
Easy Lock-Free Programming in
Non-Volatile Memory

Tianzheng Wang Justin Levandoski Paul Larson

The making of concurrent data structures

• With locks: one thread at a time

• Limited concurrency

• Deadlocks

• Relatively easy

2Easy Lock-Free Programming in Non-Volatile MemoryT. Wang, J. Levandoski, P. Larson

• Lock-free: use atomic instructions directly

• More concurrency, faster

• Higher CPU utilization

• Extremely difficult

Critical section Data races

Lock-free data structures

• Queues

• Hash tables

• Trees

• Linked lists and skip lists

. . .

Widely used in performance-critical systems

3Easy Lock-Free Programming in Non-Volatile MemoryT. Wang, J. Levandoski, P. Larson

+ many more . . .

Lock-free in persistent memory: more potential

• Fast performance, high CPU utilization

• Instant recovery

• Fewer layers: simplified persistence model/architecture

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 4

DRAM

Tree index

Persistent
memory

Previously: Now:

Sounds great, but not automatic

Single-level
(or with DRAM)

Lock-free programming: even harder in PM

• Inherits all the existing challenges in DRAM
• Race conditions

• Memory reclamation issues

• New challenges
• Volatile CPU caches (new)

• Recovery (new)

• Permanent memory leaks (new)

5Easy Lock-Free Programming in Non-Volatile MemoryT. Wang, J. Levandoski, P. Larson

Difficult and error-prone to deal with using hardware instructions

PM Cache

A

PM Cache

A

B

Thread 1 Thread 2

PM

A

B

Unreachable

Actual persisted
state:

Compare-and-swap (CAS)

Conceptually:

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 6

CAS(*address, expected, desired)
v = *address
if v == expected then

*address = desired
return v

Powerful, but limited to single 8-byte words

Example: doubly-linked list

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 7

B D

Insert C between B and D: CAS(B.next, D, C)

1

C

Example: doubly-linked list

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 8

B D

Insert C between B and D:

C

Intermediate state exposed to concurrent threads

Visible for
forward scan

Example: doubly-linked list

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 9

B D

Insert C between B and D:

C

CAS(D.prev, B, C)

2

May compete
with other

inserts

Many papers on devising lock-free doubly-linked lists

Inconsistent
list if crashes

Persistent multi-word CAS (PMwCAS)*

• Atomically changing multiple 8-byte words with persistence guarantee
• Either all specified updates succeed, or none of them

• Software-only

• Lock-free

• Based on a volatile MwCAS design [Harris+Fraser+Pratt 2002]
• We made it work on persistent memory

• With new necessary features on
• Guaranteeing persistence

• Recovery

• Persistent memory management

11Easy Lock-Free Programming in Non-Volatile MemoryT. Wang, J. Levandoski, P. Larson

* Easy Lock-Free Indexing in Non-Volatile Memory, ICDE 2018

The PMwCAS operation

• Application specifies words to change atomically, in a descriptor
• Following CAS interface for each word

• Issue (launch) the operation after adding all words

• Final result: either all words changed, or none of them

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 12

PMwCAS descriptor

. . .

Address 1 Expected 1 Desired 1

Address 2 Expected 2 Desired 2

Address 3 Expected 3 Desired 3

Status

Doubly-linked list with PMwCAS

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 13

B D

Insert C between B and D:

C

PMwCAS(desc)PMwCAS descriptor

&B.next D C

&D.prev B C
One step, C becomes atomically visible in
both directions

So how does it work exactly?

• PMwCAS algorithm

• Guaranteeing persistence
• Flush-upon-read – no logging needed

• Recovery

• Memory Management
• Preventing persistent memory leaks

• Integration with persistent memory allocator

• Epoch-based memory reclamation

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 14

So how does it work exactly?

• PMwCAS algorithm

• Guaranteeing persistence
• Flush-upon-read – no logging needed

• Recovery

• Memory Management
• Preventing persistent memory leaks

• Integration with persistent memory allocator

• Epoch-based memory reclamation

See paper for more details

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 15

PMwCAS algorithm

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 16

Phase 1
Install a pointer to descriptor on each word (using CAS)
Change to ‘failed’ status if any CAS failed
Otherwise change to ‘succeed’ status.

1. Persist entire descriptor

Phase 2
If Phase 1 succeeded, install new values
Otherwise roll back

2. Persist all modified words

3. Persist all modified words + set status
to ‘finished’ + flush status

Conflicting
threads will “help”

each other

Recovery

• Fixed-size descriptor pool
• Doesn’t need to be large, 1000s-10k is good

• Recovery = scan descriptor pool
• Roll forward ‘succeeded’ PMwCAS operations

• Roll back failed ones

• Application-transparent recovery
• Application transforms data structure from one consistent state to another

• No application-specific code for recovery needed!

• Volatile and persistent versions use the same code (turn persistence on/off)

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 17

Case studies and adoptions

• Two non-trivial data structures, focusing on database index structures

• Bw-Tree
• Lock-free B+-tree in Microsoft SQL Server Hekaton

• See details in paper

• Doubly-linked skip list

• Bz-Tree [Arulraj et al. VLDB 2018]
• A new B+-tree for persistent memory

• By Microsoft Research

• Other institutions using PMwCAS now for their own research

18Easy Lock-Free Programming in Non-Volatile MemoryT. Wang, J. Levandoski, P. Larson

Evaluation

• Quad-socket, 8-core Xeon E5-4620 clocked at 2.2GHz
• 32 physical cores, 64 hyperthreads in total

• 256KB/2MB/16MBL1/L2/L3 caches

• Persistent memory emulation
• 512GB DRAM – assuming NVDIMM-N

• CLFLUSH (SFENCE + CLFLUSHOPT)
• Upper bound overhead

• SFENCE + CLWB emulation with injected delays
• Calibrated using non-temporal writes

• Synthetic workloads
• Insert/delete/search/scan on index structures (Bw-tree and doubly-linked skip list)

• 20% write + 80% read (80% search + 20% range scan)

19Easy Lock-Free Programming in Non-Volatile MemoryT. Wang, J. Levandoski, P. Larson

PMwCAS: easy implementation + fast

• Code almost as mechanical as lock-based (check out repo)

• < 10% overhead under realistic workloads (80% read + 20% write)

T. Wang, J. Levandoski, P. Larson Easy Lock-Free Programming in Non-Volatile Memory 20

Bw-Tree Doubly-linked skip list

Summary

• Lock-free programming is already very hard in volatile memory

• Even harder in persistent memory
• Performance

• Persistence and recovery

• Race conditions

• PMwCAS: primitive for easy lock-free programming in persistent memory
• Code almost as simple as lock based – everything covered by PMwCAS

• Transparent recovery – no application-specific code needed

Č Use the same code for both persistent and volatile versions

21

Thank you!

Now open source at:
https://github.com/Microsoft/pmwcas

Easy Lock-Free Programming in Non-Volatile MemoryT. Wang, J. Levandoski, P. Larson

https://github.com/Microsoft/pmwcas

