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ABSTRACT
Database systems are becoming increasingly multi-engine. In partic-

ular, a main-memory database engine may coexist with a traditional

storage-centric engine in a system to support various applications.

It is desirable to allow applications to access data in both engines

using cross-engine transactions. But existing systems are either only

designed for single-engine accesses, or impose many restrictions

by limiting cross-engine transactions to certain isolation levels and

table operations. The result is inadequate cross-engine support in

terms of correctness, performance and programmability.

This paper describes Skeena, a holistic approach to cross-engine

transactions. We propose a lightweight snapshot tracking structure

and an atomic commit protocol to efficiently ensure correctness

and support various isolation levels. Evaluation results show that

Skeena maintains high performance for single-engine transactions

and enables cross-engine transactions which can improve through-

put by up to 30× by judiciously placing tables in different engines.
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1 INTRODUCTION
Traditional database engines are storage-centric: they assume data

is storage-resident and optimize for storage accesses. Modern data-

base servers often feature large DRAM that fits the working set or

entire databases, enabling memory-optimized database engines [5,

21, 28, 35–37, 41, 43, 61, 63] that perform drastically better with

lightweight concurrency control, indexing and durability designs.

Now suppose you are a database systems architect, and inspired

by recent advances, built a new memory-optimized engine. But
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Figure 1: Multi-engine database system. Data accesses are routed

to the corresponding storage engines.

soon you found it was difficult to attract users: some do not need

such fast speed; some say “I want it only for some tables or part of

my application.” A common solution is to integrate the new engine

into an existing system that initially uses a traditional engine. The

result is a multi-engine database system (Figure 1). The application

can judiciously use tables in both engines. Although engines share

certain services (e.g., SQL parser), each engine is autonomous with

its own indexes, concurrency control, etc. Some systems [20, 47, 55]

already take this approach for easier migration and compatibility.

1.1 Cross-Engine: a Poorly-Supported Necessity
As an experienced architect—perhaps even before users did—you

realized it was necessary to support cross-engine transactions. For

example, a financial application may use a memory table for fast

trading and keep other data in the traditional engine for low cost; yet

the user may need to access both engines for recent and historical

trading data in one ACID transaction [19]. The application may

use a unified SQL interface to access all engines, but since each

engine is implemented as an autonomous “package,” the system

has to use each engine’s own transaction abstractions; we refer

to them as sub-transactions. A transaction consists of at least one

sub-transaction. In Figure 1, 𝑆 is single-engine with 𝑆1, while 𝑇 is

cross-engine with 𝑇1 (memory-optimized) and 𝑇2 (storage-centric).

Cross-engine transactions can be very useful, but existing sup-

port is inadequate in terms of correctness, performance and pro-

grammability. First, although simply starting and committing sub-

transactions suffice to support single-engine transactions, doing

so does not ensure correct cross-engine execution. A transaction

over two engines that both use snapshot isolation (SI) [6] can still

see inconsistent data and run under a lower-than-SI isolation level.

Even if both engines ensure serializability, the overall execution is

not necessarily serializable. Simply committing sub-transactions

also risks atomicity if a sub-transaction fails to commit.
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Second, prior designs are not aimed at achieving high perfor-

mance in modern multi-engine systems, which are fast-slow where

a (much faster) memory-optimized engine and a (much slower)

storage-centric engine coexist in a single node. So it is vital for the

cross-engine solution to impose low (if any) overhead, especially on

the faster engine. Prior solutions [8, 11, 24, 31, 57, 59, 60] ignored

this hidden requirement by assuming a cluster of similar systems.

Finally, past solutions are often at odds with (1) keeping engine

autonomy for maintainability as engines are typically developed

by different teams (but still of the same vendor), and (2) easing

application development. They often require non-trivial application

changes and limit functionality, by forcing users to pre-declare

whether a transaction is cross-engine or to use certain isolation

levels [20]; both can be complex and affect performance.

1.2 Skeena
We present Skeena, a holistic approach to efficient and consistent

cross-engine transactions in the context of multi-versioned, fast-

slow systems. We make three key observations to guide Skeena’s

design. First, as noted by prior work [8], inconsistent snapshots can

be avoided by carefully selecting a snapshot in each engine. This

requires efficiently tracking snapshots that can be safely used by

later transactions. Second, in addition to using correct snapshots

and enforcing sub-transactions commit in the same order across

engines, for serializability it suffices to require each engine use

commit ordering, i.e., forbid schedules where commit and depen-

dency orders mismatch [1, 57]. Many concurrency control protocols

exhibit this property, including the widely-used 2PL and optimistic

concurrency control (OCC) [21, 38, 43, 51, 63]. Finally, engines are

developed and/or well understood by the same vendor, potentially

allowing non-intrusive changes to engines for more optimizations.

Based on these observations, we design Skeena to consist of

(1) a cross-engine snapshot registry (CSR) for correct and efficient

snapshot selection and (2) an extended pipelined commit protocol

for atomicity and durability without (expensive) traditional 2PC.

Skeena can be easily plugged into an existing system.

Conceptually, CSR maintains mappings between commit times-

tamps (therefore snapshots) in one engine and those in another.

A transaction may start by accessing any engine using the latest

snapshot 𝑠 . Upon accessing another engine 𝐸, it queries CSR using

𝑠 to select a snapshot in 𝐸 using which would avoid incorrect exe-

cutions. Further, with CSR one only needs to set each engine to use

a serializable protocol that exhibits commit ordering to guarantee

serializability. Later, we discuss the detailed algorithms to realize

this idea and techniques that make CSR lightweight and easy to

maintain. In fast-slow systems, CSR incurs negligible overhead

as the storage accesses in the traditional engine present a bigger

bottleneck, and single-engine transactions do not access CSR at all.

Leveraging the fact that engines can communicate via fast shared

memory (e.g., in the same address space), Skeena extends thewidely-

used group/pipelined commit protocols [34, 64, 68] to ensure atom-

icity and durability. Upon commit, the worker thread detaches the

transaction and places it on a commit queue, before continuing

to work on the next request. Meanwhile, a background commit-

ter thread monitors the queue and durable log sequence numbers

in both engines to dequeue transactions whose sub-transactions’

log records have been fully persisted. This way, Skeena ensures

cross-engine transactions are not committed (i.e., with results made

visible to the application) until all of its sub-transactions are com-

mitted, while avoiding expensive 2PC.

We adopted Skeena in MySQL to enable cross-engine transac-

tions across its default InnoDB and ERMIA [36], an open-source

main-memory OLTP engine. This required 83 LoC out of over 200k

LoC of the entire codebase. Evaluation on a 40-core server shows

that Skeena retains the memory-optimized engine’s high perfor-

mance, and incurs very low additional overhead for cross-engine

transactions. By judiciously placing tables in both engines, Skeena

can help improve the throughput of realistic workloads by up to

30× compared to using traditional engines.

Note that our goal is not to build faster database engines, nor to

invent new concurrency control protocols for cross-engine transac-

tions; both are well studied by prior work. Instead, we aim to (1)

enable cross-engine transactions without excessive overhead and

(2) explore practical designs for modern fast-slow systems.

1.3 Contributions
This paper makes five contributions. 1 We analyze the correctness

requirements of cross-engine transactions under various isolation

levels, ranging from read committed to serializable. 2 We distill a

set of desirable properties and design principles to be followed by

multi-engine systems. 3 We propose Skeena, a holistic approach to

consistent cross-engine transactions by leveraging the properties

of the fast-slow multi-engine architecture. 4 We show Skeena’s fea-

sibility and explore practical design issues by integrating an open-

source memory-optimized engine (ERMIA) into MySQL alongside

its storage-centric engine (InnoDB). 5 Through comprehensive

experiments, we explore the potential and distill useful recommen-

dations of using cross-engine transactions to improve performance

and reduce storage costs under realistic workloads. Skeena is open-

sourced at https://github.com/sfu-dis/skeena.

2 BACKGROUND
In this section, we give the necessary background for cross-engine

transactions and motivate our work.

2.1 Modern Fast-Slow Multi-Engine Systems
We have described the idea of multi-engine systems in Section 1.

Several production systems already adopted the fast-slow architec-

ture: SQL Server supports memory-optimized tables managed by

its Hekaton main-memory engine [21, 46]; PostgreSQL supports

additional engines through foreign data wrapper [55], which is

used by Huawei GaussDB to integrate a main-memory engine [5].

Multi-engine systems bear similarities to distributed and feder-

ated database systems [8, 9, 11, 18, 24, 31, 42, 56, 60], but are unique

in several ways. As Table 1 summarizes, a multi-engine system in-

tegrates engines developed and/or understood by the same vendor;

in contrast, federated systems consist of opaque systems developed

by different vendors. Distributed systems typically involve a set

of nodes that run the same engine carefully designed to support

distributed transactions, exhibiting low autonomy. Fast-slow sys-

tems integrate different engines that vary in performance, so an

https://github.com/sfu-dis/skeena


Table 1:Multi-engine vs. distributed and federated systems.

Multi-Engine Federated Distributed

Engine Internals Transparent Opaque Transparent

Engine Types Heterogeneous Heterogeneous Homogeneous

Autonomy Almost full Full Low

Scalability Up and/or out Out Out

inefficient cross-engine solution may penalize single-engine trans-

actions, defeating the purpose of adopting a fast engine; mitigating

such overhead is the major goal of our work. Note that multi-engine

systems often allow slightly trading autonomy for performance and

compatibility, e.g., by managing schemas in all engines centrally.

However, federated systems allow little room for doing so, as each

system is usually a proprietary package. Multi-engine systems can

scale up and out, whereas the other two types of systems mainly

focus on scaling out. We focus on single-node fast-slow systems

and leave scaling out as future work. Finally, both multi-engine and

federated systems may present applications with a unified interface

(e.g., SQL). But this does not automatically guarantee correctness for

cross-engine transactions. Unlike federated systems which already

address this issue [11, 31, 60], modern fast-slow systems either com-

pletely lack the support for cross-engine transactions (e.g., MySQL)

or come with many restrictions (e.g., SQL Server); we elaborate in

Section 2.4 after introducing more necessary background next.

2.2 Database Model and Assumptions
Now we lay out the preliminaries for analyzing cross-engine trans-

actions in fast-slow systems.

Multi-Versioning. Many popular systems are multi-versioned,

including storage-centric (e.g., MySQL InnoDB, PostgreSQL and

SQL Server) andmemory-optimized (e.g., Hekaton [21], ERMIA [36]

and Cicada [43]) engines. Given the wide adoption, we focus on

multi-versioned systems. Following prior work [1, 2, 8, 13, 65], we

model databases as collections of records, each of which is a totally-

ordered sequence of versions. Updating a record appends a new

version to the record’s sequence. Inserts and deletes are special

cases of updates that append a valid and special “invalid” version,

respectively. Obsolete versions (as a result of deletes/updates) are

physically removed only after no transaction will need them, using

reference counting or epoch-based memory management [10, 36].

Reading a record requires locating a proper version; this is dic-

tated by the concurrency control protocol. We base on a common

design [21, 36, 41, 67] where the engine maintains a global, mono-

tonically increasing counter that can be atomically read and incre-

mented. Note that in a multi-engine system, engines maintain their

own timestamp counters; for now, we assume single-engine trans-

actions and expand to cross-engine cases later. Each transaction is

associated with a begin timestamp and a commit timestamp, both

drawn from the counter. Upon commit, the transaction obtains its

commit timestamp, which determines its commit order by atomi-

cally incrementing the counter. Each version is associated with the

commit timestamp of the transaction that created it. Transactions

(a) Skewed snapshot (b) Isolation failure

Engine E1

Timeline:

Engine E2

Timeline:

1000

S1

(Begin)

T2

(Begin)

100

3000

T1

(Begin)

S2

(Begin)

200

4000

T1

(Commit)

U2

(Begin)

250

5000

U1

(Begin)

T2

(Commit)

300

Figure 2: Inconsistent snapshots. (a) 𝑆 uses an older (newer) snap-

shot in 𝐸1 (𝐸2). (b)𝑈 sees 𝑇1’s results, but does not see 𝑇2’s.

access data using a snapshot (aka read view), which is a timestamp

that represents the database’s state at some point in (logical) time.

Isolation Levels. For read committed, we always read the latest

committed version. SI allows the transaction to read the latest ver-

sion created before its begin timestamp obtained upon transaction

start or the first data access. A transaction can update a record if it

can see the latest committed version. Serializability can be achieved

by locking [15, 16, 22] and certifiers [13, 38, 65]. We aim to enforce

these isolation levels in the presence of cross-engine transactions.

Cross-Engine ACID Properties. Analogous to maintaining

ACID properties in a single engine, a multi-engine system must

maintain these for both single- and cross-engine transactions:

• Atomicity: All the sub-transactions should eventually reach the

same commit or abort conclusion, i.e., either all or none of the

sub-transactions commit in their corresponding engines.

• Consistency: All transactions (single- or cross-engine) should

transform the database from one consistent state to another,

enforcing constraints within and across engines.

• Isolation: Changes in any engine made by a cross-engine trans-

action must not be visible until the cross-engine transaction

commits, i.e., all sub-transactions have committed.

• Durability: Changes made by cross-engine transactions should

be persisted while guaranteeing atomicity.

Enforcing cross-engine ACID requires careful coordination of sub-

transactions to avoid anomalies, as we describe next.

2.3 Cross-Engine Anomalies
The relative ordering of sub-transaction begin/commit events di-

rectly determines correctness, as certain ordering may lead to anom-

alies and violate ACID requirements, as described next.

Issue 1: Inconsistent Snapshots. There are two cases where a

transaction may be given an inconsistent snapshot. In Figure 2(a), 𝑆

started in 𝐸1 with snapshot 1000, and𝑇 started in 𝐸2 with snapshot

100. Suppose another transaction in 𝐸1 committed by increment-

ing 𝐸1’s timestamp counter to 3000. Then, 𝑇 accesses 𝐸1, which

assigns 𝑇1 its latest snapshot 3000, and 𝑆2 obtains snapshot 200 in

𝐸2. Compared to 𝑆 ,𝑇 sees a newer version of the database in 𝐸1, but

an older version in 𝐸2. This would require 𝑆 and 𝑇 to start before

each other, which is impossible in a correct SI schedule [1]. This

corresponds to the “cross” phenomenon in distributed SI (DSI) [8].

Another anomaly (isolation failure) may allow transactions to

see partial results. In Figure 2(b),𝑇 first commits𝑇1 with timestamp

4000. Until𝑇2 is fully committed,𝑇 is still in-progress, so none of its

changes should be visible to other transactions. Meanwhile,𝑈 starts
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Figure 3: Non-serializable execution of cross-engine transactions.

(a) Each engine executes a serializable schedule (b) without cyclic

dependencies. (c) Overall cyclic dependency between 𝑇 and 𝑆 .

in 𝐸2 with timestamp 250, and continues to open𝑈1: since𝑈1 started

after 𝑇1 committed, by definition it should see 𝑇 1’s changes. Thus,

𝑈 sees partial results: 𝑇 ’s results are visible in 𝑈 ’s snapshot in 𝐸1,

but not 𝐸2. This anomaly corresponds to the serial-concurrent phe-

nomenon in DSI [8]. Compared to inconsistent (skewed) snapshots

which concern the order in which sub-transactions are opened,

isolation failure arises when sub-transaction begin and commit

actions are interleaved and inflict different write-read dependency

orders in different engines.

Issue 2: Serializability. Even if both engines guarantee full

serializability, the overall execution may not be serializable. As Fig-

ure 3(a) shows, 𝑆 and 𝑇 are concurrently executing in two engines

that offer serializability. Each engine runs a serializable schedule,

with an anti-dependency shown in Figure 3(b). However, as shown

in Figure 3(c), the overall execution exhibits write skew with cyclic

dependencies (𝑇 → 𝑆 → 𝑇 ), indicating non-serializable execution.

Issue 3: Atomicity and Durability. A cross-engine transaction

should commit either all or none of its sub-transactions. Distributed

systems usually solve this problem with 2PC, but newer engines

may not support it [7, 71]. 2PC’s coordination overhead can also be

heavyweight for shared memory, slowing down the (faster) main-

memory engine. As we describe later, additional checks are needed

in addition to a traditional 2PC prepare-commit protocol. Thus, 2PC

may not be the best choice for single-node multi-engine systems.

2.4 State-of-the-Art and Motivation
Prior work can avoid the anomalies [8, 9, 11, 18, 24, 31, 42, 56, 57, 60],

but they targeted distributed and federated systems without consid-

ering single-node fast-slow systems. For example, certain solutions

for DSI [8] guarantee correct snapshots with a central coordinator

node and global IDs, requiring non-trivial engine changes. 2PC as

we have described may also not suit fast-slow systems.

The mismatch between prior approaches and fast-slow systems

has led to missing or limited cross-engine support in real systems,

motivating our work. For example, MySQL supports various en-

gines under a unified interface. Users are free to issue multi-engine

transactions, but correctness is undefined as MySQL does not coor-

dinate snapshot and commit ordering across engines. All the anom-

alies in Section 2.3 could occur. Compared to MySQL, SQL Server

supports cross-engine transactions with various restrictions [20].

For example, if both the traditional engine and Hekaton use SI,

cross-engine transactions are not allowed at all, yet SI is among the

most popular isolation levels in Hekaton [20]. These significantly

limit the potential of cross-engine transactions.
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Figure 4: Skeena overview. 0 – 1 Transactions access data without

explicitly declaring whether they are cross-engine. 2 Upon access-

ing an additional engine, the transaction 3 consults CSR to obtain a

proper snapshot. 4 Cross-engine transactions use CSR for commit

check and if passed, goes through the pipelined commit protocol.

3 DESIGN PRINCIPLES
We distill a set of desired properties and design principles that a

cross-engine mechanism like Skeena should follow:

• Low Overhead. The mechanism should introduce as low over-

head as possible. It should try not to penalize single-engine trans-

actions, especially those in the faster engine.

• Engine Autonomy. Engines should be kept as-is, or only be

minimally modified to work with the cross-engine mechanism

or optimize for performance.

• Full Functionality. The mechanism should support various

isolation levels for both single- and cross-engine transactions,

unless it is limited by individual engine capabilities.

• Transparent Adoption. The application should not be required

to make logic changes. Rather, it should only need to declare the

“home” engine of each table in the schema.

4 SKEENA DESIGN
Skeena targets fast-slow systemswith amain-memory and a storage-

centric engine.We first give an overview of Skeena, and then discuss

its design in detail.

4.1 Overview
Skeena ensures correct snapshot selection and atomic commit. As

Figure 4 shows, Skeena consists of (1) the cross-engine snapshot

registry (CSR) that tracks valid snapshots and (2) a pipelined commit

protocol for atomically committing cross-engine transactions. Now

we describe the high-level transaction workflow under Skeena.

Initialization. Transactions (single- or cross-engine) can keep

using the database system’s unified APIs (e.g., SQL), without pro-

viding additional hints (e.g., whether a transaction will be cross-

engine). Figure 4 shows an example SQL program, which is written

in the same way as without Skeena. Skeena does not force trans-

actions to run under specific isolation levels. However, the system

may allow users to specify an isolation level (e.g., SET TRANSACTION
ISOLATION LEVEL in MySQL [48]). As part of the integration effort,

Skeena can detect and enforce such settings across all engines.



Algorithm 1 Snapshot selection for cross-engine transactions.

1 def select_snapshot(e1_snap, engine &e2):

# Find existing snapshots that could be used

3 candidates[] = CSR.forward_scan_1st(e1_snap)

if candidates is empty:

5 # No existing mapping, obtain the latest from e2

e2_snap = e2.timestamp_counter

7 else:

# Use the latest snapshot mapped to s <= e1_snap

9 e2_snap = max(candidates)

CSR.map(e1_snap, e2_snap)

11 return e2_snap

Data Accesses. The system routes requests to the target engine

which uses a sub-transaction to access data. Skeena requires no

change to the existing routing mechanism. Upon start or accessing

the first record, the sub-transaction obtains a snapshot. Depending

on whether the transaction is single- or cross-engine, the system

may directly give the latest snapshot in the underlying engine, or

use CSR to obtain a snapshot that would not cause anomalies (steps

2 – 4 Query/set). If such a snapshot does not exist, the transaction

will be aborted; we quantify the impact in Section 6.

Finalization. To commit, a cross-engine transaction consults

CSR to verify that committing it would not lead to inconsistent snap-

shots for future transactions; single-engine transactions commit

without using Skeena. Transactions that have passed CSR verifi-

cation are marked as pre-committed to go through the pipelined

commit protocol (step 4 Dequeue). If the verification fails, we abort

the transaction by rolling back all of its sub-transactions.

In the rest of this section, we describe how Skeena facilitates

snapshot selection, atomicity and durability, beginning with CSR.

4.2 Cross-Engine Snapshot Registry
The key to avoiding inconsistent snapshots is to ensure the sub-

transactions of different cross-engine transactions follow the same

start order in each engine [8]. That is, if𝑇 ’s sub-transaction𝑇1 uses

an older snapshot than 𝑆1 does in engine 𝐸1, then 𝑇2 should also

use an older snapshot compared to that of 𝑆2 in 𝐸2. For example,

in Figure 4, 𝑇 first started as a single-engine transaction accessing

Orders in 𝐸1, using snapshot 80. When𝑇 starts to access Products
in 𝐸2,𝑇 needs to use a snapshot (𝑠) in 𝐸2 such that 𝑠 is between the

snapshots of its “neighbors” in 𝐸1, i.e., 𝑆1 and 𝑇1. Thus, 𝑇 may use

any valid 𝐸2 snapshot between 1200 and 3000 (inclusive), although

using 3000 would allow it to see fresher data.

To facilitate such a snapshot selection process, CSR tracks valid

snapshots (i.e., commit timestamps of past cross-engine transac-

tions) that can be safely used by future cross-engine transactions.

Conceptually, CSR is a table of many-to-many mappings, where

each “row” (CSR entry) is a pair of snapshots (i.e., commit times-

tamps), one from each engine as depicted by Figure 4. When a trans-

action crosses to an additional engine, it uses the current engine’s

snapshot as the key to query CSR for a snapshot in the other engine.

As Algorithm 1 shows, to access a new engine e2, the worker thread
issues a non-inclusive forward scan over CSR using the snapshot

in the current engine e1 as the key (e1_snap) to obtain a set of

Algorithm 2 Commit check for cross-engine transactions.

1 def cross_engine_commit_check(sub_t1&, sub_t2&):

# Obtain lower and upper bounds for sub-transaction t2

3 low = -inf

candidates[] = CSR.reverse_scan_1st(sub_t1.commit_ts)

5 if candidates[] is not empty:

low = max(candidates)

7

high = +inf

9 candidates[] = CSR.forward_scan_1st(sub_t1.commit_ts)

if candidates[] is not empty:

11 high = min(candidates)

13 # Check if committing t2 would cause future anomalies

if low > sub_t2.commit_ts or high < sub_t2.commit_ts:

15 return false

else:

17 # Check passed, setup mapping and return

CSR.map(sub_t1.commit_ts, sub_t2.commit_ts)

19 return true

candidate snapshots. The scan returns once a first key greater than

e1_snap is met or no such key is found. If the scan returns an

empty set, then no past transaction has set up any mapping, or the

current transaction is using the latest e1 snapshot. Then we use the

latest e2 snapshot (lines 4–6). However, if any candidate is found,

we must take an e2 snapshot that is already mapped to e1_snap
to avoid anomalies (lines 7–9). Finally, we ensure the mapping is

recorded at line 10. Under SI, the algorithm is executed only once

per transaction when it becomes cross-engine. Subsequent accesses

continue to use the previously acquired snapshots.

In addition to acquiring snapshots, committing a cross-engine

transaction implicitly limits the ranges of snapshots a (future) cross-

engine transaction may use: recall that the commit timestamp of a

previous transaction𝑇 in fact is the snapshot of a future transaction

that reads the results generated by𝑇 . Thus, CSR also tracks commit

timestamps of cross-engine transactions. Algorithm 2 describes

the process at a high level. Here, we assume the sub-transaction

commit timestamps are given (as the commit_ts member in each

sub-transaction); we revisit this assumption later in more detail.

The idea is to ensure that committing a cross-engine transaction—

i.e., adding a new mapping entry to CSR—would not add skewed

snapshots to CSR. Thus, upon commit, we issue a reverse scan and a

forward scan over CSR using a sub-transaction’s (sub_t1) commit

timestamp to obtain the lower and higher bounds for the other

commit timestamp (lines 4–11 in Algorithm 2). If sub_t2’s commit

timestamp falls between the higher and lower bounds, we can safely

commit this cross-engine transaction and setup a new mapping in

CSR (line 18). Otherwise, the transaction must be aborted. Note that

the mapping step in Algorithm 1 is still necessary: (1) single-engine

commits are not covered by CSR to avoid unnecessary overheads,

and (2) a cross-engine transaction may access data generated by

single-engine transactions and form new cross-engine snapshots.

Since a transactionmay access engines in any order (e.g., from the

storage-centric engine and crosses over to the memory-optimized



engine, and vice versa), CSR needs to support queries from either
engine. CSR may be implemented using a relational table in one of

the supported engines with full-table scan or two range indexes,

each of which is built on a “column” of the CSR table. However,

this can create dependency on a particular engine and incur much

table and index maintenance overhead. A practical design must

also support concurrency. We address these issues next.

4.3 Lightweight Multi-Index CSR
We take advantage of the unique properties of fast-slow systems to

devise a lightweight CSR that mitigates the above issues.

Anchor Engine. Compared to storage-centric engines, it is typ-

ically much cheaper to obtain snapshots in main-memory engines.

This is often as simple as manipulating an 8-byte counter in a lock-

free manner without using a mutex [69]. For example, ERMIA [36]

only needs to read the counter; Hekaton [21] increments the counter

using atomic fetch-and-add (FAA) [32] to keep the process efficient.
1

On the contrary, obtaining a snapshot in a storage-centric system

can be much more complex. For example, MySQL InnoDB needs to

take multiple mutexes to compute watermark values (see Section 5).

Leveraging the existence of a fast and a slow engine, Skeena des-

ignates an anchor engine and always follows the snapshot order in

the anchor engine. The anchor engine should be the one where it is

cheaper to acquire a snapshot (usually the memory-optimized one).

Then a transaction always starts by acquiring the latest snapshot

from the anchor engine, and uses it to query CSR when it extends to

the other engine. This allows us to maintain one-to-many mappings

(instead of many-to-many mappings), which simplifies CSR to be-

come a range index that uses the anchor engine’s snapshots as “keys”

and lists of snapshots in the other engine as “values.” We currently

use Masstree [44], a high-performance in-memory index, but any

concurrent data structure that supports range queries would suffice.

A side effect is transactions that only access the “slower” engine

become cross-engine and need to use Algorithms 1–2. As Section 6

shows, the overhead is negligible compared to data accesses which

may involve the storage stack while CSR is fully in-memory.

Using the main-memory engine as the anchor is an optimization,

not a requirement: in theory any engine can be the anchor. In case

a heavyweight engine has to be the anchor, cross-engine transac-

tions may incur higher overhead for creating snapshots (thus lower

overall performance). This will in turn reduce the pressure on CSR

which is less frequently accessed and maintains fewer snapshots.

Multi-Index. Since CSR tracks cross-engine snapshots and com-

mit histories, its size can grow quickly, slowing down query speed

over time; entries that are no longer needed should also be cleaned

up. We solve these problems by partitioning the CSR by snapshot

ranges, reminiscent of multi-rooted B-trees [53]. The result is a

multi-index design shown in Figure 5. Each partition is an index

and covers a unique range of snapshots so that a transaction only

uses a single index. In Figure 5, the first two indexes cover map-

pings in the ranges of [30, 400] and [401, 500], respectively. Each

partition has a fixed capacity (number of keys), and a new index

is created when the current open index is full. Therefore, there is

always one and only one open index that can accept new mappings;

1
Such designs are common in multi-versioned engines [26, 43, 67, 69]. When the engine

is integrated into a full system, e.g., MySQL , FAA’s overhead is negligible.

Snapshot >= 550

Snapshot >= 401

Snapshot >= 30

[30, 400] [401, 500] [550, +∞)
Anchor engine snapshot ranges:

. . .

Inactive (read-only) indexes Active index

Figure 5: Multi-index CSR. Each index covers a range of anchor

snapshots, and is recycled in its entirety when no longer needed.

other indexes are read-only but can continue to serve existing trans-

actions for snapshot selection. However, since inactive indexes are

read-only, if a transaction needs to setup a new mapping in an in-

active index during snapshot selection or commit check, it must be

aborted; in practice, such aborts are rare as we evaluate in Section 6.

Snapshot Acquisition and Commit Check. With multiple

indexes and an anchor engine, a transaction acquires snapshots

by (1) obtaining a snapshot 𝑆 from the anchor engine, (2) locating

the index 𝐼 that covers 𝑆 , and (3) using 𝑆 to query 𝐼 and if needed,

create a new entry in 𝐼 following Algorithm 1 with e1_snap = 𝑆

and CSR at line 3 being 𝐼 . Note that steps 2 and 3 are only executed

if the transaction accesses the non-anchor engine. For example, if

the main-memory engine is the anchor and the transaction only ac-

cesses an in-memory table, steps 2 and 3 are never executed. For step

2, we track all the indexes in a list/array (e.g., C++ std::vector).
Each entry records the minimum snapshot of the partition and a

pointer to the index. Since we keep only one open index, entries in

the list are sorted by snapshot ranges. We search for 𝐼 by traversing

the list backwards and stopping at the first entry whose smallest

snapshot is smaller than or equal to the given snapshot. In step

3, a new entry is inserted if and only if 𝐼 is open; otherwise the

transaction is aborted. Commit check follows a similar logic and

can proceed only if 𝐼 is open. Likewise, CSR in lines 4–9 of Algo-

rithm 2 refers to 𝐼 . Multiple threads may execute the above three

steps concurrently, for which we describe our solution next.

4.4 CSR Concurrency and Maintenance
Now we discuss how Skeena handles concurrent accesses and man-

ages/recycles indexes in multi-index CSR.

Concurrency. Although latches can be a potential bottleneck

in multicore systems [33], a latch-based solution in Skeena can be

efficient by leveraging the fast-slow property: compared to exe-

cuting transactions in the slower engine, using latches and high-

performance indexes present negligible overhead and little impact

on overall performance for cross-engine transactions. Each index is

protected by a mutex, and we protect the array of all indexes using

a reader-writer lock for mutual exclusion between threads that only

query an index without modifying the list using the reader mode

and those that may add or remove an index using the writer mode.

A transaction starts by latching the list of indexes in shared (reader)

mode to locate the target index 𝐼 . Then the thread latches 𝐼 for

exclusive access to run Algorithm 1. If the thread needs to create

a new index, e.g., if 𝐼 is full or the list is empty, it (1) releases the

list latch, (2) requires the latch in writer mode to allow inserting

to the list, and (3) checks if such an index has been inserted by

another thread between steps 1 and 2, and if so, retries the entire

process after releasing the list latch; otherwise we proceed by (4)



appending the new index with a new mapping to the list. Commit

check follows the same logic so we do not repeat the details.

Index Maintenance. Using multiple indexes simplifies garbage

collection (GC) as we can delete an entire index once its mappings

are no longer needed, instead of issuing many key delete opera-

tions to an index. To recycle, we first iterate over all the active

transactions to find the oldest anchor-engine snapshot (min_snap).
Then we exclusively latch the list of indexes and scan through it

to remove stale indexes that cover ranges below min_snap. In case

long-running transactions prevent min_snap from growing, one

may further find opportunities to remove unused indexes covering

newer but still unused ones, reminiscent of GCing long version

chains inmulti-versioned systems [10]. For example, assume a trans-

action still uses the left-most index in Figure 5, yet no transactions

need the middle index (401–500), which can then be first recycled;

the oldest index is recycled later when it is no longer needed. Our

experiments do not indicate this approach to be necessary and

recycling is fast as it is purely in-memory. Recycling is triggered

between CSR accesses based on a user-defined threshold (e.g., once

per 5000 accesses); it could also be delegated to background threads.

4.5 Commit Protocol
Once all accesses are finished, Skeena checks whether both sub-

transactions can commit using engine-level commit timestamps

that represent the sub-transactions’ commit ordering. Thus, Skeena

needs to obtain the sub-transaction’s commit timestamp from each

engine. This is usually easy for memory-optimized engines which

break the commit process into pre- and post-commit [21, 36, 39].

During pre-commit, the engine assigns a commit timestamp and

uses it to determine whether the transaction can commit without

violating correctness criteria (e.g., serializability). If so, post-commit

will finish the commit by marking new records as visible, finalizing

log records, etc. Otherwise the transaction is aborted. Some (mainly

storage-centric) engines may not explicitly expose such pre- and

post-commit interfaces, but engines in a multi-engine system are

maintained by the same vendor. This justifies simple changes in

engines to expose the pre- and post-commit interfaces, which is

straightforward in practice by breaking a monolithic “commit” func-

tion into a pre- and post-commit function (Section 5). Single-engine

transactions directly execute the two steps without commit check.

With the pre- and post-commit interfaces, Skeena commits a

cross-engine transaction in three steps. (1) Pre-commit both sub-

transactions to obtain commit timestamps. (2) Use the timestamp

obtained from the anchor engine to conduct the commit check. (3)

If the check passes, post-commit both sub-transactions. From a

high-level, Skeena’s commit protocol resembles 2PC: step 1 may

correspond to 2PC’s prepare phase that collects commit decisions

from each engine; step 3 may correspond to 2PC’s commit phase.

However, Skeena differs from 2PC by requiring an additional check

(step 2) even after all the engines have pre-committed the transac-

tion. So an “all-yes” result from the 2PC-equivalent prepare phase

does not necessarily mean a cross-engine transaction can commit.

Before both sub-transactions are post-committed, changes by ei-

ther should be kept invisible, yet from the perspective of an engine,

a post-committed (sub-)transaction is fully committed with its re-

sults visible. Skeena must ensure partial results are not visible until

all sub-transactions are post-committed. We observe that a simple

yet effective solution is to extend the pipelined commit protocol [34]

which was initially proposed to hide log flush latency. It decouples

transactions waiting for log flushes and worker threads to keep I/O

off the critical path. Upon commit, instead of directly issuing a log

flush, the thread detaches the transaction and appends it to a global

commit queue (or a partitioned queue to avoid introducing a central

bottleneck). Results by these transactions are immediately visible

internally but are not returned to applications until their log records

have been persisted. A daemon tracks transactions awaiting log

durability on the commit queue, and dequeues transactions whose

log records have been persisted. Some systems use this approach to

improve throughput without sacrificing correctness [33, 34, 64, 66].

Based on this idea, Skeena (1) pushes both sub-transactions onto

the commit queue upon post-commit and (2) has the commit dae-

mon monitor both engines’ log flushes to dequeue transactions. If

an engine already implements commit pipelining, Skeena can di-

rectly extend it. Note that single-engine and read-only transactions

must also use commit pipelining [30] as they may read cross-engine

transactions’ results; we quantify its impact on latency in Section 6.

4.6 Durability and Recovery
In a multi-engine system, each engine implements its own approach

to durability and crash recovery. Sub-transactions still follow their

corresponding engines’ approach to persist data and log records.

Checkpoints can be taken as usual independently by each engine.

To ensure atomicity of cross-engine transactions, Skeena can record

the pre- and post-commit of cross-engine transactions, by main-

taining a standalone log or piggybacking on individual engines.

The latter can be easier to implement: upon pre-commit we ap-

pend a commit-begin record, and after post-commit finishes, the

engine appends a commit-end record. During recovery, each en-

gine executes its recovery mechanism and rolls back changes done

by cross-engine transactions whose sub-transactions are not fully

committed. Alternatively, the recovery procedure may inspect each

engine’s log and truncate at the first “hole” where only one sub-

transaction of a cross-engine transaction is committed. This is safe

because transactions that depend on partially committed cross-

engine transactions will wait on the commit queue and their results

were never made visible to applications.

4.7 Serializability
As noted by prior work [57], disallowing anti-dependencies (i.e.,

using commit order as dependency order) in all engines is sufficient

for cross-engine serializability. This translates into choosing a con-

currency control protocol for each engine where a sub-transaction

can only commit if its read records are not concurrently modified

by a newer transaction. A wide range of engines [5, 21, 26, 37, 39,

41, 43, 63] exhibit this property based on 2PL (by blocking readers

and writers) and OCC (by verification at commit time). Some pro-

tocols [13, 14, 27, 65] can tolerate certain safe anti-dependencies,

but would require implementing verification in Skeena. This needs

engines to expose dependency information, tightly coupling Skeena

with engine design and sacrificing engine autonomy. Thus, we take

the former approach that imposes no engine-level changes.



4.8 Correctness
Skeena’s theoretical foundation comes from DSI [8] and commit

ordering (CO) [57] which respectively ensure consistent snapshots

and serializability. Different fromDSI and CO, Skeena targets single-

node instead of distributed systems. In essence, Skeena implements

DSI and CO for shared memory. Both DSI and CO enforce sufficient

conditions with their correctness formally proved. Thus, we argue

for Skeena’s correctness by showing Skeena enforces the same

conditions as DSI and CO. We first lay out the necessary notations

used by DSI [8] and our adaptation for shared memory:

• 𝑐𝑥 : Commit of transaction 𝑥 ;

• 𝑐𝑖𝑥 : Commit of transaction 𝑥 on node/engine 𝑖;

• 𝑏𝑥 : Begin of transaction 𝑥 ;

• 𝑏𝑖𝑥 : Begin of transaction 𝑥 on node/engine 𝑖;

• 𝑆𝑁 (𝑥,𝑦): All nodes/engines accessed by 𝑥 and 𝑦;

• 𝑥 < 𝑦: Transaction 𝑥 is serialized before 𝑦;

• 𝑜𝑝1 < 𝑜𝑝2: Begin/commit operation 𝑜𝑝1 is ordered before 𝑜𝑝2.

For begin operations, 𝑜𝑝1 ≤ 𝑜𝑝2 is allowed as begin timestamps

can be acquired by reading a counter.

Then DSI defines the following sufficient conditions for correctness:

Theorem 4.1. Suppose each node 𝑖 enforces correct local SI. If all
the local schedules satisfy the following rules, we can construct a
correct DSI schedule, i.e., the execution is correct DSI [8]:

∃𝑐𝑖𝑥 < 𝑐𝑖𝑦 → 𝑐𝑥 < 𝑐𝑦 (Rule 1)
∃𝑏𝑖𝑥 < 𝑐𝑖𝑦 → 𝑏𝑥 < 𝑐𝑦 (Rule 2)
∃𝑐𝑖𝑥 < 𝑏𝑖𝑦 → 𝑐𝑥 < 𝑏𝑦 (Rule 3)
∃𝑏𝑖𝑥 ≤ 𝑏𝑖𝑦 → 𝑏𝑥 ≤ 𝑏𝑦 (Rule 4)

𝑐𝑥 < 𝑐𝑦 → ∀𝑗 ∈ 𝑆𝑁 (𝑥,𝑦) : 𝑐 𝑗𝑥 < 𝑐
𝑗
𝑦 (Rule 5)

𝑏𝑥 < 𝑐𝑦 → ∀𝑗 ∈ 𝑆𝑁 (𝑥,𝑦) : 𝑏 𝑗𝑥 < 𝑐
𝑗
𝑦 (Rule 6)

𝑐𝑥 < 𝑏𝑦 → ∀𝑗 ∈ 𝑆𝑁 (𝑥,𝑦) : 𝑐 𝑗𝑥 < 𝑏
𝑗
𝑦 (Rule 7)

𝑏𝑥 < 𝑏𝑦 → ∀𝑗 ∈ 𝑆𝑁 (𝑥,𝑦) : 𝑏 𝑗𝑥 < 𝑏
𝑗
𝑦 (Rule 8)

Analogous to DSI, in a shared-memory environment, Rules 1–4

construct the partial order of begin/commit events of cross-engine
transactions (“distributed transactions” in DSI). Then, Rules 5–8

enforce the same partial order across all the engines (“nodes” in
DSI). We omit the detailed proof (available elsewhere [8]); our goal

is to show the conditions enforced by Skeena satisfy Rules 1–8.

Theorem 4.2. Skeena enforces the same partial order of cross-
engine transactions on all engines as defined by Theorem 4.1 in a
shared-memory environment.

Proof. In Algorithm 1, given some 𝑏𝑖𝑥 , Skeena either uses the

latest timestamp (line 6) or the latest snapshot from engine 𝑗 whose

corresponding snapshot in 𝑖 is no newer than 𝑏𝑖𝑥 . Therefore, Algo-

rithm 1 enforces Rules 4 and 8 of Theorem 4.1. Similarly, Algorithm 2

forbids < 𝑐𝑖𝑥 , 𝑐
𝑗
𝑦 > to be inserted into CSR if 𝑐

𝑗
𝑦 does not maintain

the same partial order on engine 𝑖 (lines 14–15), satisfying Rules 1

and 5. Note that begin timestamps are in fact previously committed

transactions’ commit timestamps, enforcing Rules 3, 4, 6 and 7. □

For serializability, Skeena requires the use of concurrency con-

trol protocols to follow the requirements of CO [57], without in-

troducing any additional algorithms. Hence, Skeena can support

serializability using commit ordering.

Table 2: Requirements to achieve different isolation levels.

Isolation Level Requirements

Read Committed Engines: Isolation level ≥ Read Committed

Skeena: Refresh snapshot per record access

Snapshot Isolation Engines: Isolation level ≥ Snapshot Isolation

Skeena: New snapshot upon start/first access

Serializable Engines: Serializable, no anti-dependencies

Skeena: New snapshot upon start/first access

4.9 Discussions
In essence, Skeena is a coordinator that enforces correct snapshots

and atomic commit in fast-slow systems. Table 2 lists the require-

ments to achieve different overall isolation levels. To achieve an

overall isolation level of read committed (RC), in most systems this

means to acquire a new snapshot per record access. Guarantee-

ing SI or serializable isolation levels usually requires obtaining a

snapshot upon transaction start or the first record access. Since

Skeena does not implement extra concurrency control logic to avoid

tight coupling with engines, for all isolation levels (e.g., SI), each

engine needs to run at least at it (e.g., SI) or higher to ensure sub-

transactions are correctly scheduled. Thus, the overall isolation

level guaranteed by Skeena is at most the lower level being used

across all engines. For example, if two engines respectively use RC

and SI, then Skeena can only guarantee RC overall.

Our focus has been on dual-engine systems with interpreted

queries. To support more engines, a straightforward way is to ex-

tend the multi-index CSR to become a hierarchy of indexes, each is

the anchor of the next lower-level engine. This would allow Skeena

to enforce ordering between sub-transactions. The downside is

more complex CSR maintenance which may require more efficient

CSR designs. If more changes are tolerable, one may introduce

additional global ordering to simplify sub-transaction ordering.

However, this can potentially couple the design with engine inter-

nals. Most memory-optimized engines compile queries to machine

code [21, 45, 49]. Skeena is orthogonal to whether queries are com-

piled or interpreted, although we focus on the latter as accesses in

conventional engines can cancel out compilation’s benefits.

Finally, Skeena can be applied to systems that (1) support multi-

ple engines and (2) follow the databasemodel in Section 2.2. Both are

widely available in practice. For example, MySQL and SQL Server

already support multiple engines. PostgreSQL can support addi-

tional engines using foreign data wrapper. Many systems, including

MySQL, PostgreSQL and SQL Server, employ multi-versioning. We

discuss in depth how Skeena can be used by MySQL later; for space

limitation we do not expand on other systems. Moreover, Skeena

does not require significant engine-level changes. The most notable

(yet simple) change (mainly for conventional engines) is exposing

commit ordering via a pre-commit interface. Skeena only expects

the commit/abort decision of sub-transactions, without dictating

engine internals, such as whether cascading abort is possible or how

writes and versions are organized. The remaining effort is mainly

put into integrating Skeena with existing multi-engine support. As

Section 5 describes, these changes are not intrusive or complex.



5 SKEENA IN PRACTICE
We explore the effort needed to adopt Skeena in real systems, by en-

abling cross-engine transactions in open-source MySQL
2
between

its default storage-centric InnoDB and ERMIA [36]. MySQL defines

a set of core interfaces (e.g., search, update and commit) for engines

to implement [47]. This allowed us to integrate ERMIA easily with

< 2000 LoC.
3
InnoDB and ERMIA share MySQL’s SQL layer and

thread pool.
4
The application specifies each table’s home engine in

its schema, which is managed by existing MySQL features.

To use CSR, it is necessary to understand each engine’s database

model. ERMIA closely follows our database model. To obtain a snap-

shot, the thread reads the counter without latching, which is much

cheaper than InnoDB based on latching. So we use ERMIA as the

anchor engine. InnoDB uses transaction IDs (TIDs) to determine

record visibility and ordering. We describe how we reconcile the

differences between real implementation and our database model.

Each read-write transaction is uniquely identified by a TID drawn

from a central counter. Each record is stamped with the TID of the

transaction that last updated it. Updates are handled in-place. Old

versions are generated on-demand using undo logs. The freshness

(or the amount of undo log to apply) is determined by the transac-

tion’s read view (snapshot) which is acquired upon the first data

access. A read view consists of low/high watermarks (TIDs) and an

active transactions list captured at the read view’s creation time.

The transaction is not allowed to see versions created by transac-

tions with TIDs above the high watermark, but can see the results

of transactions with TIDs below the low watermark. Versions cre-

ated by transactions with TIDs between the two watermarks are

invisible if they are active. As a result, read views are not directly

comparable, deviating from our database model.

Our solution is to use the high watermark in CSR.
5
Specifically,

sub-transactions in InnoDB first acquire the latest read view using

the original approach. We then adjust its high watermark using CSR

and leave the active transactions list unchanged. In case the new

high watermark is even lower than the low watermark, we adjust

both to be the same as the high watermark. The sub-transaction

can then use the adjusted read view as usual to test record visibility.

Upon commit, InnoDB assigns a serialisation_no drawn from
the TID counter to denote commit ordering, which we use for

Skeena’s commit check.
6
We broke the monolithic commit func-

tion into pre/post-commit functions (Section 4.5). The pre-commit

function only acquires a serialisation_no, leaving the remain-

ing logic to post-commit. For atomic commit, we piggyback on

ERMIA’s commit pipelining. We extend the commit entry design

in ERMIA to include commit LSNs in both engines, along with a

MySQL callback for notifying the client of concluded transactions.
7

In total, we modified 83 LoC in InnoDB for it to use Skeena

to choose read views and commit sub-transactions. CSR is imple-

mented as a separate module of ∼600LoC.8 For ERMIA, we only

modified its commit pipelining code to consider both engines.

2
Based on MySQL 8.0 at https://github.com/mysql/mysql-server.

3
Details in ha_ermia.cc in our code repository (https://github.com/sfu-dis/skeena).

4
Adopted from https://github.com/percona/percona-server/blob/8.0/sql/threadpool.*.
5
Lines 2233–2254 of trx0trx.cc in our code repository.

6
Lines 1378–1480 of trx0trx.cc in our code repository.

7
Lines 180–222 of sm-log-alloc.cpp in our code repository.

8
Details in gtt.{cc,h} in our code repository.

6 SKEENA IN ACTION
We empirically evaluate Skeena under microbenchmarks and real-

istic workloads. Through experiments, we show that:

• Skeena retains the performance benefits brought by memory-

optimized engines in fast-slow systems;

• Skeena only incurs a very small amount of overhead for cross-

engine transactions;

• By judiciously placing tables in different engines, Skeena can

effectively improve performance for realistic workloads.

6.1 Experimental Setup
We run experiments on a dual-socket server equipped with two

20-core Intel Xeon Gold 6242R CPUs (80 hyperthreads in total),

384GB of main memory and a 400GB Micron SSD with peak band-

width of 760MB/s. Each CPU has 35.75MB of cache and is clocked

at 3.1GHz. All experiments are conducted in MySQL 8.0 with Inn-

oDB and ERMIA. We use SysBench [52] to issue benchmarks. To

reduce networking overhead, we pin MySQL server and the client

(SysBench) to two different CPU sockets, and use a Unix Domain

Socket between the server and client [70]. We use jemalloc [25] to

avoid memory management becoming a major bottleneck. We use

SI (repeatable read in InnoDB) to run all experiments as they are

widely used in practice, and reinitialize the database for each run

which then starts with a warm buffer pool. We report the average

throughput and latency of three 60-second runs.

ERMIA is memory-optimized so all records are in heap mem-

ory. For InnoDB, we test both the memory- and storage-resident

cases: the memory-resident variant (InnoDB-M) uses a large enough
buffer pool to avoid accessing storage; the storage-resident variant

(InnoDB) uses a small buffer pool that would mandate accessing the

storage stack. To stress test Skeena, we store persistent data (such

as data files and logs) in tmpfs, so that I/O is as fast as memory,

making it easier to expose Skeena’s overhead. To understand the

performance under more realistic workloads, we also run experi-

ments using a real SSD; tmpfs is used unless otherwise specified.

6.2 Benchmarks
We use YCSB-like [17] microbenchmarks and TPC-C [62] (based

on Percona’s implementation [54]) to test Skeena and explore the

effect of cross-engine transactions.

Microbenchmarks.We devise three microbenchmarks based

on access patterns: read-only, read-write and write-only. Unless

otherwise specified, each transaction accesses ten records randomly

chosen from a set of tables following a uniform distribution: (1) for

read-write transactions, eight out of the ten accesses are point reads

and two are updates, and (2) for each engine, we create 250 tables,

each of which contains a certain number of records depending on

whether the experiment is memory- or storage-resident for Inn-

oDB. Each record is 232-byte, consisting of two INTEGERs and one

VARCHAR. For memory-resident experiments, each table contains

25000 records, bringing the total data size of 250 tables to ∼1.35GB;
the buffer pool size in InnoDB is set to 32GB. For storage-resident

experiments, we set each table to contain 250000 records, and the

total data size is ∼13.5GB; we set the buffer pool to be 2GB. Under

both settings, ERMIA is populated with the same amount of data

as InnoDB (i.e., 500 tables across two engines).

https://github.com/mysql/mysql-server
https://github.com/sfu-dis/skeena
https://github.com/percona/percona-server/blob/8.0/sql/threadpool.*


Table 3: Throughput (TPS) of single-engine microbenchmarks (80

connections) and TPC-C (50 connections). Skeena (-S) incurs negli-

gible overhead and retains ERMIA’s high performance.

Scheme Read-only Read-write Write-only TPC-C

ERMIA 1,427,071 1,252,146 1,091,606 7,550

ERMIA-S 1,430,137 1,253,368 1,095,056 7,546

InnoDB-M 1,326,710 930,249 710,697 626

InnoDB-MS 1,310,809 915,406 711,425 612

InnoDB 456,672 420,328 194,446 277

InnoDB-S 453,781 420,474 194,412 261

TPC-C. We use TPC-C for the dual-purpose of (1) testing Skeena

under non-trivial transactions, and (2) exploring the potential bene-

fits of cross-engine transactions in realistic scenarios. We run both

memory- and storage-resident experiments: the former sets the

scale factor to be the number of connections and the latter uses 200

warehouses. For memory-resident experiments, each connection

works on a different home warehouse, but the 1% of New-Order

and 15% of Payment transactions may respectively access a re-

mote warehouse; we set InnoDB buffer pool to be 32GB which is

large enough to hold all the data (∼14GB). With 200 warehouses

for storage-resident experiments, the total data size is ∼55GB, for
which we set InnoDB to use a buffer pool of 5GB and set each thread

(connection) to always pick a random warehouse as its home ware-

house to ensure the footprint covers the entire database. Finally,

we gradually move tables from InnoDB to ERMIA, making the

affected transactions cross-engine. This allows us to explore the

effectiveness of cross-engine transactions and distill several useful

suggestions on how to optimize performance in fast-slow systems;

we discuss more detailed setups later.

6.3 Single-Engine Performance
An important goal of Skeena is to ensure single-engine transactions

(especially those in the faster engine, ERMIA) pay little additional

cost. We evaluate this aspect by turning Skeena on and off under six

ERMIA- and InnoDB-only variants. To stress test Skeena, we use

the memory-resident InnoDB (InnoDB-M) and the storage-resident

InnoDB with tmpfs (InnoDB). Table 3 summarizes the results; vari-

ants with Skeena turned on carry an S suffix. In all cases, Skeena

incurs negligible overhead with the slightly more complex logic

in commit pipelining. Note that “single-engine” transactions in

InnoDB/InnoDB-M are in fact cross-engine, as they must follow the

start order in the anchor engine (ERMIA) even if they do not access

any records in ERMIA. This means CSR will only maintain a single

mapping (using ERMIA’s initial snapshot) which incurs a constant

but very small amount of overhead (up to 5.6%); garbage collection

is also never needed with a single mapping. Compared to InnoDB,
InnoDB-M performs up to over ∼ 3× better thanks to its large buffer

pool. InnoDB-M and InnoDB-MS perform similarly to ERMIA under

the read-only microbenchmark, but fall behind as we add more

writes to the workload, signifying the potential benefits a memory-

optimized engine could bring (more later). ERMIA-S performs as

well as ERMIA since CSR is never used. These results verify that

Skeena retains the advantage of memory-optimized engines.
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Figure 6: Throughput under memory-resident microbenchmarks.

CSR cost can be comparable to that of reading records, causing

InnoDB-M to outperform cross-engine cases.
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Figure 7: Throughput under storage-resident microbenchmarks.

Performance improves with more accesses in ERMIA.

6.4 Cross-Engine Performance
Now we explore the behavior of cross-engine transactions using

microbenchmarks. For each transaction, we vary the percentage of

InnoDB and ERMIA accesses out of ten accesses. For example, with

30% InnoDB, three accesses per transaction are done in InnoDB,

the remaining seven accesses go to ERMIA. We use the same -M
and -S notations from Section 6.3 for single-engine transactions

whose results are shown to calibrate expectations. For cross-engine

transactions we mark the percentage of InnoDB accesses and note

whether the experiment is memory- or storage-resident as needed.

InnoDB is more heavyweight, so more accesses in it should

lower performance, e.g., transactions with 30% InnoDB accesses

should perform better than those that only access InnoDB. How-

ever, Figures 6(a)–(b) show the opposite: InnoDB-M outperforms the

cross-engine 30–80% InnoDB. The reason is two-fold. First, ERMIA

writes a commit log record for read-only transactions. So with more

ERMIA accesses, CSR becomes larger and slower to access. This is

non-negligible for read-intensive workloads, which are very light-

weight in ERMIA. Second, under InnoDB-MS, CSR is very small and

only maintains one mapping as we mentioned earlier. However, un-

der 30–80% InnoDB, more ERMIA accesses lead to more mappings

in CSR, which then becomes more expensive to query. The memory-

resident write-only workload follows the expectation in Figure 6(c),

although the difference is not significant due to InnoDB’s low raw

performance. As the workload becomes storage-resident, Skeena’s

overhead becomes negligible, with more ERMIA accesses leading

to higher performance: in Figure 7, 30% InnoDB is up to 75%/40%

faster than InnoDB for read-only/write-only workloads.
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with 50% InnoDB accesses and different transaction sizes.

6.5 Impact of Transaction Size and Mix
We quantify the impact of transaction sizes along with the impact

of read/write mixes. We first show the throughput of the storage-

resident workload with 50% InnoDB accesses under varying trans-

action sizes and read/write ratios. In Figure 9, longer transactions

can lower performance, but do not delay CSR index recycling as all

the threads start and commit transactions at roughly the same pace.

We also ran experiments with a mix of long and short transactions,

where a fixed 0–20% of connections only run long transactions

with 500 queries. We observe the number of indexes increases by

∼50 per second (with 1000 entries per index). Once the number of

indexes reaches a configurable threshold (1000 in our experiments),

recycling kicks in and works well across varying percentages of

long-running transactions. Neither long-running transactions nor

capacity and threshold settings affect QPS in a noticeable way. Fig-

ure 8 shows the throughput under different read/write ratios. With

more writes, throughput drops as handling writes is more complex.

The impact on ERMIA is very small in Figure 8(a). When the read

ratio drops from 80% to 60%, under 100% InnoDB, performance can

drop by up to ∼30%. Cross-engine transactions in Figure 8(b) with

50% InnoDB accesses still have the advantage over 100% InnoDB.
We use short transactions to explore the overhead of Skeena

and transaction management. Each transaction issues two queries

(one per engine for cross-engine cases). In Figure 10, when the

transaction only accesses ERMIA, the performance remains similar

across all workloads, as all data is in memory and the relative speed

difference for read/write in ERMIA is small. For 100% InnoDB, with
writes, the performance drops by up to ∼25%. The cross-engine 50%
InnoDB exhibits the lowest performance due to extra time spent on

CSR and the commit protocol. However, it is only slightly slower

than 100% InnoDB as it is more heavyweight to process writes in

InnoDB than accessing CSR which is purely in-memory.

6.6 Skewed Accesses
We test the storage-resident workload with different ERMIA/Inn-

oDB accesses mixes with 80% of read and 20% of write per trans-

action. As Figure 11 shows, throughput remains similar across
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Figure 10: Throughput under memory-resident benchmarks with

short transactions (two queries) under 80 connections.
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Figure 11: Throughput of cross-engine read-write transactions

under storage-resident microbenchmarks and varying skewness.

Table 4: Throughput (TPS) of a storage-resident cross-engine work-
load with 50% InnoDB accesses under varying buffer pool hit ratios.

Number of Connections 100% 99% 90% 70%

1 1,973 1,972 1,939 1,866

80 36,749 36,186 35,414 28,369

different skewness for ERMIA-only cases. The result seems counter-

intuitive: a skewed workload leads to a smaller footprint which

should change performance. The smaller footprint may lead to

higher contention on locks/latches (lower performance). It could

also give better buffer pool and CPU cache locality (higher perfor-

mance). Our profiling results show that the actual CPU time spent

on ERMIA is less than 5%. The remaining > 95% of CPU time is

taken by MySQL’s SQL and networking layers, overshadowing the

effect brought by the smaller footprint. As we add more accesses to

InnoDB, 50% and 100% InnoDB show in general higher performance

but not by a lot. The main reason is the storage stack’s overhead

starts to dominate once we access InnoDB tables. Skewness (smaller

footprint) therefore does not show an obvious impact.

6.7 Impact of Slower Storage
Now we run experiments in a more realistic environment that

uses an actual SSD to store table and log data. We use the storage-

resident setting and vary the buffer pool size such that the hit ratio

is between 70% and 100%. In this experiment, to stress Skeena’s

CSR structure, each 10-record transaction accesses 5/5 records in

InnoDB/ERMIA with 80% reads and 20% writes. As shown in Ta-

ble 4, throughput under a single connection remains stable across

different hit ratios because the working set is relatively small which

gives better locality. With more (80) connections, throughput drops

as the hit ratio drops because more I/Os on the SSD are needed.

Our profiling results (details not shown here for brevity) indicate
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Figure 12: 95th percentile latency at a single connection and 80

connections under various storage-resident workloads.

that across all cases Skeena occupies less than 5% of total CPU time,

most of which was on accessing the engine and the SQL layer.

6.8 Transaction Latency
Our final microbenchmark explores how Skeena impacts trans-

action latency using the storage-resident microbenchmarks. We

run the same microbenchmarks done in Section 6.4 and present

results obtained at one and 80 connections where the system is

almost idle and fully saturated, respectively. In Figure 12, at 80

connections the absolute latency unavoidably increases. But in all

cases Skeena does not increase latency noticeably for single-engine

transactions: ERMIA and ERMIA-S do not use CSR, while the over-

head for InnoDB-S is a constant. As expected, latency increases

proportionally with more accesses in InnoDB.

6.9 Effectiveness of Cross-Engine Transactions
Realistic workloads may use cross-engine transactions to improve

performance (using a main-memory engine) and/or reduce storage

cost with the storage-centric engine. This is done by placing differ-

ent tables in different engines. We use TPC-C to explore this aspect;

we observed similar trends for memory- and storage-resident se-

tups, so we only show the results from the storage-resident setup.

As shown in Figure 13, we start with all tables in InnoDB (bot-

tom) and gradually move them to ERMIA (up). Overall, throughput

improves with more tables in ERMIA, but performance does not

change much until the New-Orders table is moved to ERMIA (∼10×
faster than 100% InnoDB).

Placing New-Orders in ERMIA should be the key to improving

overall throughput, but it is unclear how each transaction benefits

from this. We further run individual TPC-C transactions (instead of

the full mix) under a variant that only places New-Orders in ERMIA

(leaving the rest in InnoDB). Figure 14 compares its throughput (de-

noted as +New-Orders) to other variants, among which ++Orders
and ++New-Orders refer to the corresponding rows in Figure 13,

respectively. In Figures 14(a)–(b) and 14(d)–(e), placing New-Orders
in ERMIA does not affect the New-Order, Payment, Stock-Level

and Order-Status transactions. This is because Stock-Level, Order-

Status and Payment do not access New-Orders, and the New-Order
transaction only inserts one row into New-Orders. However, the De-
livery transaction intensively accesses New-Orderswith range scan
and aggregation operations. In Figure 14(c), placing New-Orders in

ERMIA accelerates Delivery by ∼30× as InnoDB has to hold locks
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Figure 13: TPC-C throughput (kTPS) with tables gradually placed

in ERMIA (cumulatively from bottom up). Placing New-Orders in
ERMIA is the key to improve overall mix performance.

for records to be deleted. Therefore, improvement on Delivery is

the main reason for the improved overall performance.

These results show that table placement affects different transac-

tions in different scales. We analyze this effect in Figure 15 using in-

dividual transactions at 50 connections. Tables are gradually moved

from InnoDB to ERMIA. As Figure 15 shows, placing Customer in

ERMIA alone allows the Payment and Order-Status transactions to

perform 6–7× better, whereas the Stock-Level transaction benefits

the most when the Stock table is placed in ERMIA.

Recommended End-to-End Cross-Engine TPC-C. Based on

the previous results, we recommend three schemes:

• New-Order-Opt: The Customer and Item tables are placed in

ERMIA to optimize the New-Order transaction.

• Payment-Opt: Only Customer is placed in ERMIA to optimize

the Payment transaction, which intensively accesses Customer.
• Archive: All the tables except History are placed in InnoDB,

leveraging its cheaper storage cost compared to ERMIA.

The first two schemes aim to optimize database accesses with se-

lect use of main-memory tables, while Archive attempts to reduce

storage cost of in-memory databases using a traditional engine.

Figure 16 shows how they compare to baselines that place all tables

in ERMIA and InnoDB. New-Order-Opt and Payment-Opt improve

the performance of the affected transactions compared to InnoDB.
Since Archive executes almost fully in ERMIA, its performance

overlaps with ERMIA because History is never queried and only

occupies less than 600MB of space. In reality, such workloads can

run for much longer and accumulate much more data; placing it

in InnoDB can drastically reduce storage cost as main memory is

much more expensive than SSDs and disks.

Impact on Abort Rate. As we discussed in Section 4, Skeena

can cause transactions to abort if they cannot find appropriate

snapshots or fail commit check. We compare the abort rate using

the preferred end-to-end TPC-C schemes. The workload runs under

the memory-resident setup which exhibits low contention (each

transaction works on a fixed home warehouse) so that snapshot

selection and commit check in Skeena are the main source of aborts.

As baselines, single-engine InnoDB and ERMIA exhibit an abort rate

of 0.43% and 0.47%, respectively. With Skeena, New-Order-Opt,
Payment-Opt and Archive respectively exhibit an abort rate of
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Figure 15: Throughput (kTPS) of TPC-C mix and individual trans-

actions by varying table placement at 50 connections.

1 10 20 30 40 50

# of connections

(a) Full-Mix

0
2
4
6
8

K
T

P
S

1 10 20 30 40 50

# of connections

(b) New-Order

0
3
6
9

12
15

1 10 20 30 40 50

# of connections

(c) Payment

0
2
4
6
8

10

1 10 20 30 40 50

# of connections

(d) Delivery

0
0.5

1
1.5

2
2.5

K
T

P
S

1 10 20 30 40 50

# of connections

(e) Stock-Level

0
1
2
3
4

1 10 20 30 40 50

# of connections

(f) Order-Status

0
2
4
6
8

10

Archive

InnoDB

Payment-Opt

ERMIA

New-Order-Opt

Figure 16:TPC-C throughput under select table placement schemes

that optimize for different application scenarios.

0.61%, 0.54% and 0.45%. Across individual runs, we observed up

to 0.3% higher abort rate than single-engine cases. The impact on

abort rate is more pronounced for the read-write microbenchmarks,

where up to ∼5% additional cross-engine transactions are aborted

due to Skeena. These results corroborate with prior work [8] that

the impact on abort rate is very small for realistic workloads.

7 RELATEDWORK
Our work builds upon rich literature on federated systems, dis-

tributed and replicated SI systems, and modern database engines.

Federated and Polystore Systems. Guaranteeing serializabil-

ity is challenging due to the full autonomy and heterogeneity of

member systems. Georgakopoulos et al. [29] proposed a ticket

method and Superdatabase [56] exports transaction ordering for

consistent updates. Breitbart et al. [12] proposed a protocol that de-

tects cycles for consistency and resolving deadlocks. Myriad [31, 42]

uses 2PL and 2PC for serializability and atomicity. Recent poly-

stores [3, 4, 23] mainly focus on analytics, while our focus is OLTP.

DSI and Replication. Prior work identified the anomalies that

would lead to inconsistent snapshots [58]. Binnig et al. [8] further

identified more anomalies and proposed correctness conditions.

Skeena is based on these results. Generalized SI [24] allows transac-

tions to use older snapshots in replicated databases. Skeena shares

the similar property by selecting snapshots using CSR.

Modern Database Engines. Multicore CPUs and large DRAM

have led to numerous memory-optimized engines [21, 28, 35–37,

41, 43, 61, 63]. They feature new designs on indexing, concurrency

control and logging protocols that drastically improve performance.

Our work explores one of the possible ways to adopt them in prac-

tice. Some recent systems [40, 50] efficiently leverage modern fast

SSDs to approach in-memory performance while keeping storage

cost lower than main-memory systems. It is interesting future work

to compare them with cross-engine systems.

8 CONCLUSION
Cross-engine transactions can be very useful in modern fast-slow

multi-engine systems, but are poorly supported with various limi-

tations. This paper proposes Skeena, a holistic approach to efficient

and consistent cross-engine transactions. Skeena consists of a cross-

engine snapshot registry (CSR) that tracks snapshots and a commit

protocol for multi-engine systems. Skeena can be easily adopted by

real systems, as shown by our experience with MySQL. Evaluation

on a 40-core server shows that Skeena incurs negligible overhead

and maintains the benefits of memory-optimized engines.

ACKNOWLEDGMENTS
We thank Chong Chen, Per-Åke Larson, Qiang Liu, Chengwei

Zhang, Zongquan Zhang, Yanhui Zhong and Qingqing Zhou for

their valuable discussions and comments on this project. We also

thank the reviewers for their constructive feedback. This work

received support from Huawei Cloud Database Innovation Lab.



REFERENCES
[1] Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic

Implementations for Distributed Transactions. PhD Thesis and Technical Report

MIT/LCS/TR-786.

[2] A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized isolation level defini-

tions. In Proceedings of 16th International Conference on Data Engineering (Cat.
No.00CB37073). 67–78.

[3] Divy Agrawal, Sanjay Chawla, Bertty Contreras-Rojas, Ahmed Elmagarmid,

Yasser Idris, Zoi Kaoudi, Sebastian Kruse, Ji Lucas, Essam Mansour, Mourad

Ouzzani, et al. 2018. RHEEM: enabling cross-platform data processing: may the

big data be with you! PVLDB 11, 11 (2018), 1414–1427.

[4] Rana Alotaibi, Damian Bursztyn, Alin Deutsch, Ioana Manolescu, and Stamatis

Zampetakis. 2019. Towards scalable hybrid stores: constraint-based rewriting to

the rescue. In Proceedings of the 2019 International Conference on Management of
Data. 1660–1677.

[5] Hillel Avni, Alisher Aliev, Oren Amor, Aharon Avitzur, Ilan Bronshtein, Eli Ginot,

Shay Goikhman, Eliezer Levy, Idan Levy, Fuyang Lu, Liran Mishali, Yeqin Mo, Nir

Pachter, Dima Sivov, Vinoth Veeraraghavan, Vladi Vexler, Lei Wang, and Peng

Wang. 2020. Industrial-Strength OLTP Using Main Memory and Many Cores.

PVLDB 13, 12 (Aug. 2020), 3099–3111.

[6] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data (SIGMOD ’95).
1–10.

[7] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.

2016. The End of Slow Networks: It’s Time for a Redesign. PVLDB 9, 7 (March

2016), 528–539.

[8] Carsten Binnig, Stefan Hildenbrand, Franz Färber, Donald Kossmann, Juchang

Lee, and Norman May. 2014. Distributed Snapshot Isolation: Global Transactions

Pay Globally, Local Transactions Pay Locally. The VLDB Journal 23, 6 (Dec. 2014),
987–1011.

[9] Mihaela A. Bornea, Orion Hodson, Sameh Elnikety, and Alan Fekete. 2011. One-

Copy Serializability with Snapshot Isolation under the Hood. In Proceedings of the
2011 IEEE 27th International Conference on Data Engineering (ICDE ’11). 625–636.

[10] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2019. Scalable

Garbage Collection for In-Memory MVCC Systems. PVLDB 13, 2 (Oct. 2019),

128–141.

[11] Yuri Breitbart, Hector Garcia-Molina, and Avi Silberschatz. 1992. Overview of

Multidatabase Transaction Management. The VLDB Journal 1, 2 (Oct. 1992),

181–240.

[12] Yuri Breitbart and Avi Silberschatz. 1988. Multidatabase Update Issues. In Pro-
ceedings of the 1988 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’88). 135–142.

[13] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2009. Serializable Isolation

for Snapshot Databases. ACM Trans. Database Syst. 34, 4, Article 20 (Dec. 2009),
42 pages.

[14] M. A. Casanova and P. A. Bernstein. 1981. General Purpose Schedulers for

Database Systems. Acta Inf. 15, 4 (Aug. 1981), 471.
[15] Arvola Chan, Stephen Fox, Wen-Te K. Lin, Anil Nori, and Daniel R. Ries. 1982.

The Implementation of an Integrated Concurrency Control and Recovery Scheme.

In Proceedings of the 1982 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’82). 184–191.

[16] A. Chan and R. Gray. 1985. Implementing Distributed Read-Only Transactions.

IEEE Transactions on Software Engineering SE-11, 2 (1985), 205–212.

[17] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[18] Khuzaima Daudjee and Kenneth Salem. 2006. Lazy Database Replication with

Snapshot Isolation. In Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB ’06). 715–726.

[19] Pinal Dave. 2019. SQL Server –Memory Optimized Tables, Transactions, Isolation

Level and Error. https://blog.sqlauthority.com/2019/06/11/sql-server-memory-
optimized-tables-transactions-isolation-level-and-error/

[20] Kalen Delaney. 2016. SQL Server In-Memory OLTP Internals

for SQL Server 2016. Microsoft SQL Server Docs (2016). https:
//download.microsoft.com/download/8/3/6/8360731A-A27C-4684-BC88-
FC7B5849A133/SQL_Server_2016_In_Memory_OLTP_White_Paper.pdf

[21] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,

Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s

Memory-Optimized OLTP Engine. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’13). 1243–1254.

[22] Deborah J. DuBourdieu. 1982. Implementation of Distributed Transactions. In

Proceedings of the Sixth Berkeley Workshop on Distributed Data Management and
Computer Networks. 81–94.

[23] Aaron J Elmore, Jennie Duggan, Michael Stonebraker, Magdalena Balazinska,

Ugur Cetintemel, Vijay Gadepally, Jeffrey Heer, Bill Howe, Jeremy Kepner, Tim

Kraska, et al. 2015. A demonstration of the BigDAWG polystore system. PVLDB
8, 12 (2015), 1908.

[24] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. 2005. Database Repli-

cation Using Generalized Snapshot Isolation. In Proceedings of the 24th IEEE
Symposium on Reliable Distributed Systems (SRDS ’05). 73–84.

[25] Jason Evans. 2006. A Scalable Concurrent malloc (3) Implementation for FreeBSD.

In Proceedings of the BSDCan Conference.
[26] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion

Concurrency Control. PVLDB 8, 11 (July 2015), 1190–1201.

[27] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis

Shasha. 2005. Making Snapshot Isolation Serializable. ACM Trans. Database Syst.
30, 2 (June 2005), 492–528.

[28] H. Garcia-Molina and K. Salem. 1992. Main memory database systems: an

overview. IEEE Transactions on Knowledge and Data Engineering 4, 6 (1992),

509–516.

[29] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. 1991. On serializability of

multidatabase transactions through forced local conflicts. In Proceedings of the
Seventh International Conference on Data Engineering. 314–323.

[30] Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph Tucek, and Alistair Veitch.

2013. Controlled Lock Violation. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’13). 85–96.

[31] S.-Y. Hwang, E.-P. Lim, H.-R. Yang, S. Musukula, K. Mediratta, M. Ganesh, D.

Clements, J. Stenoien, and J. Srivastava. 1994. The MYRIAD Federated Database

Prototype. In Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’94). 518.

[32] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software Developer

Manuals. (Oct. 2016).

[33] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and

Babak Falsafi. 2009. Shore-MT: A Scalable Storage Manager for the Multicore

Era. In Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology (EDBT ’09). 24–35.

[34] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-

tasia Ailamaki. 2010. Aether: A Scalable Approach to Logging. PVLDB 3, 1 (Sept.

2010), 681–692.

[35] Alfons Kemper and Thomas Neumann. 2011. HyPer: AHybrid OLTP&OLAPMain

Memory Database System Based on Virtual Memory Snapshots. In Proceedings
of the 2011 IEEE 27th International Conference on Data Engineering (ICDE ’11).
195–206.

[36] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.

ERMIA: Fast memory-optimized database system for heterogeneous workloads.

In Proceedings of the 2016 International Conference on Management of Data. 1675–
1687.

[37] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM.

In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’15). 691–706.

[38] H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency

Control. ACM Trans. Database Syst. 6, 2 (June 1981), 213–226.
[39] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.

Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-

nisms for Main-Memory Databases. PVLDB 5, 4 (Dec. 2011), 298–309.

[40] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.

LeanStore: In-Memory Data Management beyond Main Memory. In 2018 IEEE
34th International Conference on Data Engineering (ICDE) (IEEE ICDE). 185–196.
https://doi.org/10.1109/ICDE.2018.00026

[41] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui

Wang. 2015. High Performance Transactions in Deuteronomy. In Conference on
Innovative Data Systems Research (CIDR 2015).

[42] Ee-Peng Lim, Sah-Yih Hwang, Jaideep Srivastava, Dave Clements, and M. Ganesh.

1995. Myriad: Design and Implementation of a Federated Database Prototype.

Softw. Pract. Exper. 25, 5 (May 1995), 533–562.

[43] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada: De-

pendably Fast Multi-Core In-Memory Transactions. In Proceedings of the 2017
ACM International Conference on Management of Data (SIGMOD ’17). 21–35.

[44] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness

for fast multicore key-value storage. In Proceedings of the 7th ACM european
conference on Computer Systems. 183–196.

[45] Prashanth Menon, Amadou Ngom, Lin Ma, Todd C. Mowry, and Andrew Pavlo.

2020. Permutable Compiled Queries: Dynamically Adapting Compiled Queries

without Recompiling. Proc. VLDB Endow. 14, 2 (Oct. 2020), 101–113.
[46] Microsoft. 2016. Microsoft SQL Documentation (2016). https://docs.microsoft.com/

en-us/sql/relational-databases/in-memory-oltp/introduction-to-memory-
optimized-tables?view=sql-server-ver15

[47] MySQL 8.0 Reference Manual. 2021. Alternative Storage Engines. https://dev.
mysql.com/doc/refman/8.0/en/storage-engines.html

[48] MySQL 8.0 Reference Manual. 2021. SET TRANSACTION Statement. (2021).

https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
[49] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern

Hardware. PVLDB 4, 9 (June 2011), 539–550.

[50] Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System

with In-Memory Performance. In 10th Conference on Innovative Data Systems

https://blog.sqlauthority.com/2019/06/11/sql-server-memory-optimized-tables-transactions-isolation-level-and-error/
https://blog.sqlauthority.com/2019/06/11/sql-server-memory-optimized-tables-transactions-isolation-level-and-error/
https://download.microsoft.com/download/8/3/6/8360731A-A27C-4684-BC88-FC7B5849A133/SQL_Server_2016_In_Memory_OLTP_White_Paper.pdf
https://download.microsoft.com/download/8/3/6/8360731A-A27C-4684-BC88-FC7B5849A133/SQL_Server_2016_In_Memory_OLTP_White_Paper.pdf
https://download.microsoft.com/download/8/3/6/8360731A-A27C-4684-BC88-FC7B5849A133/SQL_Server_2016_In_Memory_OLTP_White_Paper.pdf
https://doi.org/10.1109/ICDE.2018.00026
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/introduction-to-memory-optimized-tables?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/introduction-to-memory-optimized-tables?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/introduction-to-memory-optimized-tables?view=sql-server-ver15
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html


Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

[51] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable

Multi-Version Concurrency Control for Main-Memory Database Systems. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’15). 677–689.

[52] Oracle. 2021. SysBench Benchmark Tool. https://dev.mysql.com/downloads/
benchmarks.html

[53] Ippokratis Pandis, Pinar Tözün, Ryan Johnson, and Anastasia Ailamaki. 2011.

PLP: Page Latch-Free Shared-Everything OLTP. PVLDB 4, 10 (July 2011), 610–621.
[54] Percona. 2018. sysbench-tpcc. https://github.com/Percona-Lab/sysbench-tpcc
[55] PostgreSQL Wiki. 2021. Foreign Data Wrappers. https://wiki.postgresql.org/

wiki/Foreign_data_wrappers
[56] Calton Pu. 1988. Superdatabases for Composition of Heterogeneous Databases. In

Proceedings of the Fourth International Conference on Data Engineering. 548–555.
[57] Yoav Raz. 1992. The Principle of Commitment Ordering, or Guaranteeing Seri-

alizability in a Heterogeneous Environment of Multiple Autonomous Resource

Mangers Using Atomic Commitment. In 18th International Conference on Very
Large Data Bases Proceedings. 292–312.

[58] Ralf Schenkel and Gerhard Weikum. 2000. Integrating Snapshot Isolation into

Transactional Federations. In Cooperative Information Systems. 90–101.
[59] Ralf Schenkel, Gerhard Weikum, Norbert Weißenberg, and Xuequn Wu. 2000.

Federated Transaction Management with Snapshot Isolation. In Transactions and
Database Dynamics. 1–25.

[60] Amit P. Sheth and James A. Larson. 1990. Federated Database Systems for Man-

aging Distributed, Heterogeneous, and Autonomous Databases. ACM Comput.
Surv. 22, 3 (Sept. 1990), 183–236.

[61] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,

Nabil Hachem, and Pat Helland. 2007. The End of an Architectural Era: (It’s Time

for a Complete Rewrite). (2007), 1150–1160.

[62] TPC. 2010. TPC Benchmark C (OLTP) Standard Specification, revision 5.11.

http://www.tpc.org/tpcc
[63] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy Transactions in Multicore In-Memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).
18–32.

[64] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through Emerging

Non-Volatile Memory. PVLDB 7, 10 (June 2014), 865–876.

[65] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. 2017. Effi-

ciently Making (Almost) Any Concurrency Control Mechanism Serializable. The
VLDB Journal 26, 4 (Aug. 2017), 537–562.

[66] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2017. Query Fresh: Log

Shipping on Steroids. PVLDB 11, 4 (Dec. 2017), 406–419.

[67] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An

Empirical Evaluation of In-Memory Multi-Version Concurrency Control. PVLDB
10, 7 (March 2017), 781–792.

[68] Yu Xia, Xiangyao Yu, Andrew Pavlo, and Srinivas Devadas. 2020. Taurus: Light-

weight Parallel Logging for in-Memory Database Management Systems. PVLDB
14, 2 (Oct. 2020), 189–201.

[69] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael

Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control

with One Thousand Cores. PVLDB 8, 3 (nov 2014), 209–220.

[70] Peter Zaitsev. 2020. Need to Connect to a Local MySQL Server? Use Unix Domain

Socket! https://www.percona.com/blog/2020/04/13/need-to-connect-to-a-local-
mysql-server-use-unix-domain-socket

[71] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of

a Myth: Distributed Transactions Can Scale. PVLDB 10, 6 (Feb. 2017), 685–696.

http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://dev.mysql.com/downloads/benchmarks.html
https://dev.mysql.com/downloads/benchmarks.html
https://github.com/Percona-Lab/sysbench-tpcc
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
http://www.tpc.org/tpcc
https://www.percona.com/blog/2020/04/13/need-to-connect-to-a-local-mysql-server-use-unix-domain-socket
https://www.percona.com/blog/2020/04/13/need-to-connect-to-a-local-mysql-server-use-unix-domain-socket

	Abstract
	1 Introduction
	1.1 Cross-Engine: a Poorly-Supported Necessity
	1.2 Skeena
	1.3 Contributions

	2 Background
	2.1 Modern Fast-Slow Multi-Engine Systems
	2.2 Database Model and Assumptions
	2.3 Cross-Engine Anomalies
	2.4 State-of-the-Art and Motivation

	3 Design Principles
	4 Skeena Design
	4.1 Overview
	4.2 Cross-Engine Snapshot Registry
	4.3 Lightweight Multi-Index CSR
	4.4 CSR Concurrency and Maintenance
	4.5 Commit Protocol
	4.6 Durability and Recovery
	4.7 Serializability
	4.8 Correctness
	4.9 Discussions

	5 Skeena in Practice
	6 Skeena in Action
	6.1 Experimental Setup
	6.2 Benchmarks
	6.3 Single-Engine Performance
	6.4 Cross-Engine Performance
	6.5 Impact of Transaction Size and Mix
	6.6 Skewed Accesses
	6.7 Impact of Slower Storage
	6.8 Transaction Latency
	6.9 Effectiveness of Cross-Engine Transactions

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

