent a message in the
context of m’. This is true even if the participant that originally sent m’ does
not reside on h.

The retransmission request, called an RR message, is schematically depicted
in Figure 5. Because it is possible that the predecessors’ predecessors are also
missing, the retransmission request identifies the subgraph of G that needs to be
ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information l 225

RR cid mid leaf_mid,...leaf_mid,

Fig. 5. Retransmission request message.

retransmitted, not just the message(s) known to be missing. The set of leuf_mid’s
identify the current leaves of the local image and micl identifies the message
whose predecessors are missing. The leaf set and the last received message
effectively define the boundary of the missing portion of G. When a host receives
an RR message, it responds by resending all messages between the leaf set and
the out-of-order message, exclusive. If a mid is not given, the host responds with
all messages sent in the context of the leaf set. An empty leaf set implies that
the root node(s) should be retransmitted.

3.2.2 Lust ACK Problem. Although Psync automatically recovers from missing
messages upon which some other message depends, it is possible for the last
message sent-i.e., a message upon which no messages depend-to be lost. We
characterize this as an instance of a general “last ACK problem” faced by many
protocols. To help applications accommodate this possibility, Psync is augmented
to allow its blocking operations-passive-open and receive-to include a timeout
argument. The return code then indicates whether the operation was successful
or the timeout expired. Processes use a timeout larger than the maximum
communication delay to and from all participating hosts.

In addition, Psync provides a

resend(node)

operation. Applying this operation to a node causes an exact duplicate of the
corresponding message to be sent to all hosts maintaining an image of G. The
resent version of the message is identical to the original copy of the message-
i.e., it is an SC or an AN message with the same mid-except that it is flagged as
having been resent. Should a host that receives a resent message already have a
copy of the message, it (1) discards the duplicate copy, and (2) resends all the
messages in its image that are immediate successors of the duplicate message.
Finally, should a participant apply resend to a stable message, Psync does
nothing; i.e., it does not resend the message as instructed. This is because
resending a stable message is unnecessary: by definition, a stable message
has been delivered to all participants and a reply has been received from all
participants.

The resend operation is used by a process that has reason to believe a message
it sent earlier was never delivered; i.e., if it sent a message and timed-out while
waiting for a reply message. A generalization of waiting for a reply message is to
wait for a message to become stable. One can therefore implement a “synchronous
send” routine that does not return until the sent message has stabilized. If the
message does not stabilize because it was not delivered to all applications, then
the routine would resend it several times. Figure 6 defines a send-stable routine
as a library protocol implemented on top of Psync. Note that if send-stable

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

226 l L. L. Peterson et al.

aend-stable (meaa8ge, conv)
{

send-node = sendbessage, conv);
for (try=O; try<LItdIT; try++)

{
no&, m8g = receive (conv, timeout) ;
while (outstanding (conv))

no&, m8g = receive(conv, timeout);
if (stable(sendnode))

return(SUCCESS);
else

reaend(node);

1
return(FAILURE);

1

Fig. 6. Library routine for sending a stable message.

returns FAILURE, the application is likely to conclude that one or more hosts
have failed (see Section 3.2.4). Also note that send-stable works correctly if one
of the reply messages, as opposed to the sender’s message, was lost. This is
because if a host receives a duplicate copy of the resent message, it responds with
all the messages that immediately depend on the resent message; i.e., Psync
automatically resends the reply message.

3.2.3 Host Failures. Now consider the effect host failures have on the main-
tenance of the context graph. For the purpose of this discussion, assume hosts
fail silently without undergoing incorrect state transitions or generating spurious
messages; it is not necessary that such failures be accurately detectable.

Psync guarantees two things about the context graph in the presence of host
failures:

-All running processes are able to continue exchanging messages.
-A message contained in any running host’s image will eventually be incorpo-

rated into every running host’s image if host failures are infrequent.

The first condition is easy to guarantee because each process depends only on
the local state of the conversation. Thus, a participant can successfully invoke
send because being able to send a message depends only on the leaves of the
participant’s view. Also, a participant’s ability to successfully receive messages
sent by another running process depends only on the host’s ability to incorporate
new messages into the local image. The host, in turn, can always incorporate
messages received from another running host into its image because the only
prerequisite for doing so is that all the predecessor messages be present. Should
some of the predecessor messages not be present, the receiving host can retrieve
them from the sending host. The sending host is guaranteed to have all the
preceding messages because it just sent a message that depends on them.

The key to satisfying the second condition is to correctly deal with a host
failing after it has sent a message. Psync addresses this problem with the following
ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989

Preserving and Using Context Information l 227

extension to the retransmission request strategy defined in Section 3.2.1: when
a host does not receive a response to an RR message that it sent to a particular
host, it broadcasts the RR message to all the hosts. Should the broadcast RR
message fail to yield the missing message, the message that triggered the retrans-
mission request is discarded. Given this extension to the protocol, consider how
the second condition is satisfied for two different quantifications of “infrequent.”

First, assume a single host failure. Without loss of generality, suppose host h
fails immediately after sending message m in the context of message m’. There
are three cases to consider.

-Case 1. No other host receives m. Message m does not appear in any running
host’s image.

-Case 2. All hosts receive m.

Subcase a. No host has m’ in its image; thus, the broadcast RR fails, Neither
messages m’ nor m appear in any host’s image. Note that m’ must have
been sent from host h, otherwise, at least one running host (the sending
host) would have a copy of it.

Subcase b. All hosts have m’ in their image. Message m can be successfully
incorporated in each host’s image.

Subcase c. Some hosts have m’ in their image. Broadcasting the RR message
retrieves m’, and both m and m’ are incorporated into each host’s image.

-Case 3. Some hosts receive m. A host that receives m incorporates it into its
image as in case 2. A host that does not receive m will at some future time
receive message mN in the context of m, causing the host to retrieve m from
the host that sent m”.

Thus, the same set of messages are incorporated into all images when a single
host fails.

Second, suppose there are multiple host failures. Psync continues to incorpo-
rate messages into all images unless there are “too many” failures, where “too
many” is precisely quantified as follows. A message m is defined to be n-stable if
n - 1 processes other than the sender of m have sent a message in the context
of m. For a message to be n-stable implies that a copy of m is contained in at
least n images, assuming a one-to-one correspondence between images and
processes. Thus, a copy of m can be retrieved from some image in the presence
of up to n - 1 host failures. A message that is stable is contained in all images.

Note that the preceding discussion does not assume perfect knowledge of when
a particular host has failed; i.e., it can be implemented using a simple timeout
and retry strategy. In the worst case, a given host might decide that another host
is down when it is not, but this does not affect the correctness of the protocol,
For example, suppose a host that receives m incorrectly decides that h is down.
Sending the broadcast RR message is wasteful but not incorrect. As another
example, suppose a host that receives m decides to ignore m’ and all the messages
that depend on it (case 2b), but some host that has a copy of m’ is still running.
A new message will eventually arrive that directly or indirectly depends on m’,
and the recovery procedure outlined in Section 3.2.1 will be exercised.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

228 l L. L. Peterson et al.

3.2.4 Application-Level Support. From the application’s perspective, host fail-
ure involves two issues: determining when a host has failed and deciding what to
do about a failure. In the case of the first issue, Psync provides no explicit
mechanism for detecting host failures. Instead, each participant determines on
its own that some other process has failed. For example, a given participant
might decide that a host has failed because a routine like send-stable returns
FAILURE. In the case of the second issue, Psync allows processes on any subset
of running hosts to continue exchanging messages when one or more other hosts
have failed. Whether a given participant chooses to stop executing or continue
executing when it detects a host failure depends on the application.

For applications that choose to continue when processes fail, each participant
must be able to remove the failed process from its definition of the participant
set. This is necessary so that messages will eventually stabilize relative to the
currently running set of participants. In other words, if the failed participant is
not removed from the working definition of P, then messages will never stabilize
because a message from the failed participant will never arrive. Psync provides a

mask-out(participant)

operation for this purpose. A process invokes this operation to remove a partici-
pant from its working definition of P. Once a given participant has masked out
some other participant p, Psync ignores (discards) all messages m, received from
p unless it has in its holding queue a message m4 from some participant q # p
such that m, is in the context of mp. An inverse operation,

mask-in(participant)

is provided to return a participant back into the local definition of P. Note that
both operations “mask” the participant set; they do not permanently delete
existing participants or add new participants.

Note that in practice it is impossible to determine with absolute certainty that
a particular host has failed, it may be slow to respond or it may be isolated by a
network partition. This is a critical observation because it is possible for a process
that is thought to have failed to start sending messages again. As a consequence,
it is necessary for the running processes to be able to agree as to when a particular
process has failed. While Psync does not provide a direct mechanism for doing
this, algorithms for agreement about failure have been developed [lo], and they
can be implemented on top of Psync, analogous to the send-stable routine. A
more thorough description of a delete protocol that specifies the actions to be
taken by functioning participants when another participant fails is presented
elsewhere [181.

3.3 Memory Management

The previous discussion implies that the entire history of a conversation is
maintained throughout the lifetime of the conversation. While preserving some
or all the history is necessary if failed processes are allowed to rejoin as described
in Section 5, in many cases maintaining the entire context graph is unnecessary.
This section outlines how to garbage-collect portions of the context graph and
how to implement flow control.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information l 229

It is useful to think of each node in an image as having two parts: an entry in
the data structure that implements the graph-this entry is a few dozen bytes
long and contains the message sender, the message’s id, pointers to other nodes,
and so on-and a buffer that holds the message itself. In the case of the actual
message, the buffer is reclaimed as soon as the corresponding node becomes
stable. This is because a host cannot be asked to retransmit a message that is
stable; such messages are already contained in all images of G. In the case of the
graph node, no simple rule exists. This is because an application process may
inquire about any node in the graph; e.g., it may apply the msg-sender operation
to an arbitrary node. While reclaiming graph nodes is not as critical as reclaiming
message buffers, some mechanism is necessary if conversations are to support
arbitrarily many messages. One solution is to provide a free-node operation that
explicitly causes a particular node, along with all of its predecessors, to be
reclaimed. An application would invoke this operation whenever it finishes with
a particular portion of the context graph. Another solution is to let the application
set some threshold parameter 0, such that the application is only permitted to
invoke operations on the last 0 messages sent to the conversation. This latter
approach is practical because applications can reasonably choose a value for 0
that is proportional to the number of participants in the conversation.

In addition, Psync has three flow-control limitations. First, because it is
possible for an application to send many messages without any of them becoming
stable, Psync limits the amount of buffer space allocated to each conversation;
the send operation blocks, and newly arriving messages are discarded if this limit
is exceeded. Second, only a fixed number of pending conversations’ are allowed
to queue for any single process, where only one message associated with each
such conversation is stored; all additional messages belonging to a pending
conversation are discarded. Third, only a fixed number of out-of-order messages
are saved in each conversation’s holding queue; additional messages are discarded.
Note that in all three cases, newly arriving messages that exceed buffer limits
are simply discarded, since discarding a message is indistinguishable from
a transient network failure. As a consequence, the mechanisms described in
Section 3.2 are later used to recover the messages.

3.4 Remarks

Psync has been designed to include only that functionality essential to maintain-
ing context information; all other functionality has been pushed onto higher level
protocols. For example, rather than support a send-stable operation, we have
built a library version of the operation on top of Psync. As another example,
rather than support a conversation-wide operation for removing failed processes,
Psync provides only mask-out and mask-in operations that modify the local
definition of P; one can build conversation-wide remove-process and
add-process routines on top of Psync. Other useful library routines include
a quorum-stable routine that determines if a majority of processes have received
and responded to a particular message and initialize and terminate routines that

1 A pending conversation is one that has been actively opened, but for which the local process has
not invoked a corresponding passive-open.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

230 . L. L. Peterson et al.

employ a three-way handshake protocol to begin and end a conversation. The
important point is that the list of useful library routines is both large and diverse.
Because different applications use different combinations of these routines, we
chose to implement them on top of Psync rather than embed them in Psync. In
other words, our design draws an explicit line between the mechanism that
preserves ordering information and higher level protocols that enforce a particular
ordering policy.

4. ORDERING MESSAGES

The context graph explicitly records the partial ordering of messages exchanged
in a distributed computation. Participants enforce a particular ordering discipline
on the context graph based on the requirements of the application. This section
gives several examples of how the context graph supports elegant implementa-
tions of a variety of ordering policies. These policies can be thought of as “filters”
placed on top of Psync.

4.1 Conventional Protocols

Psync supports efficient implementations of well-known communication proto-
cols due to the fundamental nature of the context relation. For example, the
unreliable datagram corresponds to a degenerate context graph that contains a
single vertex, a reliable datagram causes an acknowledgment message to be sent
in the context of a datagram, and an RPC mechanism sends a result message in
the context of a request message and subsequent request messages in the context
of previous reply messages. This section makes three observations about imple-
menting conventional protocols on top of Psync.

First, while one could argue that it would be more efficient to implement a
virtual circuit protocol or an RPC protocol directly on the underlying network
rather than on top of Psync, it is nonetheless interesting to observe that the
context graph provides a useful mental tool for thinking about such protocols.
Consider, for example, a virtual circuit protocol. The context graph that models
a virtual circuit grows in a “nearly linear” manner, where the breadth of the
graph intuitively corresponds to the number of unstable messages sent by the
local participant. A process stops sending data when the number of unstable
messages it has sent exceeds the size of the circuit’s sliding window. Thus, a
linear context graph would result if a stop-and-wait protocol is employed [27].
Moreover, as long as both sides have data to send, the act of sending a message
in the context of received messages effectively acknowledges those messages,
thereby providing a natural implementation of the piggyback optimization.

Second, Psync offers an alternative IPC paradigm to applications that currently
use whatever existing IPC mechanism provides the “best fit,” even if that
mechanism does not provide exactly the semantics that the application needs.
Consider, for example, a distributed program that exhibits an interactive com-
munication pattern in which a client process sends a request message, a server
process replies, the client responds to the server’s reply, and so on. Such a pattern
is commonly called conversational continuity and can be viewed as a generalization
of the message transaction paradigm. The mail protocol SMTP is an example of
an application that exhibits conversational continuity [21]. Psync is an ideal

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information l 231

communication substrate for the conversational continuity paradigm because it
maintains the desired connectivity from message to message without duplicating
the efforts of the application. In contrast, virtual circuits-the IPC mechanism
conventionally used for such applications, including SMTP-send an acknowl-
edgment message for each application message, even though the application-level
response sent in the context of the request message is sufficient acknowledgment.
While virtual circuit protocols are usually optimized to piggyback acknowledg-
ments, such optimizations are a heuristic because the virtual circuit protocol has
no knowledge of when or if the application will send its next message. Also,
opening and closing a virtual circuit causes overhead messages to be exchanged
even though the application is able to determine, on the basis of its own state
and the last message sent from the other process, that no more messages will be
exchanged and the conversation can be safely closed.

Third, because Psync supports a many-to-many communication paradigm, its
behavior is subtly different from conventional one-to-one protocols that have
been augmented to support one-to-many (multicast) communication. Consider,
for example, a simple message transaction in which a client sends a request
message to a collection of servers, and one or more of the servers receive the
request and sends a reply message [B]. Because Psync distributes all messages to
all participants, the servers will receive each other’s reply messages. In contrast,
only the client receives the reply messages in the case of a multicast. The former
mechanism is desirable if a server is able to avoid doing unnecessary work because
it can detect that another server has already responded.

4.2 Ordered Broadcast

As an example of how Psync provides an elegant base for implementing various
ordering disciplines in a many-to-many communication paradigm, consider the
following implementation of an ordered broadcast. Such a broadcast ensures that
messages sent in a many-to-many communication are received by all participating
processes in the same order. Ordered broadcasts are commonly used by a set of
processes that are applying operations to a set of replicated data objects, where
operations are encapsulated in messages. Because each process receives the
messages (processes the operations) in the same order, they are able to maintain
consistent copies of the object.

One typical implementation of an ordered broadcast is to assign a timestamp
from a virtual clock to each message when the message is sent. The receivers
then order the messages based on the timestamps. In contrast, Psync supports a
partial ordering that can be used to give a total ordering if all participants do the
same topological sort of the context graph. The topological sort must be incre-
mental in the sense that each process waits for a portion of its view to stabilize
before allowing the sort to proceed. This must be done to ensure that no future
messages sent to the conversation will invalidate the total ordering. For simplic-
ity, the following discussion distinguishes between the process that directly uses
the context graph to implement the ordered broadcast (called the participant)
and the application process that expects a total ordering of messages (called the
application).

As schematically depicted in Figure 7, each participant’s view is conceptually
partitioned into committed and uncommitted subgraphs, denoted Vi and Vi,

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

232 l L. L. Peterson et al.

“PC

“P”

last wave

current wave

Fig. 7. Committed and uncommitted partitions of VP.

respectively. Dotted lines denote a path between two message nodes. Subgraph
Vi corresponds to those messages that have been totally ordered and committed
to the application. (Messages in Vi would also satisfy the definition of queue
stability [23].) Subgraph V; corresponds to the set of messages yet to be consid-
ered. Each iteration of the incremental topological sort moves through VP in
waues, where a wave is a maximal set of messages sent at the same logical time;
i.e., the context relation does not hold between any pair of messages in a wave.
As soon as the wave is known to be complete-i.e., the participant is certain that
no future messages will arrive that belong to the wave-the messages in the wave
are ordered according to some deterministic sorting algorithm and passed to the
application. The messages in the wave are also moved from V; to Vi. Note that
defining a wave to be the roots of Vi results in a breadth-first traversal of the
context graph.’

The important remaining problem is determining when all possible roots of
Vz are present. Recall that when a message is stable, all future messages must
follow it in the context graph. Thus a single stable message in a given wave
implies that all possible members of the wave are contained in the participant’s
view. In other words, as soon as a single root of Vi becomes stable, all the roots
of Vi can be sorted and committed to the application. In contrast, consider both
a weaker and stronger condition for committing. On the one hand, it is not
correct to commit a message as soon as it becomes stable. This is because the
order in which messages become stable in two different views may differ due to
varying communication delays, thereby resulting in potentially different total
orderings. On the other hand, it is not necessary to wait for all messages in the
wave to become stable before committing the wave; a single stable message in
the wave is sufficient.

Figure 8 gives the procedure broadcast that implements the algorithm just
described. The procedure interfaces with the application process by a pair of

’ An alternative is to do a depth-first traversal, in which case the entire disjoint branch of the context
graph rooted at each node in the wave is committed in order.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information l 233

broadcaat()

{
conv, 188t-w8v* = initirlirr();
while (TRUE)

anhwmathing = FALSE;
rev-mnnathing - FALSE;
currenixw8vo = 0;
fat (e8Ch nodr E 188teW8Va)

currentr8va = current-w8vo U next(noda):
if (3 node E currant-w8va, 8.t. st8ble(noda, conv))

{
18sLw8va = current-w8vm;
sort(currenta8ve);
for (e8ch noda E currant-w8ve)

8nd-toqu~u~(m8g~,);

1
w8itA.nput();
whilr (out8tmding(conv))

i
no&,m8g = recoivr(conv);

rcv-rronmthing = TRW;

1
while (!empty(8ndqumo))
t

mug = rev-frcaquour();
8end @8g, conV) :

8ntioPPsthing = TRUE;

I
if (!8nd-8OIIKkhing LL rev-8cmothing)

8and (AC& conv) ;

Fig. 8. Ordered broadcast procedure.

message queues and the operations snd-to-queue and rev-from-queue.
A wait-input operation is used to allow the process to block waiting for input
from multiple sources. To simplify the presentation, procedure broadcast does
not include any error recovery code.

At the heart of the procedure are the two node sets last-wave and current-
wave, corresponding to the leaves of Vi and the roots of Vi, respectively. When
started, the procedure first calls an initialize routine similar to the one mentioned
in Section 3.4. This routine also initializes last-wave. Next comes the algorithm’s
main loop. First, it adds all the known dependents of the nodes in last-wave to
current-wave. Second, it checks to see if any of the nodes in current-wave are
stable. If any are, current-wave is assigned to last-wave, the sort routine is called
to order the messages in current-wave, and the sorted messages are sent to the
application. Assume the sort routine weeds out any messages in current-wave
that are not meant for the application, e.g., ACK messages, but it does not filter
messages sent by the local process. The same sort routine must be applied by all

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

234 9 L. L. Peterson et al.

participants; for example, it might sort the messages based on the sender’s id. If
none of the messages are stable, then the algorithm waits for new messages to
arrive and checks the stability of current-wave the next time around the loop.
Finally, any new input that has arrived is processed at the bottom of the main
loop. Note that rev-from-queue is invoked after receiving any outstanding
messages from the conversation. This causes any new messages sent to acknowl-
edge all the received messages. An explicit acknowledgment is sent only if a
message is received but none are sent.

4.3 Replicated Objects

Although the total ordering of messages guaranteed by an ordered broadcast
mechanism provides a foundation for synchronizing distributed computations,
there are certain cases in which the same total ordering is not necessary at each
host [13]. Suppose, for example, that a data object is replicated at n hosts, where
a process running at each host manages the local copy. Furthermore, suppose
that some of the operations that may be applied to the object are commutative
with respect to other invocations of the same operation. In this scenario, the n
processes can participate in a single conversation and implement operations on
the data object by sending messages to the conversation. The partial ordering of
messages (operations) preserved in the context graph is sufficient for ordering
the commutative operations. The processes only have to synchronize with each
other on the noncommutative operations, which they do by waiting for the
corresponding message to become stable in the context graph. A detailed descrip-
tion of an algorithm that employs this idea is presented elsewhere [Ml.

To see how an ordering policy might take advantage of commutative operations,
consider an object that supports operations (Y and /3, where multiple invocations
of (Y can be executed in an arbitrary order with respect to each other. For example,
(Y might insert an element into a set and @ might perform some computation on
the set and then clear the set. Because one is usually interested in applying the
operations in an order that is consistent with the order in which the operations
are invoked, the ordering policy is similar to the one given for the ordered
broadcast in Section 4.2; that is, it moves through each participant’s view in
waves. The key difference is that we can gain additional concurrency by not
waiting for the wave to be complete before executing some of the operations in
the wave.

Consider the three graphs in Figure 9, where each message is denoted by the
operation it represents and the previous operations that have been executed are
omitted. Dotted lines denote a path between two message nodes. In (a), the
current wave contains five operations that were invoked at the same logical time.
Assuming the ordering policy gives preference to LY operations over ,6 operations,
the local participant can execute all the a! operations in any order before knowing
that the wave is complete; i.e., before any message in the wave becomes stable.
Once the wave is complete and all the cy operations have been executed, the /I
operations can be sorted and executed serially. In general, it is possible for one
or more other participants to not receive the p operations in the wave for some
time, and for those participants to continue to invoke LY operations, as depicted
in (b). In this case, as long as those (Y operations do not depend on a ,6 operation
ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information - 235

aaaP P

(a)

i i i
a a a

(b)

i i i
a a a

/
d lJ a

(a

Fig. 9. Example operation invocations.

that has not yet been executed, the local participant may continue to execute the
CY operations. Notice that newly arriving (Y operations continue to be executed
even after a /3 operation is present in the local view. Finally, (c) shows the
condition that terminates the set of LY operations: Each participant has a p
operation in its view that has not been executed. Once this happens, all future
operations sent to the conversation by that participant must be in the context of
the ,6 operation, and therefore must follow it in the total order of operations
executed by that participant. The example illustrates two possible scenarios: a
participant sends a /I operation or it sends an CY operation in the context of some
other participant’s 0 operation.

5. REINTEGRATING FAILED PARTICIPANTS

When a processor fails, one or more participants may depart from an ongoing
conversation. Section 3 describes the Psync mechanisms that can be used to
accommodate situations where the participants remain failed for the duration of
the conversation. Although this situation is common, there are also cases where
it is necessary for a participant to recover and rejoin a conversation. For example,
the two-phase commit protocol used to maintain consistency between copies of a
replicated database despite failures requires that the processes implementing the
protocol recover to guarantee that changes to the database are applied to all
copies [121.

Although the specifics of participant reintegration are highly application
dependent, there are generally two tasks that must be accomplished before normal
processing can continue. First, the functioning participants must be notified that
the failed participant wants to be reintegrated into the conversation. This
notification facilitates the execution of an application-level join protocol, the
inverse of the delete protocol mentioned in Section 3.2.4. The join protocol
typically causes each functioning participant to return the recovering participant
into its active participant set by invoking the mask-in operation. One example
of such a protocol can be found in [181.

Second, an appropriate internal state of the participant must be restored. This
state includes the application’s local variables, the local image of the context
graph, and the participant’s view of the conversation. One common way to
facilitate the restoration of the local variables is for the participant to checkpoint

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

236 l L. L. Peterson et al.

them onto nonvolatile storage; the participant then reads the checkpoint upon
host restart. Psync is responsible for restoring the local image. The application
and Psync share responsibility for restoring the participant’s view.

This section describes Psync support for participant reintegration. It first
focuses on support provided for checkpoint-based techniques. It then discusses
an alternative in which the internal state of the participant is recreated by
rebuilding the local context graph image and reexecuting the process from its
initial state.

5.1 Using Checkpoints

Recovery schemes that use checkpoints depend on the participant periodically
writing its state to nonvolatile storage. Following a failure, the participant reads
this saved state to recover its local variables. It then executes the Psync restart
operation to initiate recovery of the context graph. The form of this operation is
as follows:

conv = restart(cid, pid, participant-set, leaf-mid-set)

Analogous to active-open, restart returns a handle for the conversation. The first
argument is the system-wide unique identifier (cid) for the conversation, the
second argument identifies the invoking participant, the third identifies the
conversation’s participant set, and the fourth gives the conversation-wide unique
identifiers (mids) for the set of messages that are to form the leaves of the
participant’s view of the context graph upon recovery. Specifying the view is
important because it defines the point at which the process starts receiving new
messages. The restart operation is issued by a recovering participant in lieu of
the standard operations for opening a new conversation. For example, it might
be used in recovery code that is executed immediately upon processor restart,
instead of some standard prologue code charged with opening tiles and establish-
ing conversations on the initial execution.

The values used as arguments to restart are typically included in the checkpoint
so that they will be available following a failure. Psync provides operations that
allow the application to retrieve the values into local variables. The participant
set is retrieved by the participants operation described in Section 2. The cid and
mids are retrieved using the following two operations:

cid = get-cid(conv)
mid-set = get-mids(node-set, conv)

respectively. The node-set given as an argument to get-mids is the collection of
nodes for which identifiers are desired, i.e., the set of messages the process wants
to form the leaves of its view upon recovery. The related issues of which mids to
include in the checkpoint and when checkpoints should be taken are addressed
below.

The restart operation serves two purposes: to inform other participants that
the invoking participant has restarted and to initiate reconstruction of the local
image of the context graph. Psync accomplishes this by sending a special RS
(restart) message to all hosts on which a participant resides. The form of an RS
message is shown in Figure 10. The cid field is the identifier for the conversation

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information - 237

II Fig. 10. An RS message.

and thepid field identifies the invoking participant; both are given as an argument
to restart.

When an RS message is received at a host, the local instance of Psync performs
two actions. First, it notifies the local participant of the restart event; this is
implemented as an out-of-band control message that is delivered to the local
participant. As outlined above, this notification usually results in the local
participant returning the recovering participant to its active participant set using
the mask-in operation. The notified process might also initiate the execution of
an application-level join protocol.

Second, the local instance of Psync transmits the messages that make up the
leaves of its context graph image to the participant that sent the restart message;
these messages are sent as standard AN messages. As these messages are received
at the restarting host, the local instance of Psync reconstructs the lost context
graph image according to the standard lost message protocol described in
Section 3.2. That is, upon receipt of the first retransmitted messages m, Psync
transmits an RR to the sender of m requesting the contents of the graph from
the root to the node representing m. Should that request fail, the request is
broadcast to all participants. Portions of the graph that are not in the context of
m (e.g., siblings of m) are retrieved as required to fill in the missing context of
other messages as additional messages arrive from other hosts, Note that this
procedure recovers the host’s image of the context graph. Once the image has
been recovered, the local participant’s view is trivially reestablished as specified
by the set of mids given as an argument to restart.

It is possible, given additional failures, that the entire graph will not be
retrieved even when the request is broadcast. Define the failure period of a
participant to be the time period beginning at the time of the failure and ending
at the point when the participant’s state and view have been reconstructed. If
the failure period of n - 1 other participants overlap with the failure period of a
recovering participant p, it can be guaranteed only that the portion of the graph
from the root to the lowest n-stable messages will be available upon recovery.”
To see this, consider such an n-stable message m,. Since m,q is in the context of
messages sent by n - 1 participants in addition to the participant that sent m,,
at least n context graph images will contain all messages from the root to m,q.
Given that only n - 1 participants have overlapping failure periods, one of the
images containing that portion of the graph is assured to be available. It is worth
emphasizing that the above is a worst-case scenario; it is possible that messages
below m, in the context graph will be retrieved, depending on exactly which
participants fail when.

As described so far, the recovering host depends entirely on the retransmission
of messages from other hosts to reconstruct its image. In fact, each host is able

” This discussion assumes a one-to-one correspondence between images and participants.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

238 l L. L. Peterson et al.

to reduce its dependency on the other hosts by saving a copy of the messages in
its image to nonvolatile storage. Thus, a restarting host first directly recovers a
portion of its image from nonvolatile storage and then “falls back” on the above
procedure to recover the rest of the image. An appealing aspect of this scheme is
that the changes to the image on nonvolatile storage can be performed asynchron-
ously. There is no requirement that the volatile and nonvolatile images be updated
atomically or even that the changes to the nonvolatile copy keep pace with
changes to the copy in volatile memory. Upon recovery, those portions not
available in nonvolatile storage can be retrieved from other images as described
above. Moreover, because a given host might be asked to retransmit an early part
of its context to a recovering host, it cannot free stable messages as described in
Section 3.3. In other words, the garbage collection mechanism must be modified
to write messages to nonvolatile storage rather than free them.

On a related topic, the copy of the context graph on nonvolatile storage need
not be allowed to grow infinitely large. Two things can be done to limit the size
of a context graph. First, Psync can easily be extended to allow participants to
explicitly free portions of the graph. Second, the participants in a conversation
can reach agreement to close the current conversation and start a new
conversation.

Finally, consider the issue of which message identifiers should be saved for
later use in the restart operation and the related question of checkpoint frequency.
To a large degree, the answers depend on how much reexecution, if any, the
application can tolerate. This results from the fact that messages in the context
graph between the nodes saved in the checkpoint and the leaves at the time of
failure will be rereceived-and presumably reprocessed-following recovery. One
conservative strategy would be to take a checkpoint following each message
transmission. At this point, there is only one leaf in the view, minimizing the
number of message identifiers that must be saved on nonvolatile storage. Also,
since any additional state transitions made by the participant prior to a failure
cannot have had any external effect, it is usually straightforward for an applica-
tion to reexecute that portion of the computation. A less conservative strategy is
discussed in the next section.

5.2 Using Participant Reexecution

As noted above, a typical recovery scenario involves having the participant start
executing at the most recent checkpoint, with messages being received again and
reprocessed if they arrived after the checkpoint but prior to the failure. It is
possible to carry this notion of reexecution to its logical conclusion by reexecuting
the failed participant from its initial state, thereby avoiding the need to check-
point altogether. If the same sequence of messages is used as input, this technique
will, under certain assumptions, reestablish the same state and conversation view
as existed when the failure occurred. As detailed below, Psync provides an
attractive and automatic alternative for achieving the same functionality. Not
only does the context graph encapsulate the entire communication history of the
recovering process, but its realization as a collection of replicated images allows
recovery of messages despite multiple host failures. We note in passing that
similar functionality has been implemented elsewhere by logging messages onto
ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information 239

nonvolatile storage as they are received [24], logging them at a monitor site [22],
or by retaining copies of messages in the volatile storage of sending processes
[15, 16, 251.

There are two conditions that must be satisfied to guarantee recreation of the
appropriate state and view. One is that each participant in a conversation must
be deterministic. For our purposes, this means that a process’s state transitions
and generated messages (i.e., its output) are determined solely by the sequence
of messages it receives (i.e., its input). This assumption is satisfied by most
applications.

The second condition is that a sequence of messages received during reexecu-
tion of a participant must be exactly the same as the sequence received during
its original execution. In other words, the same total ordering of messages must
be presented to the application during the two executions. Since the context
graph only directly preserves the appropriate partial ordering of messages, an
application must impose an ordering filter on the conversation, e.g., the ordered
broadcast filter described in Section 4.2. In general, any filter that preserves the
total ordering at a given participant in subsequent executions is sufficient. The
use of ordered broadcast is actually slightly stronger than necessary since its
guarantees an identical total ordering at all participants.

The restart operation described above also serves as the mechanism to initiate
message replay. This is achieved by specifying a null value for the leaf-mid-set
argument to restart. When invoked in this manner, the local image of the context
graph will be reconstructed exactly as described above, but the participant’s view
will be reinitialized to the empty graph. In other words, the participant will begin
receiving messages again starting at the root of the graph.

Following completion of restart, the participant reestablishes its internal state
and conversation view simply by executing normally. Messages sent by the
application that are already in the context graph are suppressed at the sending
host. This suppression is actually an optimization. If Psync assigns the same
identifiers to messages during reexecution that it did during the initial execution,
then the messages can be sent because they are automatically discarded as
duplicates at the receiving host.

6. PERFORMANCE

We have implemented Psync in the x-kernel: an operating system kernel designed
to facilitate experimentation with network protocols [141. The implementation
corresponds to the protocol described in Section 3; it does not currently support
the reintegration of failed processes as described in Section 5. The implementa-
tion is both substantial and robust: it allows processes on the same host to share
a conversation, it has supported conversations with tens of thousands of mes-
sages, and has successfully recovered from significant rates of packet loss. By
implementing Psync in the x-kernel, we have been able to evaluate it under
conditions that match its intended role as a low-level IPC mechanism, and, in
particular, we have been able to make meaningful performance comparisons with
other kernel-based protocols. This section reports on the performance of Psync
and comments on several implementation details that affect its performance.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

240 * L. L. Peterson et al.

6.1 Experiments

The first set of experiments involve measuring the round trip delay for Psync,
as well as three other IPC protocols: an unreliable datagram protocol (UDP), a
remote procedure call protocol [I], and a virtual circuit protocol (TCP). Note
that although Psync supports communication among more than two processes,
experimenting with Psync in the one-to-one case is a good measure of the
overhead it imposes on sending and receiving messages.

For the purpose of the experiments, the x-kernel was configured as follows:
one-byte messages were exchanged between a pair of user processes, all four
protocols were implemented on top of IP [20], and the tests were run on a pair
of Sun 3/75s connected by a lightly loaded 1OMbs ethernet. The results are
presented in Table I. The numbers were derived by running each experiment for
10,000 round trips (20,000 total messages) and reporting the elapsed time every
1,000 round trips. Each of these measurements was then divided by 1,000 to
produce an average round trip delay. Although we do not report the standard
deviation of the various samples, they were observed to be small.

Psync’s round trip delay of 4.0 msec is what one would expect: it falls between
a trivial protocol (UDP) and a rather complex protocol (TCP). That Psync has
lower latency than TCP is encouraging: it means that Psync is a viable alternative
protocol for one-to-one communication, especially considering that there is no
overhead involved in starting a conversation. However, that Psync has a greater
latency than RPC is disappointing. One (correctable) factor that we believe
contributes to Psync’s greater latency is that it incurs a moderate amount of
overhead for allowing multiple processes on the same host to participate in a
given conversation.

A second set of experiments measures Psync’s performance with more than
two participants. The experiments involve running an application program that
passes a token among a set of processes that execute on different hosts. For
comparative purposes, we implemented the same application program on top of
TCP. In the TCP case, each process establishes a distinct virtual circuit to each
of the other processes. Thus, each time an application process sends a message,
it actually sends a copy of the message to all of the other participants using each
of these circuits. To make the experiment fair, we configured Psync to use
point-to-point message passing rather than take advantage of the Ethernet’s
broadcast facility. That is, whenever an application process sends a Psync
message, Psync in turn sends an IP datagram to each of the participating hosts.

The results are given in Table II. The numbers were derived by allowing each
application process to send and receive 20,000 messages, with each process
reporting the elapsed time every 1,000 messages. Each of these measurements
was then divided by 1,000 to produce the average delay per message. As in the
first set of experiments, the variation in the elapsed times was observed to be
small. Note that in the case of two participants, the token-passing application
program is equivalent to the round-trip program used in the first set of experi-
ments. However, the times reported in Table I are twice those reported in
Table II. This is because the Table I times are based on 1,000 round trips
(2,000 messages), while the Table II times are based on 1,000 messages.
ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information 241

Table I. Comparing Psync with other
Protocols

Protocol

UDP
RPC
Psync
TCP

Latency

2.9 ms
3.4 ms
4.0 ms
4.6 ms

Table II. Token Passing with Many Hosts

Hosts Psync

2 2.0 ms
4 3.0 ms
6 3.8 ms
8 4.5 ms

TCP

2.3 ms
3.6 ms
4.8 ms
7.0 ms

First, observe that Psync continues to perform well as more and more partici-
pants (hosts) are added to a conversation. Of particular importance is the fact
that the incremental cost for each additional process is less for Psync than it is
for TCP. This is the case even though Psync provides a more powerful abstrac-
tion: it preserves the relationship among messages from all participants, whereas
TCP provides no information about messages that arrive on different virtual
circuits.

Second, observe that TCP’s performance grows unexpectedly worse in the
eight-host case. This performance drop is a result of a measurable increase
in the rate at which packets were lost. Specifically, because we were sending
point-to-point messages, the load on the Ethernet became substantial as addi-
tional hosts were added to the experiment. This heavy load, in turn, exposed a
timing bug in the Ethernet driver that caused packets to be dropped. Both Psync
and TCP experienced negligible packet loss in the two- and four-host cases, 1 in
1000 messages were lost in the six-host case, and 1 in 150 messages were lost in
the eight-host case. TCP’s performance suffers more from message loss than
does Psync’s because for every lost message TCP has to wait for a timer to expire
before it can request a retransmission, whereas Psync is able to request the
retransmission as soon as a message that is in the context of the missing message
arrives from another participant.

6.2 Implementation Issues

The data structures and algorithms used to implement the context graph are
tuned for the send and receive operations. Specifically, a hash table is used to
map message identifiers (mids) into the corresponding graph nodes, and a list of
pointers to the leaf nodes of a view is maintained for each participant. This
means that both send and receive can be implemented in linear time proportional
to the number of participants in the conversation-i.e., the upper bound on the
indegree/outdegree of each node-but independent of the size of the graph. Also,
because Psync piggybacks the conversation establishment information on the

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

242 l L. L. Peterson et al.

first data message and no termination messages are exchanged, the cost to begin
and end a conversation is negligible.

The current implementation can be configured to use either host-specific
addresses or broadcast addresses. In the former case, a given Psync message is
sent to each unique host on which a participant resides. In the latter case, a
single Psync message is broadcast to all hosts. For the purpose of the experiments,
host-specific addresses were used so as to facilitate a fair comparison with TCP.
On a related note, while Psync’s active-open operation is described as taking a
set of participant ids as an argument, it could just as well take a single group id
instead. To do so, however, the membership of the group must remain constant
throughout the lifetime of the conversation and it must be possible to expand
the group id into a set of individual process ids at each host. This is because
Psync must be able to enumerate all the participants in the conversation in order
to implement the stable operation.

Finally, because it is desirable to encapsulate what the application views as a
logical message in a single Psync message, Psync uses an underlying blast protocol
to send large messages. The interesting aspect of this blast mechanism is that it
is encapsulated as a distinct protocol rather than embedded in Psync [11.

7. RELATED WORK

Recent work on interprocess communication has explored several dimensions of
the problem space, including support for group communication [8], the exchange
of very large messages [9, 291, alternative send/receive semantics [6], guarantee-
ing a consistent order on message delivery in a many-to-many communication
[3, 41, and techniques for logging messages so as to facilitate recovery from
processor failure [15, 16, 22, 24, 251. The work presented in this paper addresses
the latter two issues.

Psync is most closely related to the ISIS protocol suite-ABCAST (atomic
broadcast), CBCAST (causal broadcast), and GBCAST (group broadcast) [3,4].
From Psync’s perspective, ABCAST and CBCAST are specific message-ordering
disciplines that can be implemented on top of the context graph: ABCAST
supports a total ordering of messages similar to the ordered broadcast mechanism
described in Section 4.2, and CBCAST supports the same partial ordering as
Psync. In fact, Psync can be viewed as an optimistic implementation of CBCAST.
This is because Psync only transmits the messages from the context of a given
message when the context messages are missing at a given image. In contrast,
the original implementation of CBCAST sent a sufficient set of predecessor
messages (rather than just message ids) along with each message. This technique
was further optimized so that unnecessary messages would not be piggybacked
on a given message whenever the sending host had direct knowledge that it (as
opposed to some other host) had already sent those messages. CBCAST is
currently being reimplemented to more closely adhere to the protocol described
in Section 3.

A more important difference is that CBCAST does not explicitly preserve the
context graph and make it available to the application. Thus, it would not be
possible to implement ABCAST on top of CBCAST in the same way one can

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information 243

implement an ordered broadcast on top of Psync. Also, instead of being able to
use a single protocol (i.e., Psync) to implement the replicated object application
outlined in Section 4.3, the application would have to use a combination of
ABCAST and CBCAST.

Also, because ISIS is designed to be used directly by application programs, it
provides functionality not directly available in Psync. For example, the ISIS
protocols provide elaborate failure detection and group management support,
whereas Psync off-loads much of this functionality to library protocols. In fact,
much of the complexity of GBCAST is concerned with inserting process failure
and group join events into ABCAST and CBCAST message orderings in a
consistent way. In other words, ISIS is designed to subsume a large amount of
functionality in a single package, whereas Psync is explicitly designed to provide
only the necessary support for maintaining the ordering among messages; library
protocols take advantage of this ordering to implement various levels of service.

In addition to ordering messages, the context graph very naturally lends itself
to preserving the history of messages exchanged in a distributed application.
Similar to message-logging systems, Psync records the message history across
multiple machines; i.e., each host’s image preserves a portion of the context
graph. It is also the case that the cost of logging messages in Psync does not
impact the performance of the application when there are no failures. This is
because messages can be written to nonvolatile storage asynchronously; the
nonvolatile copy of the context graph need not be kept identical to the volatile
copy. Psync differs from message-logging systems in that it integrates the logging
of messages with the preservation of a meaningful ordering among messages.
That is, whereas logging systems generally augment an existing many-to-many
communications protocol, logging in Psync is an automatic by-product of main-
taining the context graph.

Finally, note that many of the ideas underlying Psync are founded in the space-
time view of distributed computing. For example, the context relation can be
viewed as a variation of the happened before relation [17]. As another example,
when a message is stable, it is as if it has been fully acknowledged [26]; that is,
an acknowledgment message from all other participants has been received.

8. CONCLUSIONS

One of the most difficult issues facing designers of distributed systems is the
level at which the timing and message-ordering problem should be addressed:
within the communication system or by the application. The underlying thesis
of this paper is that the mechanism that preserves timing information should be
implemented within the communication system, but the policy that dictates how
the timing information is used to enforce various synchronization constraints
belongs in the application. One of the contributions this paper makes is to
distinguish between policy and mechanism. In particular, it shows how the
conversation abstraction can be provided in the communication system at little
cost and how it can be used to implement various application-dependent com-
munication and synchronization paradigms.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989..

244 - L. L. Peterson et al.

Psync is a low-level IPC protocol that implements the conversation abstraction
in a distributed environment. Psync can be built directly on an unreliable
communications network at little cost. This is because messages are sent asyn-
chronously, extra protocol messages are only exchanged in the case of failure,
constant-time algorithms are used for manipulating the context graph, and the
amount of timing information sent with each message is insignificant. Experi-
ments substantiate this claim: Psync’s performance falls between that of a simple
datagram protocol (UDP) and a virtual circuit protocol (TCP).

Our experience using conversations suggests that Psync, taken together with
a collection of library routines, offers a simple and elegant solution to the
communication needs of a broad spectrum of distributed applications. We believe
this is due to the fundamental nature of the partial ordering of messages in
interprocess communication. The context graph not only provides a powerful
mental tool for thinking about other protocols, but also a sound programming
base for implementing them. For example, distributed applications do not have
to pay for a total ordering of messages when a partial ordering is sufficient. As
demonstrated by the replicated object example, being able to inspect the context
graph allows the application to choose the partial order when it is sufficient, yet
synchronize by waiting for a message to stabilize when a total order is necessary.
This information is not made available by any other single mechanism.

Finally, because of the way Psync automatically distributes the history of a
conversation over multiple hosts, it lends itself to building applications that are
able to recover from processor failures. The storage demands of preserving this
history over long periods of time are significant, however. For example, to support
applications that do not need to recover from processor failures, the current
implementation stores only those messages that have not yet become stable. In
contrast, an implementation that supports participant reintegration must store
the entire context graph. Although the messages in the graph can be off-loaded
to nonvolatile storage, this still involves a significant cost. Our belief that the
mechanism should be separated from the policy argues that the implementation
should allow the application to specify to what extent the context graph should
be preserved, rather than having the storage policy mandated by the implemen-
tation. We will maintain this philosophy as we extend the implementation of
Psync to support the participant reintegration.

ACKNOWLEDGMENTS

Greg Andrews, Norm Hutchinson, and the referees made valuable comments on
earlier drafts of this paper, leading to significant improvements in the presenta-
tion. Vie Thomas, Shivakant Mishra, David Bakken, and Peter Druschel have
contributed to Psync’s implementation.

REFERENCES

1. ABBOTT, M., HUTCHINSON, N., O’MALLEY, S., AND PETERSON, L. RPC in the x-kernel:
Evaluating design alternatives. To appear in Proceedings of the 12th Symposium on Operating
System Principles, Dec. 1989.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Preserving and Using Context Information 245

2. AHO, A., CAREY, M., AND ULLMAN, 3. The transitive reduction of a directed graph. SIAM J.
Comput. (1972), 131-137.

3. BIRMAN, K., AND JOSEPH, T. Reliable communication in the presence of failures. ACM Trans.
Comput. Syst. 5, 1 (Feb. 1987), 47-76.

4. BIRMAN, K., AND JOSEPH, T. Exploiting virtual synchrony in distributed systems. In Proceed-
ings of the 11th Symposium on Operating System Principles (Austin, Tex., Nov. 8-11, 1987).
ACM, 1987, pp. 123-138.

5. BIRRELL, A., AND NELSON, B. Implementing remote procedure calls. ACM Trans. Comput.
Syst. 2, 1 (Feb. 1984), 39-59.

6. CARRIERO, N., AND GELERNTER, D. The S/Net’s Linda kernal. ACM Trans. Comput. Syst. 4,2
(May 1986), 110-129.

7. CHANG, J., AND MAXEMCHUK, N. Reliable broadcast protocols. ACM Trans. Comput. Syst. 2, 3
(Aug. 1984), 251-273.

8. CHERITON, D., AND ZWAENEPOEL, W. Distributed process groups in the V kernel. ACM Trans.
Comput. Syst. 3, 2 (May 1985), 77-107.

9. CHERITON, D. VMTP: A transport protocol for the next generation of communications systems.
In Proceedings of SIGCOMM ‘86 Communications, Architectures and Protocols (Stowe, Vt., Aug.
5-7, 1986). ACM, New York, 1986, pp. 406-415.

10. CRISTIAN, F. Agreeing on who is present and who is absent in synchronous distributed systems.
In Digest of Papers, Fault Tolerant Computing Systems 18. IEEE Computer Society Press, New
York, June 1988,206-211.

11. GIFFORD, D., AND GLASSER, N. Remote pipes and procedures for efficient distributed commu-
nication. ACM Trans. Comput. Syst. 6, 3 (Aug. 1988), 258-283.

12. GRAY, J. Notes on database operating systems. In Lecture Notes in Computer Science 60,
Springer-Verlag, Berlin, 1987, 393-481.

13. HERLIHY, M. Extending multiversion time-stamping protocols to exploit type information.
IEEE Trans. Comput. C-36,4 (Apr. 1987), 443-448.

14. HUTCHINSON, N., AND PETERSON, L. Design of the x-kernel. In Proceedings of SIG-
COMM ‘88-Symposium on Communication Architectures and Protocols (Stanford, Calif., Aug.
16-18, 1988). ACM, New York, 1988, pp. 65-75.

15. JOHNSON, D., AND ZWAENEPOEL. Sender-based message logging. In Proceedings of the Seuen-
teenth International Symposium on Fault-Tolerant Computing (June 1987), pp. 14-19.

16. JOHNSON, D., AND ZWAENEPOEL. Recovery in distributed systems using optimistic message
logging and checkpointing. In Proceedings of the 7th PODC (Aug. 1988), to appear.

17. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21, 7 (July 1978) 558-565.

18. MISHRA, S., PETERSON, L., AND SCHLICHTING, R. Implementing fault-tolerant replicated
objects using Psync. To appear in the 8th Symposium on Reliable Distributed Systems, Oct. 1989.

19. POSTEL, J. User datagram protocol. In Request For Comments 768, USC Information Sciences
Institute, Marina de1 Rey, Calif., Aug. 1980.

20. POSTEL, J. Internet protocol. In Request For Comments 791, USC Information Sciences Insti-
tute, Marina de1 Rey, Calif., Sept. 1981.

21. POSTEL, J. Simple mail transfer protocol. In Request for Comments 821, USC Information
Sciences Institute, Marina de1 Rey, Calif., Aug. 1982.

22. POWELL, M., AND PRESOTTO, D. Publishing: A reliable broadcast communication mechanism.
In Proceedings of the 9th Symposium on Operating System Principles (Bretton Woods, N.H.,
Oct. 11-13, 1983). ACM, 1983, pp. 100-109.

23. SALTZER, J., REED, D., AND CLARK, D. End-to-end arguments in system design. ACM Trans.
Comput. Syst. 2,4 (Nov. 1984), 277-288.

24. STROM, R., AND YEMINI, S. Optimistic recovery in distributed systems. ACM Trans. Comput.
Syst. 3,3 (Aug. 1985), 204-226.

25. STROM, R., BACON, D., AND YEMINI, S. Volatile logging in n-fault-tolerant distributed systems.
In Proceedings of the Eighteenth International Symposium on Fault-Tolerant Computing (June
1988), to appear.

26. SCHNEIDER, F. Synchronization in distributed programs. ACM Trans. Program. Lang. Syst. 4,
2 (Apr. 1982), 125-148.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

246 - L. L. Peterson et al.

27. TANENBAUM, A. Computer Networks. 2nd ed., Prentice-Hall, Englewood Cliffs, N.J., 1988.
28. USC INFORMATION SCIENCES INSTITUTE. Transmission control protocol. In Request For Com-

ments 793, Marina de1 Rey, Calif., Sept. 1981.
29. ZWAENEPOEL, W. Protocols for large data transfers over local networks. In Proceedings of the

Ninth Data Communications Symposium (Aug. 1985), pp. 22-32.

Received June 1988; revised May 1989; accepted May 1989

ACM Transactions cm Computer Systems, Vol. 7, No. 3, August 1989

