
Easy Lock-Free Programming in Non-Volatile Memory ∗

Tianzheng Wang †
Simon Fraser University

tzwang@sfu.ca

Justin Levandoski †
Amazon Web Services

jjl@amazon.com

Per-Åke Larson
University of Waterloo
plarson@uwaterloo.ca

Overview
Many systems use lock-free data structures (e.g., queues, B+-trees)
to achieve high performance. Byte-addressable, non-volatile mem-
ory (NVRAM) such as Intel 3D XPoint further adds persistence to
these data structures on the memory bus, potentially enabling de-
sired features like instant recovery and lower cost while maintaining
high performance. For example, a database index stored in NVRAM
can save much index rebuild time and thus reduce service downtime.
Lock-Free Programming in NVRAM is Harder. While highly
concurrent, lock-free data structures are notoriously hard to build as
they usually need to atomically modify multiple 8-byte words (e.g.,
B+-tree splits), but the hardware only provides atomic instructions
such as compare-and-swap (CAS) that work only on single 8-byte
words. Lock-free programming in NVRAM is even harder: the same
instructions can be used, but since the CPU cache is volatile, there
has to be a persistence protocol in place so that the data structure
recovers correctly after a crash. Such persistence protocols tend to
be data structure specific, complex and error-prone to implement.
Solution: Persistent Multi-Word Compare-and-Swap (PMwCAS).
PMwCAS is an efficient software primitive that allows applications
to atomically change multiple arbitrary 8-byte NVRAM words in a
lock-free manner. It exhibits the following attractive features:
• Persistence Guarantees. PMwCAS guards against tricky bugs in

NVRAM programming by ensuring that readers only see persisted
values without any expensive logging operations.
• Transparent and Instant Recovery. A big advantage of PMwCAS

is that users can completely avoid application-specific recovery
code: PMwCAS transparently recovers the data structure to a con-
sistent state by completing or rolling back in-flight operations.
• Simpler Code. The implementation of a lock-free data structure

using PMwCAS is almost as mechanical as a lock-based one.
• Simpler Memory Management. Extra care must be taken since

any leak will be permanent. PMwCAS allows data structures to
easily piggyback on its memory recycling protocol to ensure safe
memory reclamation after a PMwCAS operation or a crash.
• Robust Performance. PMwCAS maintains robust performance

even under high contention. Compared to PMwCAS, hardware
transactional memory is very vulnerable to high contention.

We have used PMwCAS to adapt the Bw-tree [3] (a lock-free B+-tree
in SQL Server) and a doubly-linked skip list for NVRAM. PMwCAS
is also used by the BzTree [1], a new NVRAM B+-tree. PMwCAS
exhibits 4–6% overhead under realistic workloads. PMwCAS is open
source at https://github.com/Microsoft/pmwcas.

1. Persistent Multi-Word Compare-and-Swap
We base PMwCAS on the volatile MwCAS by Harris et al. [2] and
enhance it to work correctly in NVRAM. Like MwCAS, PMwCAS is
built around the concept of descriptors and employs a two-phase
execution approach. Compared to MwCAS, PMwCAS further supports
persistence, memory management and recovery in NVRAM.

1.1 Application Interfaces
Each PMwCAS operation uses a descriptor that specifies the memory
words to change and tracks the operation’s status. Applications use
the following APIs to conduct PMwCAS operations.
∗Published in ICDE 2018 [4]: www.cs.sfu.ca/~tzwang/pmwcas.pdf.
†Work performed while at Microsoft Research.

• AllocateDescriptor(callback): Allocate a PMwCAS descrip-
tor. The user can provide a callback function for recycling memory
pointed to by the words in the PMwCAS operation.
• Descriptor::AddWord(address, expected, desired):

Specify a word to be modified. The caller provides the address of
the word, the expected value and the desired value.
• Descriptor::ReserveEntry(addr, expected, policy):

Same as AddWord, except the new value is left unspecified; re-
turns a pointer to the new value field so it can be filled in later.
Memory referenced by old value/new value will be recycled
according to the specified policy (described later).
• Descriptor::RemoveWord(address): Remove the word pre-

viously specified as part of the PMwCAS.
• PMwCAS(descriptor): Execute the PMwCAS and return true if

succeeded, false otherwise.
• Discard(descriptor): Cancel (abort) the PMwCAS (only valid

before calling PMwCAS).

To perform a PMwCAS, the application first allocates a descriptor
and invokes AddWord or ReserveEntry once for each word to be
modified. RemoveWord can be used to remove a previously added
word. AddWord and ReserveEntry ensure that target addresses are
unique and return an error if they are not. After the descriptor is
persisted, calling PMwCAS executes the operation, while Discard
aborts it. A failed PMwCAS will leave all target words unchanged.

1.2 PMwCAS Design
Descriptor. Each PMwCAS operation uses a descriptor that summa-
rizes the details of the operation. As Figure 1(right) shows, a descrip-
tor includes a status variable that tracks the operation’s progress,
a reference to an optional callback function, and an array of word
descriptors. The callback is invoked when the descriptor is no longer
needed and typically frees memory objects that are no longer needed
after the operation has completed. A word descriptor contains the
target word’s address, expected and new values, and a pointer to the
containing PMwCAS descriptor (0x100 in our example). Each word
is also associated with a memory policy that indicates whether the
new and old values are pointers to memory objects and, if so, which
objects are to be freed on completion (or failure) of the operation.
In the example, two words use the FreeOne policy that will free the
memory pointed to by the old (new) value field if the PMwCAS suc-
ceeds (fails). Our ICDE paper [4] has a full description of different
memory policies.
Word Type Identification. We leverage the fact that modern CPUs
use 48 (out of 64) bits for addressing and dedicate three vacant bits
to indicate whether a word contains a pointer to a word descriptor, a

Undecided

0x10010

Word 0

addr1 old1 new1 0x100
addr2 old2 new2 0x100

1

0x12001 0

old300 0 addr3 old3 new3 0x100

PMwCAS Dirty

Target fields PMwCAS descriptor at address 0x100

None
FreeOne
FreeOne

Count: 3 Callback

Word descriptors:

Figure 1: Flag bits employed in target words (left) and an example
PMwCAS descriptor (right) for changing three NVRAM words.

https://github.com/Microsoft/pmwcas
http://www.cs.sfu.ca/~tzwang/pmwcas.pdf

pointer to a PMwCAS descriptor, and whether the value might not be
persisted (the dirty bit), as shown in Figure 1(left).
Two-Phase Execution. With a descriptor that is filled out and
persisted, the PMwCAS operation executes in two phases:
• Phase 1: Install a descriptor pointer in all target words using CAS.
• Phase 2: If Phase 1 succeeded, install the new values in all target

words. If Phase 1 failed, then reset any target word that points to
the descriptor back to its old value.

If any phase fails, the PMwCAS operation will roll back and the target
words will be recovered to carry their original values. In effect,
Phase 1 attempts to “lock” each target word. We keep all word
entries in the descriptor sorted on the address field, so deadlocks
cannot occur as all threads will install descriptors in the same order.

A thread may read a word that stores a descriptor pointer instead
of a “regular” value. If so, the thread helps complete the referenced
PMwCAS before continuing. Following a flush-on-read principle, if a
thread sees a word with a set dirty bit, it must first flush the word
using CLWB or CLFLUSH before accessing the word; the thread then
resets the dirty bit using a CAS in case another thread is trying to
modify the word and set the dirty bit. Flush-on-read ensures that a
write is persisted in NVRAM before any dependent reads; this way,
we guarantee correct recovery of the data structure without logging.
Transparent Recovery. With PMwCAS, the user can completely
avoid application-specific recovery code as PMwCAS can transpar-
ently recover the data structure to a consistent state. We maintain
a pool of descriptors in an application-specified NVRAM location.
Upon restart, we scan the descriptors in the pool and process each
in-flight operation by either completing or rolling back it depending
on its status. Correct recovery requires that the descriptor be per-
sisted before entering Phase 1. Descriptors are reused and we only
need to maintain a small descriptor pool (a small multiple of the
number of worker threads). Thus, scanning the pool during recovery
is not time consuming.
Memory Management. PMwCAS recycles descriptors using epoch-
based reclamation. The application can piggyback on this protocol
using callbacks that will be invoked once it is determined (by the
recycling policy specified through ReserveEntry) that memory
behind each pointer is safe to be freed. For example, one can specify
recycling memory pointed to by old values if the PMwCAS succeeds.
To avoid permanent memory leaks, ReserveEntry returns a pointer
to the newly added entry’s new value field, which can be given to an
allocator as the target location for storing the address of the allocated
NVRAM block (similar to posix memalign).

2. Case Study and Evaluation
We implemented two non-trivial lock-free data structures using
PMwCAS: a doubly-linked skip list and the Bw-tree [3]. Doubly-
linked skip lists are useful in database systems to enable reverse
scan but hard to implement using single-word atomic instructions.
Due to space limitation, we focus on the Bw-tree here.

Structure modification operations (SMOs) such as page splits
and merges cause most of the complexity in the Bw-tree, since they
need to change multiple pages which cannot be done with a CAS.
The Bw-tree breaks an SMO into a sequence of atomic steps; each
step uses a CAS. While highly concurrent, the Bw-tree contains some
subtle race conditions as a result of the SMO protocol. For example,
threads can observe in-progress SMOs. A large amount of code and
thought is dedicated to detecting and handling such subtle cases.

We use PMwCAS to simplify Bw-tree’s SMO protocol by “collaps-
ing” the multi-step SMO into a single PMwCAS. For example, a page
split first allocates a new sibling page, along with memory for inser-
tions into the parent page. It then uses PMwCAS to atomically modify
all pages involved. If the split triggers further splits at upper levels,
we repeat this process for the parent. PMwCAS allows us to cut all the

CAS MwCAS PMwCAS PMwCAS-CF

 0
 4
 8

 12
 16
 20

 1 8 16 24 32 40 48 56 64

M
ill

io
n

 o
p

s/
s

Number of threads

(a) 100% read.

 0
 3
 6
 9

 12
 15

 1 8 16 24 32 40 48 56 64

M
ill

io
n

 o
p

s/
s

Number of threads

(b) 100% upsert.

 0

 4

 8

 12

 16

 1 8 16 24 32 40 48 56 64

M
ill

io
n

 o
p

s/
s

Number of threads

(c) 100% delete.

 0

 4

 8

 12

 16

 1 8 16 24 32 40 48 56 64

M
ill

io
n

 o
p

s/
s

Number of threads

(d) Full mix.
Figure 2: Bw-tree performance with 8-byte keys and 8-byte values.

race handling code and the implementation is almost as mechanical
as a lock-based one, with 24% lower cyclomatic complexity.

We conduct experiments on a 4-socket, 64-thread machine
with 4 Intel Xeon E5-4620 processors (2.2GHz) and 512GB main
memory. Since real NVRAM is yet to come, we target NVDIMM
which behaves exactly the same as DRAM at runtime and run all
experiments in DRAM. We test both individual (read, upsert, delete)
and mixed operations. The mixed workload consists of 20% write,
64% point get and 16% scan. We use 8-byte keys, 8-byte values,
and initialize both indexes with 10 million records.

Figure 2 shows Bw-tree’s performance under different syn-
chronization primitives. Compared to PMwCAS, PMwCAS-CF issues
CLFLUSH that will evict cache line contents; MwCAS simply turns
off the persistence guarantees to show an upper bound on perfor-
mance. All the variants show similar performance for the read-only
workload. For upsert and delete, PMwCAS adds ∼15% overheads for
persistence guarantees. However, this is a fixed amount of overhead
and does not affect scalability. Finally, we observed that CLFLUSH
could degrade throughput by more than 30%. This is the worst
case scenario and underlines the need for CLWB. Since the mixed
workload has more reads, it exhibits smaller differences among the
evaluated variants. Compared to the best-performing CAS variant,
PMwCAS incurs on average ∼4–6% of overhead. We believe the
significant ease of programming efforts justifies such low overhead.

Finally, an implementation of the aforementioned BzTree recov-
ered in 145µs after crashing with 48 worker threads executing the
YCSB workload [1]. Such performance illustrates that PMwCAS helps
support near instantaneous recovery in non-trivial data structures.

3. Conclusion
Lock-free data structures are hard to build in NVRAM. Traditional
approaches handle complex races using single-word instructions
and must implement custom recovery logic. Our contribution is
PMwCAS, a software primitive that can atomically change multiple
8-byte words in a lock-free manner with persistence guarantees and
transparent recovery. The result is code that is easy to maintain
and reason about (almost as mechanical as a lock-based one), but
matches lock-free performance. Moreover, the same implementation
can be used for both volatile and persistent data structures.

References
[1] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson. BzTree:

A high-performance latch-free range index for non-volatile memory.
PVLDB, 11(5), Jan. 2018.

[2] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-
and-swap operation. DISC, pages 265–279, 2002.

[3] J. Levandoski, D. Lomet, and S. Sengupta. The Bw-Tree: A B-tree for
new hardware platforms. ICDE, pages 302–313, 2013.

[4] T. Wang, J. Levandoski, and P.-A. Larson. Easy lock-free indexing in
non-volatile memory. ICDE, 2018.

	1 Persistent Multi-Word Compare-and-Swap
	1.1 Application Interfaces
	1.2 PMwCAS Design

	2 Case Study and Evaluation
	3 Conclusion

