Low-Latency Transaction Scheduling via Userspace
Interrupts: Why Wait or Yield When You Can Preempt?

KAISONG HUANG, Simon Fraser University, Canada
JIATANG ZHOU, Simon Fraser University, Canada
ZHUQOYUE ZHAQO, University at Buffalo, USA

DONG XIE, The Pennsylvania State University, USA
TIANZHENG WANG, Simon Fraser University, Canada

Traditional non-preemptive scheduling can lead to long latency under workloads that mix long-running and
short transactions with varying priorities. This occurs because worker threads tend to monopolize CPU cores
until they finish processing long-running transactions. Thus, short transactions must wait for the CPU, leading
to long latency. As an alternative, cooperative scheduling allows for transaction yielding, but it is difficult to
tune for diverse workloads. Although preemption could potentially alleviate this issue, it has seen limited
adoption in DBMSs due to the high delivery latency of software interrupts and concerns on wasting useful
work induced by read-write lock conflicts in traditional lock-based DBMSs.

In this paper, we propose PreemptDB, a new database engine that leverages recent userspace interrupts
available in modern CPUs to enable efficient preemptive scheduling. We present an efficient transaction
context switching mechanism purely in userspace and scheduling policies that prioritize short, high-priority
transactions without significantly affecting long-running queries. Our evaluation demonstrates that PreemptDB
significantly reduces end-to-end latency for high-priority transactions compared to non-preemptive FIFO and
cooperative scheduling methods.
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1 Introduction

Modern database applications increasingly mix various types of transactions. For example, heavy-
weight, long-running operational reporting jobs [6] may run alongside short, latency-sensitive sales
transactions for e-commerce businesses to identify sales trends and adjust advertising strategies
with maximum data freshness [39]. In essence, such workloads consist of both (1) low-priority,
long-running transactions, and (2) high-priority, short transactions. The former often monopolize
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Fig. 1. Design space (left) and scheduling latency distribution (right) of high-priority short transactions in a
workload mixed with long-running transactions.

the CPU, leaving limited or no resources for the latter. This can lead to increased transaction
scheduling latency and high overall tail latency, which we aim to reduce in this work.

1.1 The Practicality and Latency Tradeoff

It is intuitive to allow high-priority transactions to interrupt low-priority long-running transactions
for CPU resources, but conventional wisdom [5] has long discouraged preemption in database
engines. The rationale was that using preemption would introduce excessive overhead, since a
low-priority but long transaction may be holding many locks, and so a high-priority transaction
may conflict with the long transaction, causing it to abort anyway. This can waste useful work or
even lead to deadlocks, defeating the purpose of preemption. As a result, many systems are forced to
make tradeoffs between performance (transaction scheduling latency) and practicality. Figure 1(left)
summarizes the design space. Many systems schedule transactions in a first-in-first-out (FIFO)
manner, cooperatively, or delegate it to the OS.

FIFO-based scheduling (denoted as Wait) mandates that high-priority transactions wait until
existing low-priority transactions finish. Long-running low-priority transactions such as operational
reporting can monopolize CPU resources. As shown in Figure 1 (right; detailed setup in Section 6),
this essentially forgoes priority, leading to long scheduling delays for high-priority transactions
(e.g., by waiting in a scheduling queue). A stopgap solution is cooperative scheduling [10, 14, 15],
which allows transactions to give up CPU time voluntarily. This can be implemented by defining
“yield points” at appropriate locations within the database engine, without involving application
logic. For example, one could yield once after reading a certain number of records. Such approaches
(Yield in Figure 1) could lower scheduling latency and are usually not hard to implement, but
can still fall short if the yield points do not precisely match the workload. Potentially, one could
handcraft a yield strategy according to a target workload to achieve very high performance (i.e., low
scheduling latency), as shown in Figure 1(left). But this is difficult to maintain and not cost-effective
as the database engine is customized for a particular workload. Overall, it is still a fundamental
challenge for database engines to schedule mixed workloads with low latency.

1.2 PreemptDB: Preemption Made Practical

We propose PreemptDB, a database engine that delivers low scheduling latency for mixed workloads
with both low-priority long-running transactions and high-priority short transactions. Contrary to
the conventional wisdom, PreemptDB does so based on two observations that make preemption
viable for modern DBMSs.
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First, the tendency of avoiding preemption centered around the use of pessimistic locking (e.g.,
two-phase locking) across the board for all transactions, including long-running, low-priority ones.
However, modern database engines are increasingly memory-optimized, adopting optimistic [24, 50]
and multi-versioned [3, 4, 12, 23, 27, 30, 37, 53, 54] approaches to concurrency control that allow
read operations to proceed without holding locks. This means interrupting a long read may not
lead to severe waste of work or cause transactions to abort.

Second, advances in modern CPUs, particularly user interrupt (uintr) [33] that is available now
in mainstream x86 chips can deliver interrupts directly into userspace, providing lightweight
mechanisms for preemption. This allows database engines to quickly facilitate interrupt delivery
entirely in userspace without crossing kernel and userspace boundaries.

PreemptDB leverages these two facts to design a lightweight transaction scheduling mechanism
and associated policies. We rely on user interrupts [33] to allow each worker thread to switch
between multiple contexts that time-share the underlying CPU core. This way, a low-priority
transaction running on a worker thread can be promptly interrupted (with its states stored in a
transaction control block, or TXCB), so that the high-priority transaction can be served by another
context on the same thread. In contrast to traditional OS-level process context switching, our
context switch mechanism is purely in userspace and eliminates costly kernel transitions. This
significantly reduces latency for high-priority transactions and allows PreemptDB to maintain
high performance in case no preemption is needed (e.g., if the system is serving uniform OLTP
workloads with short transactions only).

Unlike traditional preemptive policies that abort transactions and thus may waste valuable
work [32] done for long-running transactions, PreemptDB pauses preempted transactions without
aborting them, leveraging the fact that modern systems issue optimistic reads. Once the high-
priority transaction is finished, PreemptDB resumes the previously paused low-priority transaction.
PreemptDB also addresses several challenges inherent in preemptive scheduling, such as potential
concurrency problems and transaction starvation, which we discuss in later sections.

As shown in Figure 1(right), PreemptDB outperforms Wait and Yield-based solutions by orders
of magnitude lower latency. Our evaluation in Section 6 shows that PreemptDB reduces latency of
high-priority transactions by 88-96% over non-preemptive scheduling policies at different latency
percentiles. Importantly, PreemptDB does so without sacrificing overall transaction throughput. It
is also robust by not requiring fine-tuning based on workloads.

1.3 Contributions and Paper Organization

This paper makes the following contributions:

e We revisit transaction scheduling and make the case for preemptive scheduling in modern
database engines.

e We propose leveraging userspace interrupt primitives available in modern CPUs to design a
low-overhead, fine-grained preemptive transaction scheduling mechanism.

e We present PreemptDB, a database engine that uses user interrupts to support preemptive
scheduling policies to reduce transaction scheduling latency, and discuss the broader implications
of preemptive scheduling on future database system designs.

o Through extensive evaluation using popular TPC benchmarks, we show that PreemptDB improves
overall throughput, latency, and fairness, proving its practicality. PreemptDB is open-source at

https://github.com/sfu-dis/preemptdb.

In the rest of the paper, we give the necessary background in Section 2. Section 3 discusses the
desiderata of preemptive scheduling, which serve as our design principles. Sections 4-5 present
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Fig. 2. Traditional wait/yield-based scheduling vs. preemption. Preemption could potentially lower transaction
scheduling latency by responding to new requests quickly.

the detailed design of PreemptDB. Section 6 empirically evaluates PreemptDB, demonstrating the
benefits of preemptive scheduling. We cover related work in Section 7 and conclude in Section 8.

2 Background

As database applications evolve, the need to handle both long-running analytical and short trans-
actions within a single database engine has become increasingly prevalent. In particular, the
long-running analytical transactions are often of low priority, while the operational transactions
are traditional OLTP transactions that require low latency and high priority. Many real-world
applications (e.g., financial systems and e-commerce) [9] present such mixed workloads which are
our target in this paper.

In the rest of this section, we discuss existing scheduling approaches and their mismatch with
our target workloads to motivate our work. We then set the stage for our solution by introducing
user interrupt primitives available in modern x86 CPUs, followed by our assumptions on system
model.

2.1 Existing Wait/Yield based Scheduling

We have briefly introduced the current state-of-the-art wait/yield-based scheduling in Section 1.
Now we spell out why they fall short in handling mixed workloads with varying priorities; readers
already familiar with this topic may fast forward to Section 2.2.

Non-Preemptive and Cooperative Scheduling. Long analytical queries can dominate CPU
cycles due to their highly parallel nature and long execution times [11, 25, 40]. For example, many
systems execute large scan, join and aggregation operations across multiple threads. However,
operational transactions often require low-latency responses. As a result, in a database engine where
transactions with footprints on different scales share the same hardware resource, high-priority
transactions are very likely to be delayed.

Many recent database engines focus on hybrid transactional and analytical processing (HTAP)
architectures [7, 22, 28, 34, 36, 38, 42, 44, 45, 47, 52, 55] where the database must support a wide
range of scenarios concurrently. However, when CPU resources are already fully utilized by long-
running transactions, traditional scheduling mechanisms like non-preemptive FIFO scheduling
and cooperative scheduling become insufficient. As the example in Figure 2 shows, if a short,
high-priority transaction arrives at time = 4, using non-preemptive FIFO scheduling, it must wait
for the long-running transaction to complete. Therefore, the high-priority transaction is delayed
until time = 12. While the execution time of the high-priority transaction is only 1 time unit, the
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1. rc_t Transaction(result) {
S 2. rows = tablel->Scan(range);
=
< 4. Sort(rows);
5 5. for (row in rows) {
.g 6. key = row.attribute;
- 7. val = table2->GetRecord(key);
c
©
o 7. result.Add(val);
© 8. }
é. 9. ret_code = Commit();
g 10. return ret_code;
£ 1. }

W12. // Wait until completion, do next one

Fig. 3. Scheduling decision possibilities. Non-preemptive FIFO-based approaches (M) could only schedule new
work at transaction commit boundaries. Cooperative scheduling (M) requires manually added yield points
based on the target workload. Preemption-based scheduling (M) could allow scheduling new work on demand
at almost any time.

scheduling latency is 8 times the execution time. Such FIFO methods can be optimized, e.g., by
relaxing strict FIFO ordering to organize transactions into a high-priority queue and a low-priority
queue, so that the thread always exhausts the former first. As Section 6 shows, they still lead to
high tail latency.

In contrast, cooperative scheduling can reduce scheduling latency by allowing transactions to
yield the CPU voluntarily. This can be done in two ways. (1) The application could be modified to
yield at specific points, e.g., at lines 3 and 8 of Figure 3. This reduces the wait time for the example
in Figure 2 to 4 time units, but is still far from responsive. If the high-priority transaction missed the
first yield point, it would have to wait for the second one, which can lead to unpredictable latency,
depending on how much work remains to be done before the worker thread hits the next yield
point. This approach adds additional overheads to application developers, who often lack expertise
in database system internals. (2) The more realistic practice is to let DBMS engine developers
insert yield points in areas like table access methods (not shown in the figure), making yield
decisions transparent to the application. However, this is highly impractical as it requires co-design
of database engine kernels and the particular targeted workload. The DBMS engine developers
must carefully profile the workload and engine via trial-and-error approaches to determine the
correct yield points. If the workload changes, previous yield points that are already hardcoded in
the engine now become “wrong” and lead to lower performance.

Preemption Potential and Motivation. As shown in Figure 2, an ideal scheduling policy
should allow preemption of long-running transactions, thereby easily meeting the service level
agreements (SLAs) of short, high-priority transactions. Like in Figure 3, preemption should be
able to happen at any point, not just at predefined yield points, to promise low latency for high-
priority transactions. Systems such as MySQL and PostgreSQL do not natively support preemption.
PostgreSQL implements cooperative interrupts [41]. These are not true preemptive interrupts, but
rather a mechanism that allows the database engine to handle interrupts gracefully by periodically
checking for pending signals at predefined safe points during execution to prevent data corruption
and ensuring graceful termination of queries and processes. In general, the evolution of preemption
in database engines has been slow due to the lack of efficient userspace interrupt support. Even
though preemption offers a promising path for managing mixed workloads, it has seen limited
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adoption and the conventional wisdom is to avoid it [5] as Section 1 mentioned. However, the avail-
ability of lightweight user interrupt mechanisms and recent advances in lightweight concurrency
control protocols motivate us to revisit preemption in database systems, as we discuss next.

2.2 Memory-Optimized Database Engines

Traditionally, storage-centric DBMSs assume data is disk-resident and default to pessimistic con-
currency control methods such as two-phase locking. As mentioned earlier, this can prohibit
preemptive scheduling. However, advances in hardware—in particular large DRAM that can fit
entire working sets and multicore CPUs—have allowed modern database engines to assume data
is memory-resident and become memory-optimized. Subsequently, they usually favor optimistic
approaches to concurrency control methods which have much lower overhead compared to pes-
simistic approaches when data is in memory. In particular, many memory-optimized database
engines [3, 4, 12, 23, 27, 30, 37, 44, 53, 54] adopt multi-versioning and snapshot isolation which
prevent readers and writers from blocking each other [3].

There are various designs available to realize optimistic and multi-versioned concurrency. With-
out loss of generality, we describe ERMIA [23], a representative memory-optimized database engine
and use it as our baseline throughout the paper. Following the multi-versioned database model by
Adya et al. [2], each record is represented by an ordered chain of versions, each of which is tagged
with a global commit timestamp, which in turn denotes the commit time of the transaction that
generated the version. To update a record, the transaction inserts a new version to the head of the
record’s version chain, forming a new-to-old order among all versions of the same record. Each
transaction is also tagged with a begin and a commit timestamp, which is drawn from a centralized
counter. To read a record, the transaction traverses the target record’s version chain and reads the
desired version as dictated by the isolation level. For example, the widely used snapshot isolation
(SI) [3] can be implemented by reading the first version that was generated before the transaction’s
commit time. Inserts and deletes can be modeled as special cases of updates. Read committed can
be implemented by always reading the latest version, and serializability can be supported using
certifiers [4, 53] or by combining with OCC [24]. Regardless of the isolation level used, during
forward processing, no pessimistic locks are taken for reads, which is our key assumption for
preemptive scheduling to be viable throughout the paper.

2.3 User Interrupt

Userspace interrupts can enable direct delivery of interrupts to user space, bypassing the kernel.
They recently became available in mainstream x86 processors [33]. Our measurement (Section 6.1)
shows that user interrupt delivery latency between two POSIX threads is consistently lower than
1 ps. This opens new opportunities for database engines to implement preemptive scheduling
purely in userspace, without all the kernel-crossing overhead of traditional software interrupts. To
use user interrupt, the DBMS can register user interrupt handlers (similar to traditional interrupt
handlers functionality-wise) that implement DBMS-specific interrupt handling logic. Then, a typical
approach is to employ a dedicated scheduling thread which can use the senduipi instruction to
send user interrupts. Once a user interrupt is delivered, the receiving thread immediately pauses
the execution at the current instruction and jumps to the user interrupt handler. After returning
from the handler, the thread resumes execution at the instruction where it was interrupted. As
in traditional software-based interrupts, the CPU disables user interrupt so that the handler can
execute to completion without interruption.

User interrupt handlers respect the Linux x86-64 application binary interface (ABI). Customizing
the interrupt handler to enable flexibility in designing scheduling policies, which will be detailed in
Section 4, requires register preservation and restoration following the ABI. As shown in Figure 4,
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Saved RIPin Saved RFLAGS in Saved RSP in
foo () foo () foo()

Saved Registers

Saved RSP in foo ()

Fig. 4. Stack layout during user interrupt handling.

when a user interrupt is delivered, the receiving thread automatically skips the red zone [31] and
pushes the user interrupt frame onto the stack. The red zone is a 128-byte area atop the stack top
(RSP) that a function (as dictated by the compiler) can use for local data without adjusting the stack
pointer, and it should remain valid until the function returns. Therefore, user interrupt handler
should not use it. All the caller-saved registers and callee-saved registers must be preserved in the
user interrupt (uintr) frame. More importantly, uintr frame always saves the instruction pointer
RIP, the flags register RFLAGS and stack pointer RSP for the paused function (foo() in Figure 4).
RIP points to the next instruction to be executed; RFLAGS contains the status of the CPU; RSP points
to the top of the stack. The user interrupt handler returns via a specialized instruction uiret, which
pops these registers in uintr frame’s order to restore the original state of the program. Moreover,
different from interrupts in the kernel space which are typically prohibited from involving complex
computations such as floating point operations, userspace programs commonly use the extended
register sets for these operations. Therefore, a user interrupt handler also must store these registers,
which can be done using the xsave and xrstor instructions [19]. We discuss how PreemptDB
manages these register states and uses the aforementioned features and mechanisms in later
sections.

3 Desiderata

While it is conceptually straightforward that preemption could lower transaction scheduling
latency, we observe that for it to be worthwhile, database engines like PreemptDB should provide
the following desired properties:

e Low Latency with High Throughput. Much prior work has focused on improving transac-
tion throughput. A preemptive scheduling based engine must preserve high throughput, while
lowering scheduling latency via preemption.

o Lightweight Transaction Switching. The engine should serve preemption requests (i.e., switch-
ing between transactions) quickly, without incurring prohibitively high overhead. This is espe-
cially important for workloads where the preempted transactions are not very long, compared to
scheduling delays.

o Flexible Scheduling Policies. Preemption can potentially enable various policies and—perhaps
more critically—introduce pitfalls (e.g., starvation as we discuss later) that were previously not
possible. The mechanisms must be amenable to various policies and mitigation.

4 PreemptDB Design

This section describes the design of PreemptDB, a new database engine that allows preemptive trans-
action scheduling via recent hardware-supported userspace interrupts. We first give an overview
of PreemptDB, and then describe in detail how it satisfies the aforementioned desired properties.
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Fig. 5. PreemptDB Overview. Upon arrival of a high-priority transaction T, a scheduling thread @ issues a
user interrupt to preempt and pause the execution of an in-progress low-priority transaction S on a worker
thread. The worker thread then @ switches to another context to ® accommodate T and @ resumes S after T
finishes.

4.1 Overview

PreemptDB takes transaction requests tagged with priority levels or service level objectives (SLOs)
as input and schedules them accordingly. Without loss of generality, we limit our discussion to
two priority levels: “normal” low-priority and more “urgent” high-priority transactions; we discuss
how multiple priority levels could be supported later. As Figure 5 shows, PreemptDB employs two
kinds of threads: (1) scheduling threads and (2) worker threads. A scheduling thread serves the dual
purpose of (1) dispatching transactions obtained from an admission control component (not shown
in the figure) to worker threads for execution, and (2) issuing user interrupts to worker threads to
trigger the preemption machinery to serve high-priority transactions. The number of scheduling
threads is adjustable; however, our evaluation shows that using a single scheduling thread does not
present a bottleneck, at least with 32-core CPUs. For brevity, we assume one scheduling thread in
the rest of the paper. Each worker thread maintains and continuously polls two scheduling queues
(one for high-priority transactions, another for low-priority ones) where the scheduling thread
dispatches transactions. In addition, each worker thread maintains two transaction contexts (akin
to OS thread contexts, detailed later) that support preemption triggered by user interrupts.

With the above structures, PreemptDB allows two scheduling paths as shown in Figure 5. For
normal, low-priority transactions, the worker threads simply follow the regular scheduling path
() to execute low-priority transactions in a transaction context (e.g., context 1 in the figure) one
after another. Without high-priority transactions, the system would stay in the regular scheduling
path and execute transactions without interruption. When a high-priority transaction arrives, the
scheduler thread first finds a worker thread whose high-priority queue still has at least one free slot
(our current implementation does so in a round-robin manner) to accommodate the new request.
After enqueuing one or more high-priority transactions (as determined by the scheduling policy
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discussed later), the scheduler can immediately issue a user interrupt (@) to the corresponding
worker to preempt (pause) the currently executing low-priority transaction. @ Upon receiving the
user interrupt, the worker thread switches to context 2 and @ fetches a high-priority transaction
(e.g., T or another earlier high-priority transaction) to work on. While T is being executed, new
high-priority transactions could arrive and queue up. However, for simplicity our current design
does not further interrupt an in-progress high-priority transaction, which we leave as future work.

After one or more high-priority transactions executing in context 2 (as determined by the
scheduling policy) conclude, the worker thread can switch back to the other context and resume
the execution of the previously interrupted transaction. Additionally, a high-priority transaction
could optionally get executed on the regular scheduling path () when the context becomes free.
This can happen if a user interrupt (@) is dropped due to DBMS-specific reasons (i.e., atomic active
switch and critical section mechanisms to be discussed later), or a low-priority transaction happens
to finish before the next user interrupt arrives. In other words, on the regular scheduling path, the
worker thread may also be configured to prefer taking transactions from the high-priority queue
based on the scheduling policy.

Our current implementation assumes memory-optimized environments where main memory is
large enough to hold the entire working set and each thread (scheduling and worker) is pinned to a
core. However, PreemptDB’s design principles and mechanisms are generally applicable. In the rest
of this section, we discuss how PreemptDB realizes the above scheduling steps and tackles related
challenges. We start by describing efficient mechanisms for transaction context switching.

4.2 Lightweight Transaction Context Switch

PreemptDB needs to handle context switching in two directions: (1) A worker thread may be
preempted to pause its currently in-progress transaction and switch to another context to per-
form another transaction with a higher priority. (2) After finishing processing the high-priority
transaction, the worker thread should switch back to the previously interrupted transaction and
continue from where it was interrupted. From the perspective of a worker thread, the first direction
is passive, triggered by a user interrupt, while the latter is in fact voluntary. Both require storage
and resumption of on-going transaction states. To facilitate this, we create a transaction control block
(TXCB) to save transaction states, including register values, local variables, etc. The notion of TXCB
is similar to process control blocks (PCBs) [46] in OS context switching, but is purely userspace.
With TXCBs, we now describe the mechanisms in PreemptDB for handling each direction.

Uintr-based Passive Switch. As mentioned, a passive context switch is triggered by a user
interrupt. It is then completed by a user interrupt handler (similar to traditional interrupt handlers,
but in userspace). Figure 6(a) shows the process with an example of switching between two contexts
on a worker thread. In the figure, foo is currently running in Transaction context 1 before the
thread received a user interrupt, sent by the scheduling thread (Section 4.1). The thread is then
trapped in the user interrupt handler (uintr_handler in the figure) which in turn @ saves the
states of the current transaction (foo) into TXCB1 by pushing the states of the registers onto the
stack. This process is depicted in Figure 6(b). @ Once the states of the preempted transaction are
saved, the user interrupt handler continues to perform the actual “switch” by updating the current
stack pointer to point to the stack top of the preemptive context (i.e., Transaction context 2).
Recall that each transaction context is associated with its own stack, which is prepared with the
necessary information in its TXCB (TXCB2) to begin a new incoming transaction. As Figure 6(b)
shows, after the stack pointer is moved to point to TXCB2, we pop its values into registers. At this
point, uintr_handler has finished its work, and control is handed over to the high-priority context
which can resume execution from the instruction pointer saved in TXCB2, which could be starting
to handle a high-priority transaction.
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Fig. 6. Context switches within a thread in PreemptDB.

Interrupt handler code is often written in low-level assembly code, as handlers are typically
short and performance-critical. However, our use case—switching transaction contexts using user
interrupts—necessitates extra work to be performed by the handler. In particular, it needs to (1)
retrieve the destination stack pointer from the rsp register value saved in the preemptive TXCB2,
(2) save or restore various floating point and SIMD registers, and (3) perform necessary operations
for correctness involving context-local storage and non-preemptible regions which we describe in
detail later. Among these operations, (1) and (2) are typical and straightforward, while (3) introduces
new requirements specific to user interrupts and transaction scheduling. As we will describe later
in this section, it can become more involved and thus significantly complicate the handler logic,
especially so in assembly code. Therefore, rather than following conventional wisdom to write
interrupt handler code in assembly, we wrap complex work (3) in a C function which is invoked
by uintr_handler between steps @ and @.! The handler then needs to issue inlined assembly
only to perform the stack pointer switch. As Section 6 shows, switching transaction contexts using
our approach is very lightweight. It incurs little overhead while improving programmability and
lowering maintenance efforts.

Atomic Active Switch. A worker thread may voluntarily switch context, e.g., after concluding
a high-priority transaction so that it can resume the processing of the previously preempted low-
priority transaction. We enable this by introducing a new userspace context switching interface
swap_context which performs similar operations as (steps @ and @ in Figure 6) as the user
interrupt handler. Between steps @ and @, swap_context can also invoke a helper function

Details in uintr.{h,cc} of our code repo.
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Algorithm 1 User interrupt handler routine.

1 interrupt_handler:

2 .check_rip: # check if rip is in swap_context

3 cmpq # if rip > .swap_context_end, continue

4 jg .continue_uintr

5 cmpq # if rip > .swap_context_start, exit uintr
6 jg .exit

7

8

9

.continue_uintr:
push registers # save the states of registers
10 call uintr_handler_helper # invoke C++ helper
11  mov returned_rsp, %rsp # move the stack pointer
12 pop registers # restore the states of registers
13 uiret # return and re-enable user interrupts

14
15 .exit:
16 uiret

swap_context_helper to perform additional operations similar to the user interrupt handler
helper function. However, the major difference between the aforementioned uintr-based passive
switch is that active context switches are not atomic by default. Specifically, during a passive context
switch, the thread executes within the user interrupt handler and cannot be further interrupted, as
guaranteed by hardware [18]. Therefore, the states of registers will remain consistent during the
passive context switch. However, an active switch does not have such protection: A preemption
could happen at any time in an active switch, causing partial or inconsistent states to be silently
saved or restored, leading to undefined behavior.

To solve this problem, we design an atomic context switch mechanism (Algorithm 2) that
leverages a combination of temporarily disabling user interrupt delivery and instruction pointer
check. swap_context is a regular function that should use ret instead of uiret, but ret expects
a different stack layout from the uintr frame shown in Figure 4. If we call ret naively, we will
prematurely set the instruction pointer without restoring the stored RSP pointing to the stack top
of the paused context, which can lead to stack corruption and undefined behavior. Instead, we first
restore RSP, and then perform an indirect jump to the saved RIP, which we copied to a temporary
location at a fixed offset from the paused context’s RSP. This fixed offset bypasses the 128-byte red
zone of the stack to avoid corrupting the red zone. To guarantee that the entire context switch is
atomic, an intuitive idea is to temporarily disable user interrupt delivery via clui (Algorithm 2, line
3). However, we still leave a small window for the user interrupt to happen between Algorithm 2’s
line 9 and line 10, because we need to re-enable user interrupt before the indirect jump, and the
indirect jump must be the last instruction such that we can return to the paused context. To solve
this problem, we introduce instruction pointer check (Algorithm 1, lines 2-6) to force user interrupt
handler to early return without performing any stack operation if the check fails, i.e., the interrupted
instruction pointer is between . swap_context_start and .swap_context_end (in Algorithm 2)
to protect the atomicity of the active context switch.
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Algorithm 2 Atomic active context switch routine.

1 swap_handler_func:

2 .swap_context_start:

3  clui # temporarily disable user interrupts

4 push registers

5 call swap_context_helper

6 mov returned_rsp, %rsp

7 pop registers

8 mov saved_rip, -0x80@(%rsp) # bypass red zone
9 stui # re-enable user interrupts

10  jmp -0x80(%rsp) # indirect jump to saved rip
11 .swap_context_end:

12 nop

4.3 Transparent Context-Local Storage Support

A database engine and its dependent runtime libraries (e.g., glibc, glog, boost) often utilize thread-
local storage (TLS) to allow each thread to have its own independent copy of a variable, which is
crucial for the correctness of concurrent execution of transactions. For instance, some systems [23]
have a per-thread log buffer implemented as a thread-local variable, in which each worker thread
may concurrently write its own redo logs. However, when we enable user interrupt in PreemptDB,
each thread in the OS only owns its one copy of the TLS. Consequently, multiple contexts in
the same worker thread will read and write to the same TLS variables. In this case, they may be
overwriting each other’s logs. We first note that this is not a unique problem to PreemptDB. For
instance, coroutine-based cooperative scheduling systems [14, 15] can also voluntarily yield and
maintain multiple transactions on the same thread. However, these systems easily sidestep the
problem by storing TLS objects (e.g., per-thread log buffers, timestamps, etc.) as transaction-local
objects, or in a preallocated array (one element per transaction). However, this approach does
not work for PreemptDB which can preempt and pause the execution of the transaction logic
almost anywhere, which includes not only the database engine code but also the dependent runtime
libraries. If a context is interrupted within the runtime library code that uses TLS, we may introduce
intra-thread data races that could lead to data corruption or crashes. While we can modify the
database engine code to turn all existing TLS variables in transaction-local, it is impractical to do
so for every existing runtime libraries, which often need to be kept standard and are provided by
the deployment environment (e.g., the OS).

To address this challenge, we design a transparent context-local storage (CLS) mechanism so that
existing database engine code and dependent runtime libraries can continue to use it as regular
TLS (e.g., as defined by the thread_local modifier in C++) without being modified or recompiled.
To achieve this, we create a separate CLS area for each context with the same layout of the TLS
area of the same program. In our current implementation, we create a redundant pthread [16]
for each worker thread that never runs and effectively “steals” its TLS as the CLS of its second
context.? When a context is actively running in a thread, its CLS area is exposed to the thread as its

2We steal the initialized TLS as CLS from a redundant pthread because different OS kernels/toolchains may have different
ways of setting up TLS even for the same x86-64 architecture. Doing so avoids replicating the code in the dynamic loader in
Linux and makes our code more portable.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 182. Publication date: June 2025.



Low-Latency Transaction Scheduling via Userspace Interrupts: Why Wait or Yield When You Can Preempt? 182:13

current TLS.® Note that no two contexts within the same thread can be executing at the same time,
so the code running within a context will transparently read or write the TLS variables in its own
CLS area. During a context switch, we automatically swap CLS areas of the two contexts, which
we conveniently perform in the uintr_handler_helper function.

4.4 Non-Preemptible Regions

Next, we discuss another important mechanism for ensuring correctness: non-preemptible regions,
which prevent preemption within enclosed code sections. The primary usage is to prevent deadlocks
among database latches?, for which the conventional approach is to take the latches in a predefined
order (consistent lock ordering). For instance, when OCC in a non-preemptible database engine
tries to validate the transactions, it has to latch the records in its read and write set in some
consistent order (e.g., increasing address order), such that no wait-for cycles could form across
concurrent transactions in different threads. However, in PreemptDB, concurrent transactions
could validate overlapping read/write sets in different contexts of the same thread, with only
one of them running. As a result, one of them could still be blocked on a latch if the other is
preempted while holding a latch on a lower-address record, resulting in a deadlock. To prevent
this from happening, we can wrap the OCC validation procedure into a non-preemptible region.
Deadlocks could also arise from dependent libraries that use synchronization primitives internally
(e.g., glibc malloc()/free())), which must also be wrapped into non-preemptible regions. There
are many code locations in PreemptDB codebase that need to be wrapped into non-preemptible
regions, including index APIs, memory allocator, transaction validation/commit/abort logics. Since
these regions are often intertwined with each other, simply enabling and disabling user interrupts
with stui/clui does not work well. Instead, we support nested non-preemptible regions through
enter (TXCB: : lock()) and exit (TXCB: :unlock()) APIs. To achieve this, we introduce a CLS lock
counter to record how many times the current context has entered but not exited non-preemptible
region. Thus, TXCB: : lock ()/TXCB: :unlock() simply increments/decrements the CLS lock counter
without synchronization. When an interrupt arrives but we observe the lock counter is greater than
zero, the user interrupt handler will return directly back to its current context, instead of switching
to the other context, which is, again, conveniently implemented in uintr_handler_helper by
directly returning the current rsp register value to the interrupt handler.

5 Preemptive scheduling policies

With all the mechanisms laid out, now we introduce two preemptive scheduling policies in Pre-
emptDB, with the primary goal of lowering end-to-end latency of short high-priority transactions
mixed with long low-priority transactions, namely (1) batched on-demand preemption policy, and
(2) starvation prevention policy. We discuss support for other possible policies and workloads later.

Batched On-Demand Preemption. Long scheduling delay is the root cause of high end-to-
end latency of short high-priority transactions, because they have to wait for long low-priority
transactions to finish under non-preemptive policies. On the one hand, PreemptDB can leverage
user interrupts to immediately schedule and execute high-priority transactions on demand. On the
other hand, excessively interrupting workers for every high-priority transaction would reduce the
number of CPU cycles spent on useful work. Therefore, we devise a batched on-demand preemption
policy that admits a batch of high-priority transactions up to a certain size at fixed intervals. We fix
the size of the high-priority transaction queue of each worker to a tunable number. Once a batch is

30n x86-64, a TLS is set by updating two special registers fs and gs to the thread-specific memory locations in an
OS/toolchain/ABI-specific manner.

4Database latches are often implemented using common synchronization primitives such as spinlocks, mutex, POSIX
rwlocks, or lock-free primitives like CAS, which do not have built-in deadlock detection mechanisms.
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Fig. 7. Starvation prevention in PreemptDB by monitoring starvation level. Ty, is the accumulated cycles of
high-priority transactions between the start (Tp) of the paused low-priority transaction in the same worker
and current time (Ty).

admitted, we select a worker in a round-robin manner and push as many high-priority transactions
as possible into the high-priority transaction queue until it is filled up or we deplete the available
admitted transactions. Then, we send a single user interrupt to the worker for it to execute the
batch immediately.

Starvation Prevention Policy. Under the batched on-demand preemption policy, the system
may become overloaded when there is a constant stream of high-priority transactions. This could
starve low-priority transactions: too many CPU cycles could be spent on processing high-priority
transactions, leading to significantly lower throughput and higher latency of the low-priority ones.

To solve this problem, we introduce a starvation prevention policy to work alongside the batched
on-demand preemption policy. We monitor the starvation level L of low-priority transactions,
defined as the percentage of cycles spent on high-priority transactions, and ensure the starvation
level never exceeds a tunable starvation threshold Ly, in scheduling decisions. More formally, as
shown in Figure 7, when each low-priority transaction starts execution, we record a start timestamp
To (e.g., using rdtscp [19]) and reset an accumulator Tj, to zero. Then, for each high-priority
transaction executed through preemption on the same worker, we accumulate its number of CPU
cycles in Ty,. For any time point Ty, we define the starvation level L of a low-priority transaction as
L = Ty/(T; — Tp). Note that T, Ty and T}, are all stored in a shared memory location accessible to
both contexts for each worker. We check the starvation level against the starvation threshold at
two specific policy decision-making locations with different alternative decisions:

e Before a scheduler thread pushes high-priority transactions to the high-priority queue of a
worker, we check whether L is above the threshold. If so, we do not push additional high-priority
transactions into the worker and skip sending a user interrupt.

o After executing a high-priority transaction , we check whether L is above the threshold. If so,
we prematurely switch back to the other context which holds a paused and starved low-priority
transaction, without executing the remaining high-priority transactions in the queue.

Discussions. User interrupt opens many opportunities. PreemptDB explores its potential for
timely scheduling of high-priority transactions when low-priority transactions have dominated all
the system resources. We have so far only considered two priority levels (low and high) without
strict service-level agreement (SLA) guarantees. Thanks to PreemptDB’s context switching design
(instead of directly executing high-priority transactions in the interrupt handler), one may easily
extend PreemptDB to support more fine-grained priority levels by using multiple contexts/TXCBs.
A high-priority transaction that has already interrupted a previous lower-priority transaction could
then be interrupted again, and the scheduler could choose to pause or even move the transaction to
be performed elsewhere in another thread. More policies could also be developed, for example, to
support real-time scheduling [1] with hard SLA guarantees. Other constraints, such as prioritizing
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user transactions over background tasks, or dynamic priority adjustment (e.g., increasing the
priority for transactions that are already aborted beyond a threshold number of times) [56] can all
be combined with PreemptDB. These are interesting future work.

Preemptive scheduling could also be implemented using traditional interrupts, if the entire DBMS
were implemented in kernel space. Some recent work has started exploring this direction [26], but
deploying them in today’s cloud environment can be challenging. In contrast, PreemptDB is a pure
userspace solution, allowing easy adoption in existing cloud environments.

6 Evaluation

In this section, we perform experiments using various workloads to evaluate PreemptDB and show
the following:

e PreemptDB can significantly reduce tail latency for scheduling high-priority transactions with
minimal impact on the overall throughput under the same workload mix.

e PreemptDB’s starvation prevention mechanism can effectively balance high- and low-priority
transactions.

e Compared to cooperative scheduling, PreemptDB can provide low latency for high-priority
transactions without harming low-priority transaction performance, and is robust without
requiring extensive or unrealistic tuning.

6.1 Experimental Setup

We use a dual-socket server equipped with two 32-core Intel Xeon Gold 6448H CPUs and 512GB
of main memory. The CPU is clocked at 2.4GHz (up to 4.1GHz with turbo boost) and has 60MB
of caches. It runs Ubuntu 22.04.4 LTS with our patched uintr-enabled Linux kernel 6.2.0 based
on Intel’s uintr-linux-kernel repository [17]. We limit our experiments to a single socket without
hyperthreading to focus on user interrupts. This allows us to avoid NUMA effects and simplify
result interpretation. One CPU core in our system is dedicated to delivering user interrupts. We
place all the data in memory to stress the system without storage I/O.

Implementation. We implemented both PreemptDB and baselines (described later) on top
of ERMIA [23] described in Section 2.2. Originally, ERMIA does not natively allow measuring
scheduling latency as workload generation is tightly coupled with worker threads: each worker
thread repeats the cycle of generating a transaction, processing it, then proceeding to generate and
process the next transaction. To properly measure scheduling latency, we developed a benchmark
driver that decouples workload generation and execution. Specifically, we dedicated the scheduling
thread to generate transaction requests at fixed intervals (arrival interval). At each arrival interval,
the scheduling thread first generates and pushes new low-priority transactions into the worker’s
low-priority transaction queue if it has empty slots. Then, the scheduling thread generates a batch
of high-priority transactions with the same start timestamp; the batch size is set to the number
of workers multiplied by the high-priority transaction queue size. The scheduling thread then
attempts to move these transactions into the lock-free high-priority transaction queues of the
workers in a round-robin fashion until the batch is depleted or the next arrival interval passes.
For PreemptDB, the scheduling thread also sends a user interrupt to the worker immediately after
pushing a batch of high-priority transactions to its queue. The engine worker threads process
requests found on their queues according to their scheduling policies, which we describe later.

Adjusting queue sizes and arrival intervals enables simulation of various maximum scheduling
delays and workload mixes. Unless otherwise specified, we use 16 worker threads. For each worker,
we set the low-priority transaction queue size to 1, and the high-priority transaction queue size to
4. The high-priority transaction request batch size is 16 X 4 = 64 by default. The default arrival
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interval is 1ms. We explore the impact of different number of workers, high-priority queue/batch
sizes and arrival intervals later.

Benchmarks and Metrics. We use a mixed workload based on the TPC-C [48] and TPC-H [49]
benchmarks to evaluate the performance of PreemptDB and baseline methods. Specifically, we
use Query 2 (Q2) from TPC-H as the long-running low-priority transaction, and New-Order and
Payment from TPC-C as the short-running high-priority transactions. This allows us to simulate
scenarios where the system’s resource is always dominated by long-running transactions (Q2),
but short-running transactions (New-Order and Payment) that require immediate attention for
low scheduling latency arrive at a fixed interval of every 1 ms, unless otherwise stated. We set
the workload to use an equal number of warehouses as the number of threads, and follow the
TPC-C specification to let each transaction use a home warehouse with 15% of chance of using
a remote warehouse. Like prior work [23], our benchmark code directly invokes the storage
engine’s C++ interfaces, without SQL parsing, networking and optimizer overheads to focus on
scheduling mechanisms and policies. This creates workloads with low logical contention, putting
more pressure on the physical layer (including the scheduling subsystem), therefore allowing us to
focus on scheduling overheads. Each experiment runs for 30 seconds and we report both throughput
across varying numbers of threads and latency at the 50, 90, 99 and 99.9 percentiles.

Competing Methods. We test three scheduling methods below.

e Wait: Baseline scheduling policy with no preemption or cooperative scheduling.

e Cooperative: Cooperative scheduling which voluntarily yields at hard-coded locations in the
storage engine code.

e PreemptDB: Preemptive scheduling using user interrupts to allow high-priority transactions to
interrupt low-priority transactions.

For fair comparison, all policies are implemented in the PreemptDB codebase. Under Wait,
transactions are processed from beginning to end without preemptive or cooperative scheduling.
Each worker thread starts with the low-priority transaction queue to run Q2. After concluding
a transaction, it checks both queues and picks a high-priority transaction if present. As a result,
high-priority transactions could be generated while Q2 is running and thus get delayed until the
current Q2 is concluded. Moreover, Wait attempts to exhaust all the high-priority transactions
before starting the next Q2 from the low-priority queue.

To implement Cooperative, we instrumented Wait code so that the worker thread will yield
and check the high-priority queue after having performed a predefined number of record read
operations. Like Wait, the worker thread will process all the high-priority New-Order and Payment
transactions found in the queue without interruption before switching back to continue executing
the original transaction (Q2). Such context switching is also implemented using pcontext and the
swap_context primitive described in Section 4. Unless otherwise specified, we set Cooperative
to yield after accessing every 10,000 records, denoted as the yield interval; we explore the impact of
it later. Our implementation Cooperative represents a plausible cooperative scheduling setting
where the system maintains a counter at the storage engine interfaces and yield regularly at a fixed
interval.

PreemptDB follows the same benchmarking design, but allows the scheduling thread to issue
user interrupts once a high-priority transaction is generated and uses the starvation mechanism
to prevent starving Q2. Note that in most of the experiments, we test the system with a light mix
of high-priority transactions, which do not impact the amount of CPU cycles available for Q2
significantly. Therefore, we set the starvation threshold to 100 by default. In Section 6.4, we will
showcase the effectiveness of starvation prevention using a workload setting that overloads the
system.
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Fig. 8. Standard TPC-C throughput with and without user interrupt mechanisms. The slowdown is minuscule,
showing the low overhead of user interrupt and PreemptDB’s preemptive scheduling mechanisms.
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Fig. 9. Scalability under different scheduling policies and the mixed workload. All variants scale well and
PreemptDB maintains the high throughput compared to baselines.

6.2 Overhead and Scalability of User Interrupts

The main goal of PreemptDB is to reduce the tail latency of high-priority transactions via preemptive
scheduling enabled by user interrupts. Compared to classical solutions, using user interrupts to
enable preemptive scheduling requires additional mechanisms to monitor incoming (high-priority)
requests and subsequently handle interrupts in a timely manner. For this to work well, it is important
to ensure that (1) the scheduling mechanism itself is lightweight enough and (2) existing advantages
such as throughput and scalability prior systems aimed to achieve—often at the expense of tail
latency—remain largely unaffected.

We quantify the overhead of such additional mechanisms under short transactional workloads.
In particular, we run the original TPC-C benchmark with all transactions being sent as low-priority
transactions. Meanwhile, the scheduling thread will still periodically wake up and interrupt worker
threads without sending any high-priority transaction requests. This allows us to highlight user
interrupts as pure overhead. As shown in Figure 8, the overhead is still minuscule with only
~ 1.7% reduction in throughput. The reason is that the user interrupt overload is extremely low,
and all workers will always immediately switch back to the main context due to not having any
high-priority transaction request.

Under our actual target mixed workload, Figure 9 shows the throughput of the three types of
transactions in the mix under varying core counts. As expected, all the variants scale well and
maintain high throughput with expected transaction mix breakdown.
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Fig. 10. End-to-end latency of New-Order (top) and Q2 (bottom). Without preemption, Wait exhibits up to
~30x% higher tail latency than PreemptDB which both lowers New-Order latency and maintains Q2 latency.
Cooperative can lower tail latency but performs even worse than Wait at 50 percentile due to inaccurate
tuning,.

These results validate that overall, user interrupts are lightweight and PreemptDB does not trade
off throughput for latency. Hence, we explore latency profiles of these variants in the rest of this
section.

6.3 Effectiveness of Lightweight Preemption

Our first latency experiment compares the end-to-end latency of New-Order, Payment and Q2
under different scheduling variants, following the experimental setup in Section 6.1. We obtained
similar results for New-Order and Payment showing the same trend, so we focus on New-Order
and Q2 here.

Figure 10(top) shows the latency of New-Order under 16 threads and different scheduling variants.
PreemptDB can significantly lower latency by 88-96% at different percentiles over Wait, as Wait
has high queuing delay (consequently, high end-to-end latency) while PreemptDB can respond
timely within a few microseconds to a high-priority New-Order transaction. The second baseline,
Cooperative, which periodically checks the high-priority queue for pending transactions while
executing Q2, and yields if a high-priority transaction is present, presents even worse latency at
50 percentile (~55% and 1300% higher than Wait and PreemptDB). The reason is that the default
yield interval (10,000) is too infrequent to allow a worker to start a high-priority transaction timely
most of the time. It does, however, allow a reduction in tail latency at 90-99.9 percentile as it
may occasionally yield shortly after a high priority transaction becomes available. Nevertheless,
PreemptDB consistently has much lower latency than Cooperative at all percentiles.
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Fig. 11. Yield interval vs. throughput (top) and latency (bottom). Yielding too frequently (e.g., once per record
access) can improve high-priority transactions (left), but negatively impact low-priority Q2 (right). Handcraft-
ing Cooperative could give desirable behaviors similar to PreemptDB’s for both types of transactions but
has to be handcrafted for a specific workload, which is unrealistic and not always possible.

For Q2 in Figure 10(bottom), PreemptDB maintains similar latency to that of Wait, thanks to the
low overhead of user interrupts. In contrast, Cooperative presents higher 99.9 percentile latency
for Q2 due to yield operations.

The above results highlight the effectiveness of preemption in PreemptDB without extensive
tuning requirements. In contrast, Cooperative must be tuned carefully and often in an unrealistic
manner: a high yield interval can lead to high latency for high-priority transactions, but a low yield
interval may introduce non-trivial overheads for low-priority transactions. Figure 11 quantifies
this effect by presenting the throughput (top) and latency (bottom) under different yield intervals.
In addition to Cooperative, we evaluated a handcrafted variant of it by carefully inspecting Q2
logic, profiling its performance, inserting yield operations at the “right” locations and tuning for a
suitable yield interval. In this specific case, we inserted the yield right outside the nested query
block of Q2 and only does so for every 1000 nested query block executed. As shown in the figure,
Cooperative (Handcrafted) behaves comparably to PreemptDB under our target workload mix.
Nevertheless, this would require DBMS developers to insert yield operations inside the system
strategically such that the number of CPU cycles between every two yields is roughly the same
while not being too frequent. In other words, the DBMS must be customized specifically for a
particular workload and target tail latency profile. Such strategic locations of yields are usually
impossible to find, especially in systems with user-defined functions, I/O, or skewed joins. Even if
such locations exist, as in our case, it is unrealistic to expect a database system developer to have
such knowledge in advance; thus, the handcrafted Cooperative policy is prohibitively expensive
or even impossible to realize in practice.
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Fig. 12. Throughput and 99 percentile latency of New-Order and Q2 at different starvation thresholds.

To summarize, compared to Cooperative and Wait methods, PreemptDB can quickly respond to
high-priority requests without negatively affecting the latency of low-priority transactions. It reli-
ably delivers low scheduling latency for high-priority transactions without requiring sophisticated
tuning, making it practical.

6.4 Effectiveness of Starvation Prevention

As previously discussed, the workers may constantly execute high-priority transactions, starving
low-priority transactions, if we allow PreemptDB to preempt low-priority transactions without
restrictions. To test such a scenario, we increase the high-priority transaction queue size to 100 and
we send 1600 high-priority transactions across all 16 workers every 1 millisecond. We then compare
PreemptDB with different starvation thresholds and the Wait policy. As shown in Figure 12, the Wait
policy suffers from starvation of Q2: its throughput drops from about 9.14 kTPS (Figure 9 where we
only send 64 high-priority transactions per 1 millisecond) down to only 0.42 kKTPS, with the latency
increased from 3.62 ms to 560 ms at 99 percentile. Similarly, when the starvation threshold of
PreemptDB is set to 100, which effectively disables the starvation prevention mechanism, PreemptDB
also experiences similar throughput decrease and latency increase of Q2. By lowering the starvation
threshold, we can limit the percentage of CPU cycles spent on the high-priority transactions and
thus cause less starvation of Q2 at the cost of lower throughput and higher latency of high-priority
transactions. For instance, we can achieve a more balanced performance with a starvation threshold
of 0.75, where the high-priority transaction New-Order’s latency at 99 percentile is 2.59ms while
Q2’s throughput is maintained at 1.49 kTPS. On the other extreme, if we set the starvation threshold
to 0, which prevents preemptive context to execute prioritized transactions, PreemptDB can achieve
the highest possible throughput of 9.33 kTPS for Q2 at the cost of significantly increased tail latency
for New-Order. We also want to note that, under such a high system load, the p50 latency of
PreemptDB and Wait with a starvation threshold of 1 are similar, indicating a very low overhead
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Fig. 13. Geomean latency with varying arrival intervals. Higher intervals indicate the system is less overloaded
by New-Order, leading to lower Q2 latency. Compared to baselines, PreemptDB is robust and exhibits low
latency for high-priority New-Order regardless of arrival rates.

of our preemption mechanisms regardless of system load. Usually, the user needs to adjust the
starvation threshold based on their desired latency and throughput profiles, and we leave the
automatic tuning of this threshold for future work.

6.5 Robustness under Varying Arrival Intervals

Our experiments so far have used a fixed arrival interval of 1ms for high-priority transactions.
We further stress-test the system with varying arrival intervals to show PreemptDB can reduce
scheduling latency under varying load of high-priority transactions. Figure 13 shows the geometric
mean of end-to-end latency of the low-priority Q2 and the high-priority New-Order under arrival
rates from 50us to 50ms. Corroborating with the results from previous experiments, Q2 latency
under Wait, Cooperative and PreemptDB remain similar across all arrival intervals. As arrival
interval decreases (i.e., the system becomes more loaded with high-priority transactions), Q2 latency
increases as the system spends fewer CPU cycles on it.

However, the latency of high-priority transactions differs significantly between PreemptDB and
the two baselines. Under larger arrival intervals (lighter high-priority transaction load), Wait and
Cooperative have 24.7x and 18.7X higher latency for the high-priority transactions compared
to PreemptDB. The gap becomes smaller with smaller arrival intervals (heavier high-priority
transaction load). The reason is that both Wait and Cooperative will exhaust the high-priority
queue when it finishes or yield from a transaction, so they can benefit from having a constant
stream of high-priority short-running transactions to process them more timely. Nevertheless,
Wait and Cooperative both still have about 3.8 higher latency than PreemptDB, even in the most
extreme case with the arrival interval of 50us. These results demonstrate that PreemptDB is robust
under varying arrival intervals and transaction loads.

7 Related Work

Our work is most related to non-preemptive and cooperative scheduling in DBMSs, and scheduling
issues in operating systems. Note that we differentiate from concurrency control protocols (which
are also often referred to as “scheduling” in database literature).

Non-Preemptive DBMS Scheduling in DBMSs. Since preemption was previously deemed
unsuitable [5] and could lead to starvation issues for low-priority transactions [32], most work
in this category attempts to optimize the order of issuing transactions based on metrics such as
priority. PreemptDB mitigates these issues by leveraging recent user interrupts and optimistic
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concurrency. SMF [8] greedily selects the next transaction to run based on the one that would lead
to the smallest increase in overall execution time. Wagner et al. [51] split each query into morsels,
and use a self-tuning stride scheduler to adaptively allocate resources to optimize tail latency.
Psaroudakis et al. [43] schedule tasks by making it NUMA-aware to enhance memory locality. It
focuses more on improving throughput rather than reducing latency. Polaris [56] augments OCC
with a lightweight reservation mechanism to optimize high-priority transactions. A common issue
with these approaches, compared to preemption-based PreemptDB, is their inability to respond to
incoming high-priority transactions promptly. Nevertheless, some of them could be potentially
combined with PreemptDB, e.g., to further optimize data placement in NUMA environment, which
we leave as future work.

Cooperative DBMS Scheduling. Much recent work has devised cooperative scheduling to
hide latency incurred by memory accesses. MxTasks [35] distributes tasks to task pool based on
the data dependencies and serialize tasks in the task pool to reduce contention. CoroBase [14] and
MosaicDB [15] use coroutines [20] to implement software prefetching and asynchronous I/O with
hardcoded yield points in the database engine. Contrary to PreemptDB’s goal which is to reduce
transaction latency, these proposals hide latency for higher throughput by aggressive batching
to saturate memory or SSD bandwidth. It is interesting future work to add preemption to such
systems for the benefits of both latency hiding and low scheduling latency.

OS Scheduling. The systems community has proposed multiple approaches to lower tail latency
via novel scheduling mechanisms and policies. Caladan [13] uses a dedicated scheduling core and a
custom kernel module to quickly respond to resource contention, such as memory bandwidth or
cache pressure. PreemptDB can also implement such features using a monitoring thread to collect
and act on the necessary information using user interrupts. Shinjuku [21] leverages hardware
virtualization features to allow very fast preemption and prioritization. LibPreemptible[29] is a
preemption framework also based on user interrupt. However, like other work in this category, it
is designed for general applications, whereas PreemptDB targets database systems and is designed
with mechanisms and policies specific to database use cases.

8 Conclusion

Modern database applications increasingly mix short, high-priority transactions with long, low-
priority analytics. Traditional scheduling approaches such as FIFO-based and cooperative methods
fall short on these workloads by inducing long scheduling latency for high-priority transactions.
The former allows analytical transactions to monopolize CPU cycles, while the latter can be very
hard to tune and maintain. The potential of preemptive scheduling has been left unexplored due to
the high cost of software interrupt delivery and assumptions of pessimistic concurrency prevalent
in traditional, storage-centric systems. However, neither is true today due to new userspace inter-
rupt primitives in modern x86 CPUs and the wide adoption of optimistic concurrency. Based on
these observations, we propose PreemptDB, a database engine that allows efficient pure-userspace
preemption for mixed workloads. PreemptDB proposes an efficient transaction context switching
mechanism and scheduling policies based on preemption. Compared to prior approaches, Pre-
emptDB is robust against workload patterns, and reduces scheduling latency and end-to-end tail
latency by up to 96%, while maintaining high overall throughput.
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