
Why Events Are A Bad Idea
(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
Computer Science Division, University of California at Berkeley

{jrvb, jcondit, brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu/

Abstract
Event-based programming has been highly touted in recent

years as the best way to write highly concurrent applications.
Having worked on several of these systems, we now believe this
approach to be a mistake. Specifically, we believe that threads
can achieve all of the strengths of events, including support
for high concurrency, low overhead, and a simple concurrency
model. Moreover, we argue that threads allow a simpler and
more natural programming style.
We examine the claimed strengths of events over threads

and show that the weaknesses of threads are artifacts of
specific threading implementations and not inherent to the
threading paradigm. As evidence, we present a user-level
thread package that scales to 100,000 threads and achieves
excellent performance in a web server. We also refine the
duality argument of Lauer and Needham, which implies that
good implementations of thread systems and event systems
will have similar performance. Finally, we argue that compiler
support for thread systems is a fruitful area for future research.
It is a mistake to attempt high concurrency without help from
the compiler, and we discuss several enhancements that are
enabled by relatively simple compiler changes.

1 Introduction
Highly concurrent applications such as Internet

servers and transaction processing databases present a
number of challenges to application designers. First,
handling large numbers of concurrent tasks requires the
use of scalable data structures. Second, these systems
typically operate near maximum capacity, which creates
resource contention and high sensitivity to scheduling
decisions; overload must be handled with care to avoid
thrashing. Finally, race conditions and subtle corner
cases are common, which makes debugging and code
maintenance difficult.
Threaded servers have historically failed to meet these

challenges, leading many researchers to conclude that
event-based programming is the best (or even only)
way to achieve high performance in highly concurrent
applications. The literature gives four primary arguments
for the supremacy of events:

• Inexpensive synchronization due to cooperative
multitasking;

• Lower overhead for managing state (no stacks);
• Better scheduling and locality, based on
application-level information; and

• More flexible control flow (not just call/return).
We have made extensive use of events in several
high-concurrency environments, including Ninja [16],
SEDA [17], and Inktomi’s Traffic Server. In working
with these systems, we realized that the properties above
are not restricted to event systems; many have already
been implemented with threads, and the rest are possible.
Ultimately, our experience led us to conclude that

event-based programming is the wrong choice for highly
concurrent systems. We believe that (1) threads provide
a more natural abstraction for high-concurrency servers,
and that (2) small improvements to compilers and thread
runtime systems can eliminate the historical reasons to
use events. Additionally, threads are more amenable
to compiler-based enhancements; we believe the right
paradigm for highly concurrent applications is a thread
package with better compiler support.
Section 2 compares events with threads and rebuts

the common arguments against threads. Next, Section 3
explains why threads are particularly natural for writing
high-concurrency servers. Section 4 explores the value
of compiler support for threads. In Section 5, we validate
our approach with a simple web server. Finally, Section 6
covers (some) related work, and Section 7 concludes.

2 Threads vs. Events
The debate between threads and events is a very

old one. Lauer and Needham attempted to end the
discussion in 1978 by showing that message-passing
systems and process-based systems are duals, both in
terms of program structure and performance character-
istics [10]. Nonetheless, in recent years many authors
have declared the need for event-driven programming for
highly concurrent systems [11, 12, 17].

Final Version, Proceedings of HotOS IX.
Lihue, Kauai, Hawaii. May 2003

Events Threads
event handlers monitors

events accepted by a handler functions exported by a module
SendMessage / AwaitReply procedure call, or fork/join

SendReply return from procedure
waiting for messages waiting on condition variables

Figure 1: A selection of dual notions in thread and event
systems, paraphrased from Lauer and Needham. We have
converted their terminology to contemporary terms from event-
driven systems.

2.1 Duality Revisited
To understand the threads and events debate, it is

useful to reexamine the duality arguments of Lauer
and Needham. Lauer and Needham describe canonical
threaded and message-passing (i.e., event-based) sys-
tems. Then, they provide a mapping between the con-
cepts of the two regimes (paraphrased in Figure 1) and
make the case that with proper implementations, these
two approaches should yield equivalent performance.
Finally, they argue that the decision comes down to
which paradigm is more natural for the target application.
In the case of high-concurrency servers, we believe the
thread-based approach is preferable.
The message-passing systems described by Lauer

and Needham do not correspond precisely to modern
event systems in their full generality. First, Lauer and
Needham ignore the cooperative scheduling used by
events for synchronization. Second, most event systems
use shared memory and global data structures, which are
described as atypical for Lauer and Needham’s message-
passing systems. In fact, the only event system that
really matches their canonical message-passing system
is SEDA [17], whose stages and queues map exactly to
processes and message ports.1
Finally, the performance equivalence claimed by

Lauer and Needham requires equally good implemen-
tations; we don’t believe there has been a suitable
threads implementation for very high concurrency. We
demonstrate one in the next section, and we discuss
further enhancements in Section 4.
In arguing that performance should be equivalent,

Lauer and Needham implicitly use a graph that we
call a blocking graph. This graph describes the flow of
control through an application with respect to blocking
or yielding points. Each node in this graph represents
a blocking or yielding point, and each edge represents
the code that is executed between two such points. The
Lauer-Needham duality argument essentially says that
duals have the same graph.
The duality argument suggests that criticisms of

thread performance and usability in recent years have
1Arguably, one of SEDA’s contributions was to return event-driven

systems to the “good practices” of Lauer-Needham.

R
eq

ue
st

s
/ S

ec
on

d

Concurrent Tasks

Event−Based Server

Threaded Server

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 1 10 100 1000 10000 100000 1e+06

Figure 2: A repeat of the threaded server benchmark from
the SEDA paper [17]. The threaded server uses a preallocated
thread pool to process requests, while the event server uses
a single thread to pull items from the queue. Requests are
internally generated to avoid network effects. Each request
consists of an 8K read from a cached disk file.

been motivated by problems with specific threading
packages, rather than with threads in general. We exam-
ine the most common criticisms below.

2.2 “Problems” with Threads
Performance. Criticism: Many attempts to use

threads for high concurrency have not performed well.
We don’t dispute this criticism; rather, we believe it
is an artifact of poor thread implementations, at least
with respect to high concurrency. None of the currently
available thread packages were designed for both high
concurrency and blocking operations, and thus it is not
surprising that they perform poorly.
A major source of overhead is the presence of

operations that are O(n) in the number of threads.
Another common problem with thread packages is their
relatively high context switch overhead when compared
with events. This overhead is due to both preemption,
which requires saving registers and other state during
context switches, and additional kernel crossings (in the
case of kernel threads).
However, these shortcomings are not intrinsic prop-

erties of threads. To illustrate this fact, we repeated the
SEDA threaded server benchmark [17] with a modified
version of the GNU Pth user-level threading package,
which we optimized to remove most of the O(n)
operations from the scheduler. The results are shown in
Figure 2. Our optimized version of Pth scales quite well
up to 100, 000 threads, easily matching the performance
of the event-based server.
Control Flow. Criticism: Threads have restrictive

control flow. One argument against threaded program-
ming is that it encourages the programmer to think too
linearly about control flow, potentially precluding the
use of more efficient control flow patterns. However,

complicated control flow patterns are rare in practice. We
examined the code structure of the Flash web server and
of several applications in Ninja, SEDA, and TinyOS [8,
12, 16, 17]. In all cases, the control flow patterns used
by these applications fell into three simple categories:
call/return, parallel calls, and pipelines. All of these
patterns can be expressed more naturally with threads.
We believe more complex patterns are not used

because they are difficult to use well. The accidental non-
linearities that often occur in event systems are already
hard to understand, leading to subtle races and other
errors. Intentionally complicated control flow is equally
error prone.
Indeed, it is no coincidence that common event

patterns map cleanly onto the call/return mechanism
of threads. Robust systems need acknowledgements for
error handling, for storage deallocation, and for cleanup;
thus, they need a “return” even in the event model.
The only patterns we considered that are less graceful

with threads are dynamic fan-in and fan-out; such
patterns might occur with multicast or publish/subscribe
applications. In these cases, events are probably more
natural. However, none of the high-concurrency servers
that we studied used these patterns.
Synchronization. Criticism: Thread synchronization

mechanisms are too heavyweight. Event systems often
claim as an advantage that cooperative multitasking
gives them synchronization “for free,” since the runtime
system does not need to provide mutexes, handle wait
queues, and so on [11]. However, Adya et al. [1] show
that this advantage is really due to cooperative multitask-
ing (i.e., no preemption), not events themselves; thus,
cooperative thread systems can reap the same benefits.
It is important to note that in either regime, cooperative
multitasking only provides “free” synchronization on
uniprocessors, whereas many high-concurrency servers
run on multiprocessors. We discuss compiler techniques
for supporting multiprocessors in Section 4.3.
State Management. Criticism: Thread stacks are an

ineffective way to manage live state. Threaded systems
typically face a tradeoff between risking stack overflow
and wasting virtual address space on large stacks. Since
event systems typically use few threads and unwind the
thread stack after each event handler, they avoid this
problem. To solve this problem in threaded servers, we
propose a mechanism that will enable dynamic stack
growth; we will discuss this solution in Section 4.
Additionally, event systems encourage programmers

to minimize live state at blocking points, since they
require the programmer to manage this state by hand.
In contrast, thread systems provide automatic state
management via the call stack, and this mechanism can
allow programmers to be wasteful. Section 4 details our
solution to this problem.

Scheduling. Criticism: The virtual processor model
provided by threads forces the runtime system to be too
generic and prevents it from making optimal scheduling
decisions. Event systems are capable of scheduling event
deliveries at application level. Hence, the application can
perform shortest remaining completion time scheduling,
favor certain request streams, or perform other optimiza-
tions. There has also been some evidence that events
allow better code locality by running several of the same
kind of event in a row [9]. However, Lauer-Needham
duality indicates that we can apply the same scheduling
tricks to cooperatively scheduled threads.

2.3 Summary
The above arguments show that threads can perform

at least as well as events for high concurrency and that
there are no substantial qualitative advantages to events.
The absence of scalable user-level threads has provided
the largest push toward the event style, but we have
shown that this deficiency is an artifact of the available
implementations rather than a fundamental property of
the thread abstraction.

3 The Case for Threads
Up to this point, we have largely argued that threads

and events are equivalent in power and that threads can in
fact perform well with high concurrency. In this section,
we argue that threads are actually a more appropriate
abstraction for high-concurrency servers. This conclu-
sion is based on two observations about modern servers.
First, the concurrency in modern servers results from
concurrent requests that are largely independent. Second,
the code that handles each request is usually sequential.
We believe that threads provide a better programming
abstraction for servers with these two properties.
Control Flow. For these high-concurrency systems,

event-based programming tends to obfuscate the control
flow of the application. For instance, many event systems
“call” a method in another module by sending an event
and expect a “return” from that method via a similar
event mechanism. In order to understand the application,
the programmer must mentally match these call/return
pairs, even when they are in different parts of the code.
Furthermore, these call/return pairs often require the
programmer to manually save and restore live state. This
process, referred to as “stack ripping” by Adya et al. [1],
is a major burden for programmers who wish to use
event systems. Finally, this obfuscation of the program’s
control flow can also lead to subtle race conditions and
logic errors due to unexpected message arrivals.
Thread systems allow programmers to express control

flow and encapsulate state in a more natural manner.
Syntactically, thread systems group calls with returns,

making it much easier to understand cause/effect rela-
tionships, and ensuring a one-to-one relationship. Simi-
larly, the run-time call stack encapsulates all live state for
a task, making existing debugging tools quite effective.
Exception Handling and State Lifetime. Cleaning

up task state after exceptions and after normal termi-
nation is simpler in a threaded system, since the thread
stack naturally tracks the live state for that task. In
event systems, task state is typically heap allocated.
Freeing this state at the correct time can be extremely
difficult because branches in the application’s control
flow (especially in the case of error conditions) can cause
deallocation steps to be missed.
Many event systems, such as Ninja and SEDA,

use garbage collection to solve this problem. However,
previous work has found that Java’s general-purpose
garbage collection mechanism is inappropriate for high-
performance systems [14]. Inktomi’s Traffic Server used
reference counting to manage state, but maintaining cor-
rect counts was difficult, particularly for error handling.2
Existing Systems. The preference for threads is

subtly visible even in existing event-driven systems. For
example, our own Ninja system [16] ended up using
threads for the most complex parts, such as recovery,
simply because it was nearly impossible to get correct
behavior using events (which we tried first). In addition,
applications that didn’t need high concurrency were
always written with threads, just because it was simpler.
Similarly, the FTP server in Harvest uses threads [4].
Just Fix Events? One could argue that instead of

switching to thread systems, we should build tools
or languages that address the problems with event
systems (i.e., reply matching, live state management, and
shared state management). However, such tools would
effectively duplicate the syntax and run-time behavior
of threads. As a case in point, the cooperative task
management technique described by Adya et al. [1]
allows users of an event system to write thread-like code
that gets transformed into continuations around blocking
calls. In many cases, fixing the problems with events is
tantamount to switching to threads.

4 Compiler Support for Threads
Tighter integration between compilers and runtime

systems is an extremely powerful concept for systems
design. Threaded systems can achieve improved safety
and performance with only minor modifications to ex-
isting compilers and runtime systems. We describe how
this synergy can be used both to overcome limitations
in current threads packages and to improve safety,
programmer productivity, and performance.

2Nearly every release battled with slow memory leaks due to this
kind of reference counting; such leaks are often the limiting factor for
the MTBF of the server.

4.1 Dynamic Stack Growth
We are developing a mechanism that allows the size

of the stack to be adjusted at run time. This approach
avoids the tradeoff between potential overflow and
wasted space associated with fixed-size stacks. Using
a compiler analysis, we can provide an upper bound
on the amount of stack space needed when calling
each function; furthermore, we can determine which
call sites may require stack growth. Recursive functions
and function pointers produce additional challenges, but
these problems can be addressed with further analyses.

4.2 Live State Management
Compilers could easily purge unnecessary state from

the stack before making function calls. For example,
temporary variables could be popped before subroutines
are called, and the entire frame could be popped in the
case of a tail call. Variables with overlapping lifetimes
could be automatically reordered or moved off the stack
in order to prevent live variables from unnecessarily
pinning dead ones in memory. The compiler could also
warn the programmer of cases where large amounts of
state might be held across a blocking call, allowing the
programmer to modify the algorithms if space is an issue.

4.3 Synchronization
Compile-time analysis can reduce the occurrence of

bugs by warning the programmer about data races.
Although static detection of race conditions is chal-
lenging, there has been recent progress due to compiler
improvements and tractable whole-program analyses. In
nesC [7], a language for networked sensors based on
the TinyOS architecture [8], there is support for atomic
sections, and the compiler understands the concurrency
model. TinyOS uses a mixture of events and run-to-
completion threads, and the compiler uses a variation of
a call graph that is similar to the blocking graph. The
compiler ensures that atomic sections reside within one
edge on that graph; in particular, calls within an atomic
section cannot yield or block (even indirectly). Compiler
analysis can also help determine which atomic sections
are safe to run concurrently. This information can then be
given to the runtime system to allow safe execution on
multiprocessors, thus automating the hand-coded graph
coloring technique used in libasync [5].

5 Evaluation
To evaluate the ability of threads to support high

concurrency, we designed and implemented a simple
(5000 line) user-level cooperative threading package for
Linux. Our thread package uses the coro coroutine
library [15] for minimalist context switching, and it
translates blocking I/O requests to asynchronous requests
internally. For asynchronous socket I/O, we use the

Concurrent Clients

M
bi

ts
 /

se
co

nd

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 16 64 256 1024 4096 16384 65536

Haboob

Knot−C (favor connections)
Knot−A (favor accept)

Figure 3: Web server bandwidth versus the number of
simultaneous clients. We were unable to run the benchmark for
Haboob with more than 16384 clients, as Haboob ran out of
memory.

UNIX poll() system call, whereas asynchronous
disk I/O is provided by a thread pool that performs
blocking I/O operations. The library also overrides
blocking system calls and provides a simple emulation
of pthreads, which allows applications written for our
library to compile unmodified with standard pthreads.
With this thread package we wrote a 700-line test web

server, Knot. Knot accepts static data requests, allows
persistent connections, and includes a basic page cache.
The code is written in a clear, straightforward threaded
style and required very little performance tuning.
We compared the performance of Knot to that of

SEDA’s event-driven web server, Haboob, using the test
suite used to evaluate SEDA [17]. The /dev/poll
patch used for the original Haboob tests has been
deprecated, so our tests of Haboob used standard UNIX
poll() (as does Knot). The test machine was a 2x2000
MHz Xeon SMP with 1 GB of RAM running Linux
2.4.20. The test uses a small workload, so there is little
disk activity. We ran Haboob with the 1.4 JVM from
IBM, with the JIT enabled. Figure 3 presents the results.
We tested two different scheduling policies for Knot,

one that favors processing of active connections over
accepting new ones (Knot-C in the figure) and one that
does the reverse (Knot-A). The first policy provides a
natural throttling mechanism by limiting the number
of new connections when the server is saturated with
requests. The second policy was designed to create
higher internal concurrency, and it more closely matches
the policy used by Haboob.
Figure 3 shows that Knot and Haboob have the same

general performance pattern. Initially, there is a linear
increase in bandwidth as the number of simultaneous
connections increases; when the server is saturated, the
bandwidth levels out. The performance degradation for

both Knot-A and Haboob is due to the poor scalability
of poll(). Using the newer sys epoll system call
with Knot avoids this problem and achieves excellent
scalability. However, we have used the poll() result
for comparison, since sys epoll is incompatible with
Haboob’s socket library. This result shows that a well-
designed thread package can achieve the same scaling
behavior as a well-designed event system.
The steady-state bandwidth achieved by Knot-C is

nearly 700 Mbit/s. At this rate, the server is apparently
limited by interrupt processing overhead in the kernel.
We believe the performance spike around 1024 clients is
due to lower interrupt overhead when fewer connections
to the server are being created.
Haboob’s maximum bandwidth of 500 Mbit/s is sig-

nificantly lower than Knot’s, because Haboob becomes
CPU limited at 512 clients. There are several possible
reasons for this result. First, Haboob’s thread-pool-
per-handler model requires context switches whenever
events pass from one handler to another. This require-
ment causes Haboob to context switch 30,000 times
per second when fully loaded—more than 6 times as
frequently as Knot. Second, the proliferation of small
modules in Haboob and SEDA (a natural outgrowth of
the event programming model) creates a large number of
module crossings and queuing operations. Third, Haboob
creates many temporary objects and relies heavily on
garbage collection. These challenges seem deeply tied
to the event model; the simpler threaded style of Knot
avoids these problems and allows for more efficient
execution. Finally, event systems require various forms
of run-time dispatch, since the next event handler to
execute is not known statically. This problem is related
to the problem of ambiguous control flow, which affects
performance by reducing opportunities for compiler
optimizations and by increasing CPU pipeline stalls.

6 Related Work
Ousterhout [11] made the most well-known case in

favor of events, but his arguments do not conflict with
ours. He argues that programming with concurrency
is fundamentally difficult, and he concludes that co-
operatively scheduled events are preferable (for most
purposes) because they allow programmers to avoid
concurrent code in most cases. He explicitly supports
the use of threads for true concurrency, which is the
case in our target space. We also agree that cooperative
scheduling helps to simplify concurrency, but we argue
that this tool is better used in the context of the simpler
programming model of threads.
Adya et al. [1] cover a subset of these issues better

than we have. They identify the value of cooperative
scheduling for threads, and they define the term “stack
ripping” for management of live state. Our work expands

on these ideas by exploring thread performance issues
and compiler support techniques.
SEDA is a hybrid approach between events and

threads, using events between stages and threads within
them [17]. This approach is quite similar to the message-
passing model discussed by Lauer and Needham [10],
though Lauer and Needham advocate a single thread
per stage in order to avoid synchronization within a
stage. SEDA showed the value of keeping the server
in its operating range, which it did by using explicit
queues; we agree that the various queues for threads
should be visible, as they enable better debugging and
scheduling. In addition, the stage boundaries of SEDA
provide a form of modularity that simplifies composition
in the case of pipelines. When call/return patterns are
used, such boundaries require stack ripping and are better
implemented with threads using blocking calls.
Many of the techniques we advocate for improving

threads were introduced in previous work. Filaments
[6] and NT’s Fibers are good examples of cooperative
user-level threads packages, although neither is targeted
at large numbers of blocking threads. Languages such
as Erlang [2] and Concurrent ML [13] include di-
rect support for concurrency and lightweight threading.
Bruggeman et al. [3] employ dynamically linked stacks
to implement one-shot continuations, which can in
turn be used to build user-level thread packages. Our
contribution is to bring these techniques together in a
single package and to make them accessible to a broader
community of programmers.

7 Conclusions

Although event systems have been used to obtain
good performance in high concurrency systems, we
have shown that similar or even higher performance
can be achieved with threads. Moreover, the simpler
programming model and wealth of compiler analyses
that threaded systems afford gives threads an important
advantage over events when writing highly concurrent
servers. In the future, we advocate tight integration
between the compiler and the thread system, which
will result in a programming model that offers a clean
and simple interface to the programmer while achieving
superior performance.

Acknowledgements

We would like to thank George Necula, Matt Welsh,
Feng Zhou, and Russ Cox for their helpful contributions.
We would also like to thank the Berkeley Millennium
group for loaning us the hardware for the benchmarks in
this paper. This material is based upon work supported
under a National Science Foundation Graduate Research

Fellowship, and under the NSF Grant for Millennium,
EIA-9802069.

References
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.

Douceur. Cooperative task management without manual stack
management. In Proceedings of the 2002 Usenix ATC, June 2002.

[2] J. Armstrong, R. Virding, C. Wikström, and M. Williams.
Concurrent Programming in Erlang. Prentice-Hall, second
edition, 1996.

[3] C. Bruggeman, O. Waddell, and R. K. Dybvig. Representing
control in the presence of one-shot continuations. In ACM
SIGPLAN 1996 Conference on Programming Language Design
and Implementation, June 1996.

[4] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz,
and K. J. Worrell. A Hierarchical Internet Object Cache. In
Proceedings of the 1996 Usenix Annual Technical Conference,
January 1996.

[5] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazieres, and R. Morris.
Event-driven programming for robust software. In Proceedings
of the 10th ACM SIGOPS European Workshop, September 2002.

[6] D. R. Engler, G. R. Andrews, and D. K. Lowenthal. Filaments:
Efficient support for fine-grain parallelism. Technical Report 93-
13, Massachusetts Institute of Technology, 1993.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach to
networked embedded systems. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2003.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System Architecture Directions for Networked
Sensors. In Architectural Support for Programming Languages
and Operating Systems, pages 93–104, 2000. TinyOS is available
at http://webs.cs.berkeley.edu.

[9] J. Larus and M. Parkes. Using cohort scheduling to enhance
server performance. Technical Report MSR-TR-2001-39,
Microsoft Research, March 2001.

[10] H. C. Lauer and R. M. Needham. On the duality of operating
system structures. In Second International Symposium on
Operating Systems, IR1A, October 1978.

[11] J. K. Ousterhout. Why Threads Are A Bad Idea (for most
purposes). Presentation given at the 1996 Usenix Annual
Technical Conference, January 1996.

[12] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An Efficient
and Portable Web Server. In Proceedings of the 1999 Annual
Usenix Technical Conference, June 1999.

[13] J. H. Reppy. Higher-order concurrency. Technical Report 92-
1285, Cornell University, June 1992.

[14] M. A. Shah, S. Madden, M. J. Franklin, and J. M. Hellerstein.
Java support for data-intensive systems: Experiences building the
Telegraph dataflow system. SIGMOD Record, 30(4):103–114,
2001.

[15] E. Toernig. Coroutine library source.
http://www.goron.de/̃ froese/coro/.

[16] J. R. von Behren, E. Brewer, N. Borisov, M. Chen, M. Welsh,
J. MacDonald, J. Lau, S. Gribble, , and D. Culler. Ninja: A
framework for network services. In Proceedings of the 2002
Usenix Annual Technical Conference, June 2002.

[17] M.Welsh, D. E. Culler, and E. A. Brewer. SEDA: An architecture
for well-conditioned, scalable Internet services. In Symposium on
Operating Systems Principles, pages 230–243, 2001.

