

Query Fresh: Log Shipping on Steroids
Tianzheng Wang* Simon Fraser University
Ryan Johnson, Ippokratis Pandis Amazon Web Services

Part of ERMIA: https://github.com/ermia-db/ermia

What? Hot standby solutions often give stale reads with no strong safety
Why? Slow network, often-serial replay, and data redundancy (log + the “ l” DB)
How? Append-only storage (fast replay) + RDMA over NVRAM (fast log shipping)

High availability by log shipping

Query Fresh = Append-only storage + Fast RDMA over NVRAM

Leveraging modern hardware

RDMA over fast network (e.g., InfiniBand)
▪ Network no longer the slowest part
▪ Enables synchronous log shipping

Log buffer in NVRAM (NV-DIMMs or 3D XPoint)
▪ RDMA over persistent log buffers
▪ Fast persistence – no storage I/O on critical path

Single-copy + quick replay = fresh reads

Append-only storage: Log == Database
▪ Index: key ➔ permanent record ID (RID)
▪ Indirection array: RID ➔ record address

Fast replay: simply set up indirection arrays
▪ No record creation, no index ops (except inserts)
▪ Parallel and reuse existing recovery machinery

Append-only storage for log shipping Safe, fast primary and fresh backups
8 x 16-core (2-socket) Intel E5-2650, 64GB RAM
56Gbps InfiniBand RDMA and 10Gbps Ethernet TCP

* Work performed while at University of Toronto

Log
Network

Primary: Read + Write Backup(s): Read + Failover

Replay“R l”
database

Very popular

Existing approaches vs. Query Fresh

Infeasible: synchronous log shipping

Primary: full TPC-C

The freshness gap

Primary Backup(s)

Balance
9:40 $0
9:41 $50

Balance
9:41 $0
9:42 $0
…
9:50 $50

Key reasons:
• Asynchronous log

shipping due to slow
network

• Heavyweight (serial)
replay due to dual-
copy architecture

Reality: asynchronous log shipping

4 replay
threads only

Network
saturated

Backups: Read-only StockLevel and OrderStatus

56Gbps BW /

11.37Gbps logs

~= 4.9 backups

▪ LSN == address in the log

▪ Redo-only logging

▪ Log records == data records

12 query threads /
16 total threads =
75% utilization

