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ABSTRACT
Traditional non-preemptive scheduling can lead to long latency
under workloads that mix long-running and short transactions with
varying priorities. This occurs because worker threads tend to mo-
nopolize CPU cores until they finish processing long-running trans-
actions. Thus, short transactions must wait for the CPU, leading to
long latency. As an alternative, cooperative scheduling allows for
transaction yielding, but it is difficult to tune for diverse workloads.
Although preemption could potentially alleviate this issue, it has
seen limited adoption in DBMSs due to the high delivery latency of
software interrupts and concerns on wasting useful work induced
by read-write lock conflicts in traditional lock-based DBMSs.

In this paper, we propose PreemptDB, a new database engine that
leverages recent userspace interrupts available in modern CPUs
to enable efficient preemptive scheduling. We present an efficient
transaction context switching mechanism purely in userspace and
scheduling policies that prioritize short, high-priority transactions
without significantly affecting long-running queries. Our evaluation
demonstrates that PreemptDB significantly reduces end-to-end
latency for high-priority transactions compared to non-preemptive
FIFO and cooperative scheduling methods.
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Figure 1: Design space (left) and scheduling latency distribu-
tion (right) of high-priority short transactions in a workload
mixed with long-running transactions.

1 INTRODUCTION
Modern database applications increasingly mix various types of
transactions. For example, heavy-weight, long operational report-
ing jobs [7] could run alongside short, latency-sensitive sales trans-
actions for e-commerce businesses to identify sales trends and
adjust advertising strategies with maximum data freshness [39]. In
essence, such workloads consist of both (1) low-priority but long
and (2) high-priority but short transactions. The former often mo-
nopolize the CPU, leaving little to no resources to run the latter.
This can lead to long transaction scheduling latency and high tail
latency overall, which we aim to reduce in this work.

1.1 The Practicality and Latency Tradeoff
It is intuitive to allow high-priority transactions to interrupt low-
priority long-running transactions for CPU resources, but conven-
tional wisdom [6] has long discouraged preemption in database
engines. The rationale was that using preemption would introduce
excessive overhead, since a low-priority but long transaction may
be holding many locks, and so a high-priority transaction may con-
flict with the long transaction, causing it to abort anyway. This
can waste useful work or even lead to deadlocks, defeating the pur-
pose of preemption. As a result, many systems are forced to make
tradeoffs between performance (transaction scheduling latency)
and practicality. Figure 1(left) summarizes the design space. Many
systems schedule transactions in a first-in-first-out (FIFO) manner,
cooperatively, or leave it to the OS.

FIFO-based scheduling (denoted as Wait) mandates high-priority
transactions to wait until existing low-priority transactions finish.
Long-running low-priority transactions such as operational report-
ing can monopolize CPU resources. As shown in Figure 1 (right;
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detailed setup in Section 6), this essentially forgoes priority, leading
to long scheduling delays for high-priority transactions (e.g., by
waiting in a scheduling queue). A stop-gap solution is coopera-
tive scheduling [11, 15, 16], which allows transactions to give up
CPU time voluntarily. This can be implemented by defining “yield
points” in the database engine at appropriate locations without
involving the application. For example, one could yield once after
reading a certain number of records. Such approaches (Yield in
Figure 1) could lower scheduling latency and is usually not hard
to implement, but can still fall short if the choice of yield points
does not exactly match the workload. Potentially, one could hand-
craft a yield strategy according to a target workload to achieve
very high performance (i.e., low scheduling latency), as shown in
Figure 1(left). But this is difficult to maintain and not cost-effective
as the database engine is customized for a particular workload.
Overall, it is still a fundamental challenge for database engines to
schedule mixed workloads with low latency.

1.2 PreemptDB: Preemption Made Practical
We propose PreemptDB, a database engine that delivers low sched-
uling latency for mixed workloads with both low-priority long-
running transactions and high-priority short transactions. Con-
trary to the conventional wisdom, PreemptDB does so based on
two observations that make preemption viable in modern DBMSs.

First, the tendency of avoiding preemption centered around the
use of pessimistic locking (e.g., two-phase locking) across the board
for all transactions, including long-running, low-latency ones. How-
ever, modern database engines are increasingly memory-optimized,
adopting optimistic [25, 48] and multi-versioned [3, 4, 13, 24, 28,
30, 37, 51, 52] approaches to concurrency control that allow read
operations to proceed without holding locks. This means interrupt-
ing a long read may not lead to severe waste of work or cause
transactions to abort.

Second, advances in modern CPUs, particularly user interrupt
(uintr) [33] that is available now inmainstream x86 chips can deliver
interrupts directly into userspace, providing lightweight mecha-
nisms for preemption. This allows database engines to facilitate
interrupt delivery quickly purely in the userspace without crossing
kernel and userspace boundaries.

PreemptDB leverages these two facts to design a lightweight
transaction scheduling mechanism and associated policies. We base
on user interrupts [33] to allow each worker thread to switch be-
tween multiple contexts that time-share the underlying CPU core.
This way, a low-priority transaction running on a worker thread can
be timely interrupted (with its states stored in a transaction control
block, or TCB), so that the high-priority transaction can be served
by another context on the same thread. Contrary to traditional
process context switching in the OS, our context switch mecha-
nism is purely in userspace and eliminates costly kernel transitions.
This significantly reduces latency for high-priority transactions
and allows PreemptDB to maintain high performance in case no
preemption is needed (e.g., if the system is serving uniform OLTP
workloads with short transactions only).

Unlike traditional preemptive policies that abort transactions
and thus may waste valuable work [32] done for long-running
transactions, PreemptDB leverages the fact that modern systems

issue optimistic reads to pause preempted transactions. Once the
high-priority transaction is finished, PreemptDB resumes the pre-
viously paused low-priority transaction. PreemptDB also addresses
several challenges inherent in preemptive scheduling, such as po-
tential concurrency problems and transaction starvation, which we
discuss in later sections.

As shown in Figure 1(right), PreemptDB outperforms Wait and
Yield-based solutions by orders of magnitude in reducing latency.
Our evaluation in Section 6 shows that PreemptDB lowers latency of
high-priority transactions by 88–96% over non-preemptive schedul-
ing policies at different latency percentiles. Importantly, PreemptDB
does so without sacrificing overall transaction throughput. It is also
robust by not requiring fine-tuning based on workloads.

1.3 Contributions and Paper Organization
This paper makes the following contributions:
• We revisit transaction scheduling and make the case for preemp-
tive scheduling in modern database engines.

• Wepropose to leverage userspace interrupt primitives available in
modern CPUs to design a low-overhead, fine-grained preemptive
transaction scheduling mechanism.

• We present PreemptDB, a database engine that uses user inter-
rupts to support preemptive scheduling policies to reduce trans-
action scheduling latency, and discuss the broader implications
of preemptive scheduling on future database system designs.

• Through extensive evaluation, we show that PreemptDB im-
proves throughput, latency, and fairness, proving its practicality.
In the rest of the paper, we give the necessary background in

Section 2. Section 3 gives the desiderata of preemptive scheduling
which serves as our design principles. Sections 4–5 present the
detailed design of PreemptDB. Section 6 empirically evaluates Pre-
emptDB to demonstrate the benefits of preemptive scheduling. We
cover related work in Section 7 and conclude in Section 8.

2 BACKGROUND
As database applications evolve, the need to handle both long-
running analytical and short transactions within a single database
engine has become increasingly prevalent. In particular, the long-
running analytical transactions are often of low priority, while
the operational operations are traditional OLTP that require low-
latency and high-priority. Many real-world applications (e.g., finan-
cial systems and e-commerce) [10] present such mixed workloads
which are our target in this paper.

In the rest of this section, we discuss existing scheduling ap-
proaches and their mismatch with our target workloads to motivate
work. We then set the stage for our solution by introducing user
interrupt primitives available in modern x86 CPUs, followed by our
assumptions on system model.

2.1 Existing Wait/Yield based Scheduling
We have briefly introduced the current state-of-the-art wait/yield-
based scheduling in Section 1. Now we spell out why they fall
short in handling mixed workloads with varying priorities; readers
already familiar with this topic may fast forward to Section 2.2.

Non-Preemptive and Cooperative Scheduling. Long analyti-
cal queries can dominate CPU cycles due to their highly parallel
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Figure 2: Traditional wait/yield-based scheduling vs. preemp-
tion. Preemption could potentially lower transaction sched-
uling latency by responding to new requests quickly.

nature and long execution times [12, 26, 40]. For example, many
systems execute large scan, join and aggregation operations across
multiple threads. However, operational transactions often require
low-latency responses. As a result, in a database engine where trans-
actions with footprints on different scales share the same hardware
resource, high-priority transactions are very likely to be delayed.

Many recent database engines focus on hybrid transactional
and analytical processing (HTAP) architectures [8, 23, 34, 36, 38,
42, 44, 50, 53] where the database must support a wide range of
scenarios concurrently. However, when CPU resources are already
fully utilized by long-running transactions, traditional scheduling
mechanisms like non-preemptive FIFO scheduling and cooperative
scheduling become insufficient. As the example in Figure 2 shows,
if a short, high-priority transaction arrives at 𝑡𝑖𝑚𝑒 = 4, using non-
preemptive FIFO scheduling, it must wait for the long-running
transaction to complete. Therefore, the high-priority transaction
is delayed until 𝑡𝑖𝑚𝑒 = 12. While the execution time of the high-
priority transaction is only 1 time unit, the scheduling latency is 8
times of the execution time. Such FIFO methods can be optimized,
e.g., by relaxing strict FIFO ordering to organize transactions into
a high-priority queue and a low-priority queue, so that the thread
always exhausts the former first. As Section 6 shows, they still lead
to high tail latency.

In contrast, cooperative scheduling can reduce scheduling la-
tency by allowing transactions to yield the CPU voluntarily. This
can be done in two ways. (1) The application could be modified to
yield at specific points, e.g., at lines 3 and 8 of Figure 3. This reduces
the wait time for the example in Figure 2 to 4 time units, but is still
far from responsive. If the high-priority transaction missed the first
yield point, it would have to wait for the second one, which can
lead to unpredictable latency, depending on how much work re-
mains to be done before the worker thread hits the next yield point.
This approach adds additional overheads to application developers
who are often not well trained about database system internals.
(2) The more realistic practice is to let DBMS engine developers
insert yield points in areas like table access methods (not shown
in the figure), making yield decisions transparent to the applica-
tion. However, this is highly impractical by requiring co-design
of database engine kernels and the particular targeted workload.
The DBMS engine developers must carefully profile the workload
and engine via trial-and-error approaches to determine the correct

1.   rc_t Transaction(result) {
2. rows = table1->Scan(range);
3. // Manually yield here
4. Sort(rows); 
5. for (row in rows) {
6. key = row.attribute;
7. val = table2->GetRecord(key);
8.       // Manually yield here
7.       result.Add(val);
8.     }
9. ret_code = Commit();
10.    return ret_code;
11. }
12.  // Wait until completion, do next one
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Figure 3: Scheduling decision possibilities. Non-preemptive
FIFO-based approaches (1) could only schedule new work
at transaction commit boundaries. Cooperative scheduling
(1) requires manually added yield points based on the tar-
get workload. Preemption-based scheduling (1) could allow
scheduling new work on demand at almost any time.

yield points. If the workload changes, previous yield points that are
already hardcoded in the engine code now become “wrong” and
lead to lower performance.

Preemption Potential and Motivation. As shown in Figure 2,
an ideal scheduling policy should be able to preempt long-running
transactions, which then can easily meet the service level agree-
ments (SLAs) of short, high-priority transactions. Like in Figure 3,
preemption should be able to happen at any point, not just at
predefined yield points, to promise low latency for high-priority
transactions. Systems like MySQL and PostgreSQL do not natively
implement preemption. PostgreSQL implements cooperative inter-
rupts [41]. These are not true preemptive interrupts, but rather a
mechanism that allows the database engine to handle interrupts
gracefully by periodically checking for pending signals at safe
points during execution, preventing corruption and ensuring grace-
ful termination of queries and processes. In general, the evolution
of preemption in database engines has been slow without the sup-
port of userspace interrupt mechanism. Even though preemption
offers a promising path for managing mixed workloads, it has seen
limited adoption and the conventional wisdom is to avoid it [6]
as Section 1 mentioned. However, the availability of lightweight
user interrupt mechanisms and recent advances in lightweight con-
currency control protocols motivate us to revisit preemption in
database systems, as we discuss next.

2.2 Memory-Optimized Database Engines
Traditionally, storage-centric DBMSs assume data is disk-resident
and default to pessimistic concurrency control methods such as
two-phase locking. As mentioned earlier, this can prohibit pre-
emptive scheduling. However, advances in hardware—in partic-
ular large DRAM that can fit entire working sets and multicore
CPUs—have allowed modern database engines to assume data to
be memory-resident and become memory-optimized. Subsequently,
they usually favor optimistic approaches to concurrency control
methods which have much lower overhead compared to pessimistic
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approaches when data is in memory. In particular, many memory-
optimized database engines [3, 4, 13, 24, 28, 30, 37, 51, 52] adopt
multi-versioning and snapshot isolation which avoid readers and
writers from blocking each other [3].

There are various designs available to realize optimistic and
multi-versioned concurrency. Without losing generality, we de-
scribe ERMIA [24], a representative memory-optimized database
engine and use it as as our baseline throughout the paper. Following
the multi-versioned database model by Adya et al. [2], each record
is represented by an ordered chain of versions, each of which is
tagged with a global commit timestamp, which in turn denotes
the commit time of the transaction that generate the version. To
update a record, the transaction inserts a new version to the head
of the record’s version chain, forming a new-to-old order among all
versions of the same record. Each transaction is also tagged with
a begin and a commit timestamp, which is drawn from a central-
ized counter. To read a record, the transaction traverses the target
record’s version chain and reads desired version as dictated by the
isolation level. For example, the widely used snapshot isolation
(SI) [3] can be implemented by reading the first version that was
generated before the transaction’s commit time. Inserts and deletes
can be modeled as special cases of updates. Read committed can
be implemented by always reading the latest version, and serial-
izability can be supported using certifiers [5, 51] or by combining
with OCC [25]. Regardless of the isolation level used, however,
during forward processing no pessimistic lock is taken for reads,
which is our key assumption for preemptive scheduling to be viable
throughout the paper.

2.3 User Interrupt
Userspace interrupts can enable direct delivery of interrupts to
user space, bypassing the kernel. They recently became available
in mainstream x86 processors [33]. Our measurement (Section 6.1)
shows that user interrupt delivery latency between two POSIX
threads is consistently lower than 1𝜇s. This opens up new oppor-
tunities for database engines to implement preemptive scheduling
purely in userspace, without all the kernel-crossing overhead of
traditional software interrupts. To use user interrupt, the DBMS
can register user interrupt handlers (similar to traditional interrupt
handlers functionality-wise) that implement DBMS-specific inter-
rupt handling logic. Different from traditional interrupts, however,
user interrupt does not have advanced programmable interrupt
controller [20] support in hardware for sending interrupts. Thus, a
typical approach is to employ a dedicated scheduling thread which
can use the senduipi instruction to send user interrupts. Once a
user interrupt is delivered, the receiving thread immediately pauses
the execution at the current instruction and jumps to the user inter-
rupt handler. After returning from the handler, the thread resumes
execution at the instruction where it was interrupted. Like in the tra-
ditional software-based interrupt, the CPU disables user interrupt
so that the handler can execute to completion without interruption.

User interrupt handler respects the Linux x86-64 application
binary interface (ABI). Customizing the interrupt handler to enable
flexibility in designing scheduling policies, which will be detailed in
Section 4, requires register preservation and restoration following
the ABI. As shown in Figure 4, when a user interrupt is delivered, the

foo() Stack FrameRed Zone (128B)

Saved RSP in foo()

Other 
Frames

UINTR 
Frame

Saved RSP in 
foo()

Saved RFLAGS in 
foo()

Saved RIP in 
foo()

Saved Registers

Figure 4: Stack layout during user interrupt handling.

receiving thread automatically skips the red zone [31] and pushes
the user interrupt frame onto the stack. The red zone is a 128-byte
area atop the stack top (RSP) that a function (as dictated by the com-
piler) can use for local data without adjusting the stack pointer, and
it should remain valid until the function returns. Therefore, user
interrupt handler should not use it. All the caller-saved registers
and callee-saved registers must be preserved in the user interrupt
(uintr) frame. More importantly, uintr frame will always bookkeep
the instruction pointer RIP, the flags register RFLAGS and stack
pointer RSP for the paused function (foo() in Figure 4). RIP points
to the next instruction to be executed; RFLAGS contains the status
of the CPU; RSP points to the top of the stack. The user interrupt
handler returns via a specialized instruction uiret, which pops
these registers in uintr frame’s order to restore the original state
of the program. Moreover, different from interrupts in the kernel
space which are typically prohibited from involving complex com-
putations such as floating point operations, userspace programs
may well use the extended register sets for these operations. There-
fore, a user interrupt handler also must store these registers, which
can be done using the xsave and xrstor instructions [20]. We dis-
cuss how PreemptDB manages these register states and uses the
aforementioned features and mechanisms in later sections.

3 DESIDERATA
While it is conceptually straightforward that preemption could
lower transaction scheduling latency, we observe for it to be worth-
while, database engines like PreemptDB should provide the follow-
ing desired properties:
• Low Latency with High Throughput.Much prior work has
focused on improving transaction throughput. A preemptive
scheduling based engine must preserve high throughput, while
lowering scheduling latency via preemption.

• Lightweight Transaction Switching. The engine should serve
preemption requests (i.e., switching between different transac-
tions) quickly without incurring prohibitively high overheads.
This is especially important for workloads where the preempted
transactions are not very long, compared to scheduling delays.

• Flexible Scheduling Policies. Preemption can potentially en-
able various policies and—perhaps more critically—pitfalls (e.g.,
starvation as we discuss later) that were not possible. The mech-
anisms must be amenable to various policies and mitigation.

4 PREEMPTDB DESIGN
This section describes the design of PreemptDB, a new database
engine that allows preemptive transaction scheduling via recent
hardware-supported userspace interrupts. We first give an overview
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Figure 5: PreemptDB Overview. Upon arrival of a high-
priority transaction𝑇 , a scheduling thread 1 issues a user in-
terrupt to preempt and pause the execution of an in-progress
low-priority transaction 𝑆 on a worker thread. The worker
thread then 2 switches to another context to 3 accommodate
𝑇 and 4 resumes 𝑆 after 𝑇 finishes.

of PreemptDB, and then describe in detail how it satisfies the afore-
mentioned desired properties.

4.1 Overview
PreemptDB takes transaction requests tagged with priority levels
(or service level objectives) as input and schedules them accordingly.
Without losing generality, we limit our discussion to two priority
levels: “normal” low-priority and more “urgent” high-priority trans-
actions; we discuss how multiple priority levels could be supported
later. As Figure 5 shows, PreemptDB employs two kinds of threads:
(1) scheduling threads and (2) worker threads. A scheduling thread
serves the dual-purpose of (1) dispatching transactions obtained
from an admission control component (not shown in the figure)
to worker threads for execution, and (2) issuing user interrupts
to worker threads to trigger the preemption machinery to serve
high-priority transactions. The number of scheduling threads is
adjustable, however, our evaluation shows that using a single sched-
uling thread does not present a bottleneck at least with 32-core
CPUs. For brevity, we assume one scheduling thread in the rest of
the paper. Each worker thread maintains and continuously polls
two scheduling queues (one for high-priority transactions, another
for low-priority ones) where the scheduling thread dispatches trans-
actions into. In addition, each worker thread maintains two trans-
action contexts (akin to OS thread contexts; detailed later) that
support preemption caused by user interrupts.

With the above structures, PreemptDB allows two scheduling
paths as shown in Figure 5. For normal, low-priority transactions,

the worker threads simply follow the regular scheduling path (1 ) to
execute low-priority transactions in a transaction context (e.g., con-
text 1 in the figure) one after another. Without high-priority trans-
actions, the system would stay in the regular scheduling path and
execute transactions without interruption. When a high-priority
transaction arrives, the scheduler thread first finds a worker thread
whose high-priority queue still has at least one free slot (our current
implementation does so in a round-robin manner) to accommodate
the new request. After enqueuing one (or more as determined by
the scheduling policy we discuss later) high-priority transaction(s),
the scheduler can immediately issue a user interrupt ( 1 ) to the
corresponding worker to preempt (pause) the currently executing
low-priority transaction. 2 Upon receiving the user interrupt, the
worker thread switches to context 2 and 3 fetches a high-priority
transaction (e.g., 𝑇 or another earlier high-priority transaction) to
work on. While𝑇 is being executed, new high-priority transactions
could arrive and queue up. However, for simplicity our current
design does not further interrupt an in-progress high-priority trans-
action, which we leave as future work. 4 After one or more high-
priority transactions executing in context 2 (as determined by the
scheduling policy) concluded, the worker thread can switch back
to the other context and resume the execution of the previously
interrupted transaction. Additionally, a high-priority transaction
could optionally get executed on the regular scheduling path (2 )
when the context becomes free. This can happen if a user interrupt
( 1 ) is dropped due to DBMS-specific reasons (i.e., atomic active
switch and critical section mechanisms to be discussed later), or a
low-priority transaction happens to finish before the next user in-
terrupt arrives. In other words, on the regular scheduling path, the
worker thread may also be configured to prefer taking transactions
from the high-priority queue based on the scheduling policy.

Our current implementation assumes memory-optimized envi-
ronments where themainmemory is large enough to hold the entire
working set and each thread (scheduling and worker) is pinned to
a core. However, PreemptDB’s design principles and mechanisms
are generally applicable. In the rest of this section, we discuss how
PreemptDB realizes the above scheduling steps and tackles related
challenges. We start from providing efficient mechanisms for trans-
action context switching next.

4.2 Lightweight Transaction Context Switch
PreemptDB needs to handle context switching in two directions:
(1) A worker thread may be preempted to pause its currently in-
progress transaction and switch to another context to perform
another transaction with a higher priority. (2) After finishing pro-
cessing the high-priority transaction, the worker thread should
switch back to the previously interrupted transaction and continue
from where it was interrupted. From the perspective of a worker
thread, the first direction is passive, triggered by a user interrupt,
while the latter is in fact voluntary. Both require storage and re-
sumption of on-going transaction states. To facilitate this, we create
a transaction control block (TCB) that saves transaction states, in-
cluding register values, local variables, and so on. The notion of
TCB is similar to process control blocks (PCBs) [45] in OS context
switching, but is purely userspace. With TCBs, now we describe
mechanisms in PreemptDB for handling each direction.
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Figure 6: Context switches within a thread in PreemptDB.

Uintr-based Passive Switch. As mentioned, a passive context
switch is triggered by a user interrupt. It is then completed by a
user interrupt handler (similar to traditional interrupt handlers,
but in userspace). Figure 6(a) shows the process with an example
of switching between two contexts on a worker thread. In the
figure, foo is currently running in Transaction context 1 before
the thread received a user interrupt, sent by the scheduling thread
(Section 4.1). The thread is then trapped in the user interrupt handler
(uintr_handler in the figure) which in turn i saves the states of
the current transaction (foo) into TCB1 by pushing the states of
the registers onto the stack. This process is depicted in Figure 6(b).
ii Once the states of the preempted transaction are saved, the
user interrupt handler continues to perform the actual “switch”
by moving the current stack pointer to point to the stack top of
the preemptive context (i.e., Transaction context 2). Recall that
each transaction context is associated with its own stack, which
is prepared with the necessary information in its TCB (TCB2) to
begin a new incoming transaction. As Figure 6(b) shows, after
the stack pointer is moved to point to TCB2, we pop its values
into registers. At this point, uintr_handler has finished its work,
and control is handed over to the high-priority context which can
resume execution from the instruction pointer saved in TCB2, which
could be starting to handle a high-priority transaction.

Interrupt handler code is often written in low-level assembly
code as they are short and requires high performance. However,
our use case—switching transaction contexts using user interrupts—
necessitates extra work to be performed by the handler. In par-
ticular, it needs to (1) retrieve the destination stack pointer from
the rsp register value saved in the preemptive TCB2, (2) save or

Algorithm 1 User interrupt handler routine.

1 interrupt_handler:

2 .check_rip: # check if rip is in swap_context

3 cmpq # if rip > .swap_context_end, continue

4 jg .continue_uintr

5 cmpq # if rip > .swap_context_start, exit uintr

6 jg .exit

7
8 .continue_uintr:

9 push registers # save the states of registers

10 call uintr_handler_helper # invoke C++ helper

11 mov returned_rsp, %rsp # move the stack pointer

12 pop registers # restore the states of registers

13 uiret # return and re-enable user interrupts

14
15 .exit:

16 uiret

restore various floating point and SIMD registers, and (3) perform
necessary operations for correctness involving context-local stor-
age and non-preemptible regions which we describe in detail later.
Among these operations, (1) and (2) are typical and straightforward,
yet (3) is a new requirement by user interrupts and transaction
scheduling. As we will describe later in this section, it can become
more involved and thus significantly complicate the handler logic,
especially so in assembly code. Therefore, rather than following
conventional wisdom to write interrupt handler code in assembly,
we wrap complex work (3) in a C function which is invoked by
uintr_handler between steps i and ii .1 The handler then needs
to issue inlined assembly only to perform the stack pointer switch.
As Section 6 shows, switching transaction contexts using our ap-
proach is very lightweight. It incurs little overhead while improving
programmability and lowering maintenance efforts.

AtomicActive Switch.Aworker threadmay voluntarily switch
context, e.g., after concluding a high-priority transaction so that it
can resume the processing of the previously preempted low-priority
transaction. We enable this by introducing a new userspace context
switching interface swap_context which performs similar opera-
tions as (steps iii and iv in Figure 6) as the user interrupt handler.
Between steps iii and iv , swap_context can also invoke a helper
function swap_context_helper to perform additional operations
similar to the user interrupt handler helper function. However, the
major difference between the aforementioned uintr-based passive
switch is that active context switches are not atomic by default.
Specifically, during a passive context switch, the thread is inside
the user interrupt handler and cannot be interrupted, as guaranteed
by the hardware [19]. Therefore, the states of registers will remain
consistent during the passive context switch. However, an active
switch does not have such protection: A preemption could happen
at any time in an active switch, causing dirty states saved/restored
silently and subsequently cause undefined behaviors.

To solve this problem, we design an atomic context switch mech-
anism (Algorithm 2) that leverages a combination of temporary
disabling of user interrupt delivery and instruction pointer check.
1Details in /uintr.{h,cc} of our code repo.
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Algorithm 2 Atomic active context switch routine.

1 swap_handler_func:

2 .swap_context_start:

3 clui # temporarily disable user interrupts

4 push registers

5 call swap_context_helper

6 mov returned_rsp, %rsp

7 pop registers

8 mov saved_rip, -0x80(%rsp) # bypass red zone

9 stui # re-enable user interrupts

10 jmp -0x80(%rsp) # indirect jump to saved rip

11 .swap_context_end:

12 nop

swap_context is a regular function that should use ret instead of
uiret, but ret expects a different stack layout than uintr frame,
which is shown in Figure 4. If we call ret naïvely, we will prema-
turely set the instruction pointer without restoring the stored RSP
pointing to the stack top of the paused context, which can lead to
stack corruption and undefined behavior. Instead, we first restore
RSP, and then perform an indirect jump to the saved RIP, which
we copied to a temporary location at a fixed offset from the paused
context’s RSP. This fixed offset bypasses the 128-byte red zone of the
stack to avoid corrupting the red zone. To guarantee that the entire
context switch is atomic, an intuitive idea is to temporarily disable
user interrupt delivery via clui. However, we still leave a small
window for the user interrupt to happen between Algorithm 2, line
9 and line 10, because the indirect jump must be the last instruc-
tion before returning to the paused context. To solve this problem,
we introduce instruction pointer check (Algorithm 1, lines 2–6) to
force user interrupt handler to return early without performing any
stack operations if the interrupted instruction pointer is between
.swap_context_start and .swap_context_end.

4.3 Transparent Context-Local Storage Support
A database engine and its dependent runtime libraries (e.g., glibc,
glog, boost) often utilize thread-local storage (TLS) to allow each
thread to have its own independent copy of a variable, which is
crucial for the correctness of concurrent execution of transactions.
For instance, some systems [24] has a per-thread log buffer imple-
mented as a thread-local variable, in which each worker thread may
concurrently write its own redo logs. However, when we enable
user interrupt in PreemptDB, each thread in the OS only owns
its one copy of the TLS. Consequently, multiple contexts in the
same worker thread will read and write to the same TLS variables.
In this case, they may be overwriting each other’s logs. We first
note that this is not a unique problem to PreemptDB. For instance,
coroutine-based cooperative scheduling systems [15, 16] can also
voluntarily yield and maintain multiple transactions on the same
thread. However, these systems easily sidestep the problem by stor-
ing TLS objects (e.g., per-thread log buffers, timestamps, etc.) as
transaction-local objects, or in a preallocated array (one element per
transaction). However, this approach does not work for PreemptDB
which can preempt and pause the execution of the transaction logic
almost anywhere, which includes not only the database engine code

but also the dependent runtime libraries. If a context is interrupted
within the runtime library code that uses TLS, we may introduce
intra-thread data races that could lead to data corruption or crashes.
While we can modify the database engine code to turn all existing
TLS variables in transaction-local, it is impractical to do so for every
existing runtime libraries which often need to be kept standard and
are provided by the deployment environment (e.g., the OS).

To address this challenge, we design a transparent context-local
storage (CLS) mechanism so that existing database engine code and
dependent runtime libraries can continue to use it as regular TLS
(e.g., as defined by the thread_local modifier in C++) without
being modified or recompiled. To achieve this, we create a separate
CLS area for each context with the same layout of the TLS area
of the same program. In our current implementation, we create a
redundant pthread [17] for each worker thread that never runs
and effectively “steals” its TLS as the CLS of its second context.2
When a context is actively running in a thread, its CLS area is
exposed to the thread as its current TLS.3 Note that no two contexts
within the same thread can be executing at the same time, so the
code running within a context will transparently read or write
the TLS variables in its own CLS area. During a context switch,
we automatically swap CLS areas of the two contexts, which we
conveniently perform in the uintr_handler_helper function.

4.4 Non-Preemptible Regions
Next, we discuss another important mechanism for ensuring cor-
rectness: non-preemptible regions, which stop preemption from
happening in enclosed code sections. The primary usage is to pre-
vent deadlocks among database latches4, for which the conventional
approach is to take the latches in a predefined order (consistent
lock ordering). For instance, when OCC in a non-preemptible data-
base engine tries to validate the transactions, it has to latch the
records in its read and write set in some consistent order (e.g., in-
creasing address order), such that no wait-for cycles could form
across concurrent transactions in different threads. However, in
PreemptDB, concurrent transactions could be validating over over-
lapping read/write sets in different contexts of the same thread,
with only one of them running. As a result, one of them could still
be blocked on a latch if the other is preempted while holding a latch
on a lower-address record, resulting in a deadlock. To prevent this
from happening, we can wrap the OCC validation procedure into
a non-preemptible region. Deadlocks could also arise from depen-
dent libraries that use synchronization primitives internally (e.g.,
glibc malloc()/free())), which must also be wrapped into non-
preemptible regions. There are many code locations in PreemptDB
codebase that need to be wrapped into non-preemptible regions,
including index APIs, memory allocator, transaction validation/-
commit/abort logics. Since they are often intertwined with each
other, simply enabling and disabling user interrupts with stui/clui

2We steal the initialized TLS as CLS from a redundant pthread because different OS
kernels/toolchains may have different ways of setting up TLS even for the same x86-64
architecture. Doing so avoids replicating the code in the dynamic loader in Linux and
makes our code more portable.
3On x86-64, a TLS is set by updating two special registers fs and gs to the thread-
specific memory locations in an OS/toolchain/ABI-specific manner.
4Database latches are often implemented using common synchronization primitives
such as spin locks, mutex, POSIX rwlocks, or lock-free primitives like CAS, which do
not have built-in deadlock detection mechanisms.
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does not work well. Instead, we support nested non-preemptible
regions through enter (TCB::lock()) and exit (TCB::unlock())
APIs. To achieve this, we introduce a CLS lock counter to record
how many times the current context has entered but not exited
non-preemptible region. Thus, TCB::lock()/TCB::unlock() sim-
ply increments/decrements the CLS lock counter without any addi-
tional synchronization. When an interrupt arrives but we observe
the lock counter is greater than zero, the user interrupt handler
will return directly back to its current context, instead of switching
to the other context, which is, again, conveniently implemented
in uintr_handler_helper by directly returning the current rsp
register value to the interrupt handler.

5 PREEMPTIVE SCHEDULING POLICIES
With all the mechanisms laid out, now we introduce two preemp-
tive scheduling policies in PreemptDB, with the primary goal of
lowering end-to-end latency of short high-priority transactions
mixed with long low-priority transactions, namely (1) batched on-
demand preemption policy, and (2) starvation prevention policy.
We discuss support for other possible policies and workloads later.

Batched On-Demand Preemption. Long scheduling delay is
the root cause of high end-to-end latency of short high-priority
transactions, because they have to wait for long low-priority trans-
actions to finish under non-preemptive policies. On the one hand,
PreemptDB can leverage user interrupts to immediately schedule
and execute high priority transactions on demand. On the other
hand, excessively interrupting workers for every high priority trans-
action request will reduce the number of CPU cycles spent on useful
works. Therefore, we devise a batched on-demand preemption pol-
icy that admits a batch of high-priority transactions up to a certain
size at fixed intervals. We fix the size of the high-priority transac-
tion queue of each worker to a tunable number. Once a batch is
admitted, we select a worker in round-robin manner and push as
many high-priority transactions as possible into the high-priority
transaction queue until it is filled up or we deplete the available
admitted transactions. Then, we send a single user interrupt to the
worker for it to execute the batch immediately.

Starvation Prevention Policy. Under the batched on-demand
preemption policy, the system may become overloaded when there
is a constant stream of high priority transactions. This could starve
low-priority transactions: too many CPU cycles could be spent on
processing high-priority transactions, leading to significantly lower
throughput and higher latency of the low-priority ones.

To solve this problem, we introduce a starvation prevention pol-
icy to work alongside the batched on-demand preemption policy.
We monitor the starvation level 𝐿 of low-priority transactions,
defined as the percentage of cycles spent on high-priority transac-
tions, and make sure the starvation level never exceeds a tunable
starvation threshold 𝐿max in scheduling decisions. More formally,
when each low-priority transaction starts execution, we record a
start timestamp 𝑇0 (e.g., using rdtscp [20]) and reset an accumu-
lator 𝑇ℎ to zero. Then, for each high priority transaction executed
through preemption on the same worker, we accumulate its number
of CPU cycles in𝑇ℎ . For any time point𝑇1, we define the starvation
level 𝐿 of a low-priority transaction as L = Th/(T1 − T0). Note that
𝑇0,𝑇1 and𝑇ℎ are all stored in a shared memory location across both

t1

…
tn

Th

T0 T1

Low-priority transaction High-priority transaction

Figure 7: Starvation prevention in PreemptDB bymonitoring
starvation level.𝑇ℎ is the accumulated cycles of high-priority
transactions between the start (𝑇0) of the paused low-priority
transaction in the same worker and current time (𝑇1).

contexts for each worker. We check the starvation level against
the starvation threshold at two specific policy decision-making
locations with different alternative decisions:
• Before a scheduler thread pushes high-priority transactions to
the high-priority queue of a worker, we check whether 𝐿 is above
the threshold. If so, we do not push additional high-priority trans-
actions into the worker and skip sending a user interrupt.

• After executing a high-priority transaction , we check whether
𝐿 is above the threshold. If so, we prematurely switch back to
the other context which holds a paused and starved low-priority
transaction, without executing the remaining high-priority trans-
actions in the queue.
Discussions. User interrupt opens up many opportunities. Pre-

emptDB explores its potential of allowing timely scheduling of
high-priority transactions when low-priority transactions have
dominated all the system resources. We have so far only considered
two priority levels (low and high) without hard service level agree-
ment (SLA) guarantees. Thanks to PreemptDB’s context switching
design (instead of executing a high-priority transaction directly in
the interrupt handler), one may easily extend PreemptDB to support
more fine-grained priority levels by using multiple contexts/TCBs.
A high-priority transaction that has already interrupted a previous
lower-priority transaction could then be interrupted again, and
the scheduler could choose to pause or even move the transaction
to be performed elsewhere in another thread. More policies could
also be developed, for example, to support real-time scheduling [1]
with hard SLA guarantees. Other constraints, such as prioritizing
user transactions over background tasks, and dynamic priority
adjustment (e.g., increasing the priority for transactions that are
already aborted beyond a threshold number of times) [54] could all
be combined with PreemptDB. These are interesting future work.

Preemptive scheduling could also be implemented using tradi-
tional interrupts, if the entire DBMSwere implemented in the kernel
space. Some recent work has started initial exploration of this direc-
tion [27], but deploying them in today’s cloud environment can be
challenging. In contrast, PreemptDB is a pure userspace solution,
allowing easy adoption in existing cloud environments.

6 EVALUATION
In this section, we perform experiments using various workloads
to evaluate PreemptDB and show the following:
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• PreemptDB can significantly reduce tail latency for scheduling
high-priority transactions with low impact to the overall through-
put under the same workload mix.

• PreemptDB’s starvation prevention mechanism can effectively
balance high- and low-priority transactions.

• Compared to cooperative scheduling, PreemptDB can provide
low latency for high-priority transactions without harming low-
priority transaction performance, yet is robust without requiring
(often unrealistic) tuning.

6.1 Experimental Setup
We use a dual-socket server equipped with two 32-core Intel Xeon
Gold 6448H CPUs and 512GB of main memory. The CPU is clocked
at 2.4GHz (up to 4.1GHz with turbo boost) and has 60MB of caches.
It runs Ubuntu 22.04.4 LTS with our patched uintr-enabled Linux
kernel 6.2.0 based on Intel’s uintr-linux-kernel repository [18]. We
limit our experiments to a single socket without hyperthreading
to focus on user interrupts. This allows us to avoid NUMA effect
and ease the interpretation of results. One CPU core in our system
is dedicated to delivering user interrupts. We place all the data in
memory to stress the system without storage I/O.

Implementation. We implemented both PreemptDB and base-
lines (described later) on top of ERMIA [24] described in Section 2.2.
Originally, ERMIA does not allow measuring scheduling latency
as workload generation is piggybacked to worker threads: each
worker thread repeats the cycle of generating a transaction, pro-
cessing it, then moving on to the generation and processing of next
transaction. To properly measure scheduling latency, we developed
a benchmark driver that decouples workload generation and exe-
cution. Specifically, we dedicated the scheduling thread to generate
transaction requests at fixed intervals (arrival interval). At each ar-
rival interval, the scheduling thread first generates and pushes new
low-priority transactions into the worker’s low-priority transaction
queue if it has empty slots. Then, the scheduling thread generates a
batch of high-priority transactions with the same start timestamp;
the batch size is set to the number of workers multiplied by the
high priority transaction queue size. The scheduling thread then
attempts to move these transactions into the lock-free high-priority
transaction queues of the workers in a round-robin fashion until
the the batch is depleted or the next arrival interval passes. For
PreemptDB, the scheduling thread also sends a user interrupt to the
worker immediately after pushing a batch of high-priority trans-
actions to its queue. The engine worker threads process requests
found on their queues according to their scheduling policies, which
we describe later.

Adjusting queue sizes and arrival intervals will allow us to sim-
ulate different maximum scheduling delays and workload mixes.
Unless other specified, we use 16 worker threads. For each worker,
we set the low-priority transaction queue size to 1, and the high-
priority transaction queue size to 4. The high-priority transaction
request batch size is 16×4 = 64 by default. The default arrival inter-
val is 1ms. We explore the impact of different number of workers,
high-priority queue/batch sizes and arrival intervals later.

Benchmarks and Metrics. We use a mixed workload based
on the TPC-C [46] and TPC-H [47] benchmarks to evaluate how
PreemptDB and baselines perform. Specifically, we use Q2 from

TPC-H as the long-running low-priority transaction, and NewOrder
and Payment from TPC-C as the short-running high-priority trans-
actions. This allows us to simulate scenarios where the system’s
resource is always dominated by long-running transactions (Q2),
but short-running transactions (NewOrder and Payment) that re-
quire immediate attention for low scheduling latency may arrive
following a certain arrival rate. We set the workload to use an
equal number of warehouses as the number of threads, and fol-
low the TPC-C specification to let each transaction to use a home
warehouse with 15% of chance of using a remote warehouse. Like
prior work [24], our benchmark code directly invokes the storage
engine’s C++ interfaces, without SQL parsing, networking and op-
timizer overheads to focus on scheduling mechanisms and policies.
These create workloads with low logical contention, putting more
pressure on the physical layer (including the scheduling subsys-
tem), therefore allowing us to focus on scheduling overheads. Each
experiment runs for 30 seconds and we report both throughput
across varying numbers of threads and latency at the 50, 90, 99 and
99.9 percentiles.

Competing Methods.We test three scheduling methods below.

• Wait: Baseline scheduling policy with no preemption or cooper-
ative scheduling.

• Cooperative: Cooperative scheduling which voluntarily yields
at hard-coded locations in the storage engine code.

• PreemptDB: Preemptive scheduling using user interrupts to allow
high-priority transactions to interrupt low-priority transactions.

For fair comparison, all policies are implemented in PreemptDB
codebase. Under Wait, transactions are processed from beginning
to end without preemptive or cooperative scheduling. Each worker
thread starts with the low-priority transaction queue to run Q2.
After concluding a transaction, it checks both queues and picks a
high-priority transaction if it is present. As a result, high-priority
transactions could be generated while Q2 is running and thus get
delayed until the current Q2 is concluded. Moreover, Wait will
attempt to exhaust all the high-priority transactions first, before
executing the next Q2 from the low-priority queue.

To implement Cooperative, we instrumented Wait code so that
the worker thread will yield and check the high-priority queue
after having performed a predefined number of record read opera-
tions. Like Wait, the worker thread will process all the high-priority
NewOrder and Payment transactions found in the queue without
interruption before switching back to continue executing the origi-
nal transaction (Q2). Such context switching is also implemented
using pcontext and the swap_context primitive described in Sec-
tion 4. Unless otherwise specified, we set Cooperative to yield
after accessing every 10,000 records, denoted as the yield interval;
we explore the impact of it later. Our implementation Cooperative
represents a plausible cooperative scheduling settings where the
system maintains a counter at the storage engine interfaces and
yield regularly at a fixed interval.

PreemptDB follows the same benchmarking design, but allows
the scheduling thread to issue user interrupts once a high-priority
transaction is generated and uses the starvation mechanism to
prevent starving Q2. Note that in most of the experiments, we test
the system with a light mix of high-priority transactions, which do
not impact the amount of CPU cycles on Q2 significantly. Therefore,
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Figure 8: Standard TPC-C throughput with and without user
interrupt mechanisms. The slowdown is minuscule, showing
the low overhead of user interrupt and PreemptDB’s preemp-
tive scheduling mechanisms.
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Figure 9: Scalability under different scheduling policies and
the mixed workload. All variants scale well and PreemptDB
maintains the high throughput compared to baselines.

we set the starvation threshold to 100 by default. In Section 6.4, we
will showcase the effectiveness of starvation prevention using a
workload settings that overload the system.

6.2 Overhead and Scalability of User Interrupts
The main goal of PreemptDB is to reduce the tail latency of high-
priority transactions via preemptive scheduling enabled by user
interrupts. Compared to classical solutions, using user interrupts
to enable preemptive scheduling requires adding additional mech-
anisms to monitor incoming (high priority) requests and subse-
quently handle interrupts timely. For this to work well, it is impor-
tant to ensure that (1) the schedulingmechanism itself is lightweight
enough and (2) existing advantages such as throughput and scala-
bility prior systems tried hard to achieve—often at the cost of tail
latency—are (almost) unaffected.

We quantify the overhead of such additional mechanisms under
short transactional workloads. In particular, we run the original
TPC-C benchmark with all transactions begin sent as low-priority
transactions. Meanwhile, the scheduling thread will still periodi-
cally wake up and interrupt worker threads without sending any
high-priority transaction requests. This allows us to highlight user
interrupts as pure overhead. As shown in Figure 8, the overhead
is still minuscule with only ∼ 1.7% reduction in throughput. The
reason is that the user interrupts overload is extremely low and all
workers will always immediately switch back to the main context
due to not having any high-priority transaction request.
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Figure 10: End-to-end latency of NewOrder (top) and Q2 (bot-
tom). Without preemption, Wait exhibits up to ∼30× higher
tail latency than PreemptDB which both lowers NewOrder la-
tency and maintains Q2 latency. Cooperative can lower tail
latency but performs even worse than Wait at 50 percentile
due to inaccurate tuning.

Under our actual target mixed workload, Figure 9 shows the
throughput of the three types of transactions in the mix under vary-
ing core counts. As expected, all the variants scale well andmaintain
high throughput with expected transaction mix breakdown.

These results validate that overall, user interrupts are lightweight
and PreemptDB does not trade off throughput for latency. Hence, we
explore latency profiles of these variants in the rest of this section.

6.3 Effectiveness of Lightweight Preemption
Our first latency experiment compares the end-to-end latency of
NewOrder, Payment and Q2 under different scheduling variants,
following the experimental setup in Section 6.1. We obtained similar
results for NewOrder and Payment showing the same trend, so we
focus on NewOrder and Q2 here.

Figure 10(top) shows the latency of NewOrder under 16 threads
and different scheduling variants. PreemptDB can significantly lower
latency by 88–96% at different percentiles over Wait, as Wait has
high queuing delay (consequently, high end-to-end latency) while
PreemptDB can respond timely within a fewmicroseconds to a high-
priority NewOrder transaction. The second baseline, Cooperative,
which periodically checks the high-priority queue for pending trans-
actions while executing Q2, and yields if a high-priority transaction
is present, presents even worse latency at 50 percentile (∼55% and
1300% higher than Wait and PreemptDB). The reason is that the
default yield interval (10,000) is too infrequent to allow a worker
to start a high-priority transaction timely most of the time. It does,
however, allows a reduction in tail latency at 90–99.9 percentile as
it may occasionally yield shortly after a high priority transaction
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becomes available. Nevertheless, PreemptDB consistently has much
lower latency than Cooperative at all percentiles.

For Q2 in Figure 10(bottom), PreemptDB maintains similar la-
tency to that of Wait, thanks to the low overhead of user interrupts.
In contrast, Cooperative presents higher 99.9 percentile latency
for Q2 due to yield operations.

The above results highlight the effectiveness of preemption in
PreemptDB without too much tuning requirements. In contrast,
Cooperative must be tuned carefully and often in an unrealistic
manner: a high yield interval can lead to high latency for high-
priority transactions, but a low yield interval may introduce non-
trivial overheads for low-priority transactions. Figure 11 quantifies
this effect by presenting the throughput (top) and latency (bottom)
under different yield intervals. In addition to Cooperative, we eval-
uated a handcrafted variant of it by carefully inspecting Q2 logic,
profiling its performance, inserting yield operations at the “right”
locations and tuning for a suitable yield interval. In this specific
case, we inserted the yield right outside the nested query block of
Q2 and only does so for every 1000 nested query block executed. As
shown in the figure, Cooperative (Handcrafted) behaves com-
parably to PreemptDB under our target workload mix. Nevertheless,
this would require DBMS developers to insert yield operations in-
side the system strategically such that the amount of CPU cycles
between every two yields are roughly the same while not being
too frequent. In other words, the DBMS must be customized specif-
ically for a particular workload and target tail latency profile. Such
strategic location of yields are usually impossible to find, especially
in systems with user-defined functions, I/O, or skewed joins. Even
if it exists as in our case, it is unrealistic to expect a database sys-
tem developer to have such knowledge in advance. And thus, the
handcrafted Cooperative policy is prohibitively expensive or even
impossible to realize in practice.

To summarize, compared to Cooperative and Wait methods,
PreemptDB can quickly respond to high-priority requests without
negatively affecting the latency of low-priority transactions. It reli-
ably delivers low scheduling latency for high-priority transactions
without requiring sophisticated tuning, making it practical.

6.4 Effectiveness of Starvation Prevention
As previously discussed, the workers may constantly execute high-
priority transactions, starving low priority transactions, if we allow
PreemptDB to preempt low-priority transactions without restric-
tions. To test such scenario, we increase the high-priority trans-
action queue size to 100 and we send 1600 high-priority transac-
tions across all 16 workers every 1 millisecond. We then compare
PreemptDB with different starvation threshold and the Wait policy.
As shown in Figure 12, the Wait policy suffers from starvation of Q2:
its throughput drops from about 9.14 kTPS (Figure 9 where we only
send 64 high-priority transactions per 1 millisecond) down to only
0.42 kTPS, with the latency increased from 3.62 ms to 560 ms at 99
percentile. Similarly, when the starvation threshold of PreemptDB
is set to 100, which effectively disables the starvation prevention
mechanism, PreemptDB also witnesses similar throughput decrease
and latency increase of Q2. By lowering the starvation threshold,
we can limit the percentage of CPU cycles spent on the high prior-
ity transactions and thus cause less starvation of Q2 at the cost of
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Figure 11: Yield interval vs. throughput (top) and latency
(bottom). Yielding too frequently (e.g., once per record access)
can improve high-priority transactions (left), but negatively
impact low-priority Q2 (right). Handcrafting Cooperative
could give desirable behaviors similar to PreemptDB’s for both
types of transactions but has to be handcrafted for a specific
workload, which is unrealistic and not always possible.

lower throughput and higher latency of high-priority transactions.
For instance, we can achieve a more balanced performance with a
starvation threshold of 0.75, where the high-priority transaction
NewOrder’s latency at 99 percentile is 2.59𝑚𝑠 while Q2’s through-
put is maintained at 1.49 kTPS. On the other extreme, if we set the
starvation threshold to 0, which prevents preemptive context to
execute prioritized transactions, PreemptDB can achieve the highest
possible throughput of 9.33 kTPS for Q2 at the cost of significantly
increased tail latency for NewOrder. We also want to note that,
under such a high system load, the p50 latency of PreemptDB and
Wait with starvation threshold 1 are similar, indicating a very low
overhead of our preemption mechanisms regardless of system load.
Usually, the user needs to adjust the starvation threshold based on
their need of the transaction latency and throughput profiles, and
we leave the automatic tuning of this threshold for future work.

6.5 Robustness under Varying Arrival Intervals
Our experiments so far have used a fixed arrival interval of 1𝑚𝑠 for
high-priority transactions. We further stress test the system with
varying arrival intervals to show PreemptDB can reduce scheduling
latency under varying load of high-priority transactions. Figure 13
shows the geometric mean of end-to-end latency of the low-priority
Q2 and the high-priority NewOrder under arrival rates of 50𝜇𝑠 to
50𝑚𝑠 . Corroboratingwith the results from previous experiments, Q2
latency under Wait, Cooperative and PreemptDB remain similar
across all arrival intervals. As arrival interval decreases (i.e., the
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Figure 12: Throughput and 99 percentile latency of New-
Order and Q2 at different starvation thresholds.
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Figure 13: Geomean latency with varying arrival intervals.
Higher intervals indicate the system is less overloaded by
NewOrder, leading to lower Q2 latency. Compared to base-
lines, PreemptDB is robust and exhibits low latency for high-
priority NewOrder regardless of arrival rates.

system becomes more loaded with high-priority transactions), Q2
latency increases as the system spends fewer CPU cycles on it.

However, the latency of high-priority transactions differs sig-
nificantly between PreemptDB and the two baselines. Under larger
arrival intervals (lighter high-priority transaction load), Wait and
Cooperative have 24.7× and 18.7× higher latency for the high-
priority transactions compared to PreemptDB. The gap becomes
smaller with smaller arrival intervals (heavier high-priority trans-
action load). The reason is that both Wait and Cooperative will
exhaust the high-priority queue when it finishes or yield from a
transaction, so they can benefit from having a constant stream
of high-priority short-running transactions to process them more
timely. Nevertheless, Wait and Cooperative both still have about
3.8× higher latency than PreemptDB, even in the most extreme case
with the arrival interval of 50𝜇𝑠 . These results show that PreemptDB
is robust under varying arrival intervals and transaction load.

7 RELATEDWORK
Our work is most related to non-preemptive and cooperative sched-
uling in DBMSs, and scheduling issues in operating systems. Note
that we differentiate from concurrency control protocols (which
are also often referred to as “scheduling” in database literature).

Non-Preemptive DBMS Scheduling in DBMSs. Since pre-
emption was previously deemed unsuitable [6] and could lead to
starvation issues for low-priority transactions [32], most work in
this category attempts to optimize the order of issuing transactions
based on metrics such as priority. PreemptDB mitigates these issues
by leveraging recent user interrupts and optimistic concurrency.
SMF [9] greedy selects the next transaction to run based on the
one that would lead to the smallest increase in overall execution
time. Wagner et al. [49] split each query into morsels, and use a
self-tuning stride scheduler to adaptively allocate resources to opti-
mize tail latency. Psaroudakis et al. [43] schedule tasks by making
it NUMA-aware to enhance memory locality. It focuses more on
improving throughput rather than reducing latency. Polaris [54]
augments OCC with a lightweight reservation mechanism to op-
timize high priority transactions. Compared to preemption-based
PreemptDB, a common issue in these approaches is that they cannot
respond to incoming high-priority transactions promptly. Neverthe-
less, some of them could be potentially combined with PreemptDB,
e.g., to further optimize data placement in NUMA environment,
which we leave as future work.

Cooperative DBMS Scheduling. Much recent work has de-
vised cooperative scheduling to hide latency incurred by memory
accesses. MxTasks [35] distributes tasks to task pool based on the
data dependencies and serialize tasks in the task pool to reduce con-
tention. CoroBase [15] and MosaicDB [16] use coroutines [21] to
implement software prefetching and asynchronous I/O with hard-
coded yield points in database engine. Contrary to PreemptDB’s
goal which is to reduce transaction latency, these proposals are
more like to trade latency for throughput by aggressive batching to
saturate memory or SSD bandwidth. It is interesting future work
to add preemption to such systems for the benefits of both latency
hiding and low scheduling latency.

OS Scheduling. The systems community has proposed multiple
approaches to lower tail latency via new scheduling mechanisms
and policies. Caladan [14] uses a dedicated scheduling core and a
custom kernel module to quickly respond to resource contention,
such as memory bandwidth or cache pressure. PreemptDB can
also implement such features using a monitoring thread to col-
lect and act on the necessary information using user interrupts.
Shinjuku [22] leverages hardware virtualization features to allow
very fast preemption and prioritization. LibPreemptible[29] is a
preemption framework also based on user interrupt. However, like
other work in this category, it is designed for general applications,
whereas PreemptDB targets database systems and is designed with
mechanisms and policies specific to database use cases.

8 CONCLUSION
Modern database applications increasingly mix short, high-priority
transactions with long, low-priority analytics. Traditional schedul-
ing approaches such as FIFO-based and cooperative methods fall
short on these workloads by inducing long scheduling latency for
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high-priority transactions. The former allows analytical transac-
tions to monopolize CPU cycles, while the latter can be very hard
to tune and maintain. The potential of preemptive scheduling has
been left unexplored due to the high cost of software interrupt
delivery and assumptions of pessimistic concurrency prevalent in
traditional storage-centric systems. However, neither is still the
case today with new userspace interrupt primitives in modern x86
CPUs and the wide adoption of optimistic concurrency. Based on
these observations, we propose PreemptDB, a database engine that
allows efficient pure-userspace preemption for mixed workloads.
PreemptDB proposes an efficient transaction context switching
mechanism and scheduling policies based on preemption. Com-
pared to prior approaches, PreemptDB is robust against workload
patterns, and reduces scheduling latency and end-to-end tail latency
by up to 96%, while maintaining high overall throughput.
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