
Analytics Are Heavy. The DBMS Is Busy.
When Will My Mission-Critical Transaction Start Running?

Jiatang Zhou
Simon Fraser University

jiatangz@sfu.ca

Kaisong Huang
Simon Fraser University

kha85@sfu.ca

Zhuoyue Zhao
University at Buffalo
zzhao35@buffalo.edu

Dong Xie
The Pennsylvania State University

dongx@psu.edu

Tianzheng Wang
Simon Fraser University

tzwang@sfu.ca

ABSTRACT
Conventional non-preemptive scheduling strategies struggle to
meet the latency requirements of mixed workloads: low-priority,
long-running analytics can dominate CPU cores while short, high-
priority transactions wait a long time to be scheduled. Although
preemptive scheduling appears to be a natural solution, it has long
been discouraged in DBMSs by conventional wisdom due to con-
cerns about deadlocks and interrupt-handling overheads. In this
demonstration, we highlight that this is no longer the case with Pre-
emptDB, a modern memory-optimized DBMS that we built around
(1) optimistic concurrency and (2) userspace interrupts that recently
became available in x86 CPUs. PreemptDB proposes user-interrupt-
assisted context switching to renew preemptive scheduling in mod-
ern DBMSs. Through a set of demonstration scenarios, we show
that preemptive scheduling is practical and prioritizes high-priority
transactions while preserving throughput and fairness.

PVLDB Reference Format:
Jiatang Zhou, Kaisong Huang, Zhuoyue Zhao, Dong Xie, and Tianzheng
Wang. Analytics Are Heavy. The DBMS Is Busy. When Will My
Mission-Critical Transaction Start Running?. PVLDB, 18(12): 5299 - 5302,
2025.
doi:10.14778/3750601.3750656

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/sfu-dis/preemptdb.

1 INTRODUCTION
As database applications become increasingly heterogeneous [5, 8],
modern database systems need to handle workloads where transac-
tions of vastly different lengths and priorities coexist. In particular,
short, high-priority (e.g., mission-critical) transactions may co-exist
with long, low-priority analytics. For example, in e-commerce sce-
narios, heavyweight operational reporting can run concurrently
with short, latency-sensitive sales transactions. The former can
identify sales trends using the most up-to-date sales data for better

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750656

decision making in real time, while the latter is the core of the
application.

Scheduling these two types of transactions in one system, how-
ever, is non-trivial as they have conflicting desiderata. On the one
hand, users prefer for short, high-priority transactions to be admit-
ted and executed immediately by the DBMS. On the other hand,
long analytics read much data and therefore prefer to distribute
work across all available CPU cores for faster execution. As a result,
without special care—for example by simply employing a first-
in-first-out (FIFO) scheduling policy as most systems do—once a
long-running analytics query has started to run, it can monopolize
the CPU (to accelerate itself) and subsequently delay short but
high-priority transactions.

Beyond simple FIFO scheduling, it is natural for DBMS users
to pause (i.e., preempt) currently running long transactions to
free up CPU resources for higher-priority transactions. However,
preemption-based scheduling in DBMSs was discouraged [1] due
to issues such as deadlock handling and scheduling overheads. For
example, in traditional DBMSs that use locking-based concurrency
control, long-running transactions may hold many and/or coarse-
grained locks, preempting which may not allow conflicting short
transactions to proceed anyway. Preemption was also typically
done using traditional interrupts which cross user-kernel space
boundaries, adding more overhead. Some systems therefore settle
on cooperative scheduling [2, 3, 7] that modifies the workload or
engine code to introduce specific yield points. This way, a long-
running transaction can voluntarily give up the CPU so that other
(high-priority) transactions may have a chance to be scheduled.
The drawback of this approach is that such yield points have to be
hard coded and for the best performance, one must co-design the
application and the DBMS, which is often impractical.

Advances in recent memory-optimized DBMSs and hardware
have made preemption practical in DBMS. First, we note that these
systems rely on optimistic and/or multi-versioned concurrency
control, instead of traditional pessimistic locking. This means long-
running analytics will not be holding many locks for extended
periods, and preempting them would not result in as many aborts
as in traditional DBMSs. Second, recent x86 CPUs (e.g., since Intel
4th Generation Xeon Scalable, formerly known as Sapphire Rapids)
offer userspace interrupts (user interrupt or uintr) [6] which allow
interrupts to be sent, delivered and handled purely in the userspace.
These two trends collectively mitigate the previous concerns on pre-
emptive scheduling in DBMSs. Following these observations, our
recent work PreemptDB [4] proposed newmechanisms and policies

https://doi.org/10.14778/3750601.3750656
https://github.com/sfu-dis/preemptdb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750656


for preemptive scheduling. PreemptDB uses lightweight user inter-
rupt to handle high-priority jobs with low latency, even when the
CPU is heavily occupied with OLAP tasks. PreemptDB implements
multiple transaction contexts for each thread, where each context
has its execution states (register states, call stack) and transaction
metadata (e.g., current transaction ID), and can perform lightweight
context switches among contexts. When a high-priority transaction
arrives, it issues a user interrupt to perform a lightweight context
switch and to achieve efficient task pause/resume without crossing
kernel and userspace boundaries.

In this demonstration, we highlight the design and effectiveness
of PreemptDB (and more generally, advocate the idea of preemptive
scheduling) by comparing it with the aforementioned traditional
approaches and baselines. We do so under a typical hybrid trans-
actional and analytical processing (HTAP) scenario with regular,
long-running, low-priority reporting queries and ad-hoc short but
high-priority transactions. Next, we first lay out the necessary
background on transaction scheduling and user interrupt. We then
introduce PreemptDB, followed by our demonstration scenarios.

2 TRANSACTION SCHEDULING POLICIES
In many traditional database systems, the non-preemptive FIFO
policy (denoted as wait) is the default. It is easy to implement but
requires high-priority transactions to wait until all tasks arrived
earlier have finished. Thus, the user could experience high latency
and high variance in end-to-end transaction latencies. For example,
in Figure 1, a high-priority transaction (lasting 1 time unit) that
arrives while a long-running transaction (12 time units) is running
(at 𝑡𝑖𝑚𝑒 = 4) can experience very high end-to-end latency (9 time
units) as it cannot start until time unit 12when the long transaction
finishes.

One way to reduce such high latency is to implement a coopera-
tive yield scheduling policy, i.e., to have threads voluntarily give
up CPU and switch between tasks. This can be done by strategically
inserting yield points where the system checks whether it should
switch to a waiting high-priority transaction. This opportunistically
improves the end-to-end latencies of high-priority transactions—
the more frequently the system checks for yield opportunities, the
sooner a high-priority transaction can be scheduled to run. How-
ever, it does not fundamentally solve the problem because yielding
is limited to specific yield points, and it is not possible to switch
before reaching them. As a result, there could still be high variance
and long tails in end-to-end latencies. Continuing the example in
Figure 1, suppose the system yields every 6 time units in a long
transaction. Depending on the arrival time, a short, high-priority
transaction can still experience delays of 0 to 6 time units. The first
short transaction still needs to wait for 4 time units. A possible
mitigation is to increase yield frequency. However, as the num-
ber of yield points increases, each yield is an overhead that takes
additional CPU cycles, thus decreasing overall throughput. The
locations of such yield points are also highly workload dependent.
That is, one needs to know precisely the execution time of a trans-
action and strategically insert yield points inside transaction logic
or the DBMS, requiring co-designing the DBMS and application.
It is then becomes challenging (if not impossible) for such yield

Low-priority transaction

High-priority transaction

Yield opportunity

Non-Preemptive FIFO

Cooperative

Preemptive

0 1 2 3 4 5 6 7 8 10 11 129 13 14 15 16

Time

T High-priority transaction arrival

Figure 1: Compared to FIFO/cooperative scheduling, preemp-
tion can prioritize and maintain high overall throughput [4].

policies to achieve both high throughput and low latency for high
priority.

The ideal policy is preemptive, which allows preempting low-
priority transactions as high-priority transactions on demand. As
shown in Figure 1, a high-priority transaction can almost immedi-
ately scheduled and executed when it arrives at time 4, leading to an
end-to-end latency of 1. However, as Section 1 states, traditionally
it is avoided as the overhead of kernel/user-space switch in regular
interrupt mechanisms could lead to significant drop in throughput,
and the switch overhead can also be significant for in-memory
transactions with 𝜇s-level execution latencies. Preemptive execu-
tion can also incur deadlocks that would cancel out the benefits.
Therefore, most DBMSs have avoided preemption but opted for
cooperative scheduling [1].

The emergence of lightweight user interrupt on recent x86 CPUs
and changes in the design principles of modern DBMSs havemade it
possible to (re)introduce preemption into DBMSs. In the remaining
sections, we describe our recent work PreemptDB [4] that realizes
this idea and demonstration scenarios to showcase its effects.

3 PREEMPTDB
PreemptDB is amemory-optimized OLTP engine that leverages user
interrupt for preemptive scheduling. Figure 2 shows an overview of
PreemptDB. In addition to worker threads which are responsible for
executing transaction logic and performing commit processing, Pre-
emptDB additionally employs a scheduling thread that implements
the preemptive scheduling policies (described below), including
transaction admission, making scheduling decisions and sending
preemption interrupts. What is unique in PreemptDB is that each
worker can have multiple interruptible transaction contexts, al-
lowing independent transactions to time-share the same thread or
CPU core. While the CPU core is executing in a context, it can be
preempted by a user interrupt (sent from the scheduling thread
upon receiving a high-priority transaction) and passively switch
to another context, or actively switch back to the preempted con-
text (performed at the end of a high-priority transaction to resume
execution of the previously interrupted transaction).

PreemptDB currently employs two contexts and two transaction
queues per worker thread, one for low-priority transactions and the
other for high-priority transactions. When the scheduling thread
receives a low-priority transaction, it will try to find an empty
slot in one of the worker thread’s low-priority transaction queue



Worker thread N

Worker thread 1

Transaction 
context 1

Scheduling thread

Transaction 
context 2

. . .

Low-priority queue

. . .

High-priority queue

User 
interrupt

Dispatch

1 3

1

2

4

. . .. . .

2

n Regular scheduling pathPreemptive scheduling pathn

Active low-priority Active high-priority

Low-priority 
transactions

High-priority 
transactions

Paused low-priority

Figure 2: PreemptDB Overview. Upon arrival of a high-
priority transaction 𝑇 , a scheduling thread 1 issues a user
interrupt to preempt and pause an in-progress low-priority
transaction 𝑆 . The worker thread then 2 switches to another
context to 3 run 𝑇 and 4 resumes 𝑆 after 𝑇 finishes.

in a round-robin fashion. When the scheduling thread receives
a high-priority transaction, it will try to find an empty slot in
one of the high-priority transaction queues, again in round-robin
fashion. Then it will push the transaction to the chosen queue,
but may immediately send a user interrupt to the chosen thread.
This effectively preempts and pauses a low-priority transaction if
it is running on that thread, and causes the thread to switch to the
high-priority context. As a result, a high-priority transaction may
be scheduled as soon as a user interrupt is delivered which takes
only ∼1 𝜇s [4]. Once scheduled for execution, the transaction will
execute on its assigned context; our current policy does not further
interrupt a high-priority transaction. Note that it is configurable
whether to immediately send a user interrupt for every high-priority
transaction (or for a batch periodically), or temporarily disable
preemption for starvation prevention purposes under high-priority
transaction surges in PreemptDB.

While the idea of preemption using user interrupt is straight-
forward, realizing it in a full-fledged DBMS engine is challenging.
Below we highlight two key challenges and key performance re-
sults; interested readers may refer to elsewhere [4] for more details.

Userspace Context Switch. PreemptDB supports both passive
(through interrupt) and active (through a function call) context
switching among contexts without needing to enter kernel space.
Different from OS kernel context switches, which by default only
needs to save general and flag register states (as typically Linux
OS kernel and modules are not allowed to use X87 floating point
registers and other extension registers such as SSE, AVX-2, etc.),
our context object needs additionally save the extended processor
states using xsave and xrstor instructions. Also, due to several

     





























  

  

 

  

  

 

  

  

 

Figure 3: Scalability under different scheduling policies.

p50 p90 p99 p999

nth Percentile

0

1

2

3

4

P
ri

or
it

iz
ed

N
ew

-O
rd

er
L

at
en

cy
(m

s)

0.45

2.44

3.27 3.39

0.70

1.62
2.04

2.41

0.05 0.08 0.10 0.11

p50 p90 p99 p999

nth Percentile

0

1

2

3

4

5
Q

ue
ry

2
L

at
en

cy
(m

s)

1.64

3.37
3.62 3.77

1.59

3.39
3.64

4.45

1.64

3.51 3.63 3.71

Wait Cooperative PreemptDB

Figure 4: End-to-end latency of high-priority New-Order
transaction with 16 worker threads.

nuances such as difference between the userspace interrupt handler
and regular function call in terms of call stack layout and return
instructions, PreemptDB has to specially design a unified stack
layout that works for both cases (as a preempted context can actively
switch back to the other and vice versa).

Single-Threaded Deadlocks. One pitfall of performing pre-
emption to switch contexts within the same thread is that they are
prone to single-threaded deadlocks (akin deadlocks in a single-core
multi-threaded system). If the current context holding some locks
and been preempted and switch to another context, and the new
context tries to acquire a lock that is held by the original context, a
single-threaded deadlock will result. To tackle this challenge, Pre-
emptDB relies on both optimistic and multi-version concurrency
control (MVCC) to minimize the lock usages, and a lightweight crit-
ical section mechanism to temporarily disable context switches for
deadlock prevention in the scenarios when we cannot avoid locks
(e.g., during transaction commit processing, or inside I/O syscalls).

Performance.We used a mixed TPC-H and TPC-C workload to
evaluated PreemptDB. We use TPC-H Query 2 (Q2) as the long, low-
priority transaction and TPC-C New-Order as short, high-priority
transaction. As shown in Figures 3–4, preemption in PreemptDB
provides similar throughput and scalability to non-preemptive poli-
cies (wait and yield) while providing substantially lower end-to-end
latency for high-priority transactions.

4 DEMONSTRATION PLAN
Our demo highlights PreemptDB’s ability to provide low end-to-end
latency for short, high-priority transactions under a high load of
long-running, low-priority transactions, as well as the effects of dif-
ferent scheduling policies. This is done by (1) a poster introduction
and (2) a live demo session.



Figure 5: Demonstration UI and workflow. After reviewing the workload setup (a), the user first starts the long TPC-H Q2
query (b), and then issues the short, high-priority transaction on demand using different scheduling policies (c). In addition to
individual run latency, we also show historical latency statistics (d).

4.1 Poster: Introduction
To prepare the audience for the necessary background, we will
set up a poster on the side that introduces our target scheduling
problem and the idea of PreemptDB. It will also give an overview
of our demonstration scenario, including the workload description
and hardware/software setup. The poster will also highlight key
results from PreemptDB presented earlier.

4.2 Live: Demo Session
We have set up a backend server to simulate an online warehouse
database based on a mix of TPC-C and TPC-H benchmarks. In this
workload, the user issues short, high-priority New-Order transac-
tions on demand as the system is running a long, low-priority Q2.
The ideal scenario is to maintain high throughput or stable execu-
tion time of Q2, while New-Order transactions should be scheduled
as soon as possible to ensure low end-to-end latency.

During the demo, we will run three instances of PreemptDB, con-
figured with the preempt, yield and wait policies for high-priority
transactions, respectively. These instances are hosted on our server
with two 32-core Intel Xeon Gold 6448H CPUs and 512 GB DDR5
main memory, running Ubuntu 22.04.4 LTS.

To make it easy for audience to experience the demonstration
scenario, we created a web-based UI (Figure 5) that connects to
the server backend. The UI explains the workload (a) and allows
the audience to issue different types of transactions under varying
scheduling policies (b–d). The user starts by enabling the heavy,
long-running Q2 query in Figure 5(b). This will quickly take up
all the CPU resources, i.e., making the DBMS busy. In the middle
part of the interface, the user can then choose to issue a short,
high-priority transaction under the specified scheduling policy. To

facilitate this, on the backend we start three different instances of
PreemptDB, each using a different policy (wait, yield or preempt).
The system then performs the transaction, and reports back the
latency of the high-priority transaction. The user can repeat these
operations and the UI further maintains cumulative statistics as
shown in Figure 5(d). Throughout the demonstration, we will refer
back to the poster setup earlier to explain the results obtained under
different scheduling policies.

REFERENCES
[1] M. J. Carey, R. Jauhari, and M. Livny. 1989. Priority in DBMS resource scheduling.

In Proceedings of the 15th International Conference on Very Large Data Bases (VLDB
’89). 397–410.

[2] K. Delaney and C. Freeman. 2013. Microsoft SQL Server 2012 Internals. Pearson
Education. https://books.google.ca/books?id=wK1CAwAAQBAJ

[3] Kaisong Huang, Tianzheng Wang, Qingqing Zhou, and Qingzhong Meng. 2023.
The Art of Latency Hiding in Modern Database Engines. Proceedings of the VLDB
Endowment 17, 3 (2023), 577–590.

[4] Kaisong Huang, Jiatang Zhou, Zhuoyue Zhao, Dong Xie, and Tianzheng Wang.
2025. Low-Latency Transaction Scheduling via Userspace Interrupts: Why Wait
or Yield When You Can Preempt? Proc. ACM Manag. Data 3, 6, Article 182 (2025).

[5] Guoliang Li and Chao Zhang. 2022. HTAP Databases: What is New and What is
Next. In Proceedings of the 2022 International Conference on Management of Data
(SIGMOD ’22). 2483–2488.

[6] Sohil Mehta. 2021. User Interrupts – A faster way to signal.
https://lpc.events/event/11/contributions/985/attachments/756/1417/User_
Interrupts_LPC_2021.pdf

[7] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
2017. Interleaving with coroutines: a practical approach for robust index joins.
Proc. VLDB Endow. 11, 2 (Oct. 2017), 230–242.

[8] Haoze Song, Wenchao Zhou, Heming Cui, Xiang Peng, and Feifei Li. 2024. A
survey on hybrid transactional and analytical processing. The VLDB Journal 33, 5
(2024), 1485–1515.

https://books.google.ca/books?id=wK1CAwAAQBAJ
https://lpc.events/event/11/contributions/985/attachments/756/1417/User_Interrupts_LPC_2021.pdf
https://lpc.events/event/11/contributions/985/attachments/756/1417/User_Interrupts_LPC_2021.pdf

	Abstract
	1 Introduction
	2 Transaction Scheduling Policies
	3 PreemptDB
	4 Demonstration Plan
	4.1 Poster: Introduction
	4.2 Live: Demo Session

	References

