
The Past, Present and Future of Indexing on
Persistent Memory

Kaisong Huang Yuliang (George) He Tianzheng Wang
kha85@sfu.ca georgeh@sfu.ca tzwang@sfu.ca

Outline

• Part 1 - The memory/storage landscape
• Why new memory technologies?

• Persistent memory hardware/software

• Part 2 - Range indexes

• Part 3 - Hash tables

• Part 4 - Implications and outlook
• Especially, life after Optane

2VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

3VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Part 1: PM and Storage

Landscape

4VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

The (Traditional) Storage Hierarchy

CPU

caches

SRAM

Memory

DRAM

Storage

SSDs, HDDs

Layers with clear boundaries

• Memory: fast but volatile

• Storage: slower than memory but persistent

Caching stores hugely successful

• Hot (index) pages in buffer pool (DRAM)

• Persist to SSDs

• Cost-effective

Facing several major challenges

5VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Issues with in (Traditional) Storage Hierarchy

CPU

caches

SRAM

Memory

DRAM

Storage

SSDs, HDDs

Hitting scalability limits (the “scaling wall”) [1]

Energy consumption

Chip area limits

Energy consumption

High access latency

Need new storage/memory media – mainly for better scalability/higher capacity + save energy

Emerging Memory Techniques to the Rescue

• Phase change memory (PCM) [8]
• Including Intel’s 3D XPoint/Optane

• Micron (with Intel and initially pre 2015)

• Spin-Transfer Torque Magnetic RAM (STT-RAM) [5]
• Everspin

• Memristor [2]
• Notable attempt by HP(E)’s The Machine [3, 4]

• Carbon NanoTube RAM (NRAM, NanoRAM) [6]
• Nantero

• Ferroelectric RAM (FeRAM) [7]
• Fujitsu

• Various new flash/DRAM technologies – more on this later

6VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

They just all happen

to be non-volatile!

7VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Persistent Memory

Aside: Terminology

• Non-volatile RAM (NVRAM)

• Non-volatile memory (NVM)*

• Persistent memory
* Except flash memory

➔ The same thing: durable + byte-addressable

Persistent Memory Properties

• Byte-addressable, durability
+ Energy efficient

+ Scales, high density, cheaper

• Performance varies depending on particular memory technology
• E.g., STT-RAM as an alternative to SRAM cache

• Tradeoffs between persistence/retention/speed/energy profile [9]

• In most cases, biased towards PCM/3D XPoint (Optane) and compare with
DRAM:

8VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Can be faster

or slower

than DRAM

Can be used to

build both memory

and storage

+ Energy efficient

+ Scales, high density, cheaper

– Higher read/write latency than DRAM

– Read/write asymmetry

– Limited lifetime (but not a big concern)

Persistent Memory

• Available today: Intel 3D XPoint (Optane) since 2019
• But winding down, more on this later

• (future slides – Optane-specific marked with)

• Other candidates
• Work-in-progress, or

• Failed previous attempts, or

• Do not scale (yet), or

• Do not scale economically, or

9VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

CPU

caches

SRAM

Volatile memory

Persistent memory

Persistent Memory

• Available today: Intel 3D XPoint (Optane) since 2019
• But winding down, more on this later

• (future slides – Optane-specific marked with)

• Other candidates
• Work-in-progress, or

• Failed previous attempts, or

• Do not scale (yet), or

• Do not scale economically, or

10VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Aside: Non-Volatile DIMMs (NVDIMMs) [9]
• DRAM + flash + supercapacitor

• Flush data to flash upon power failure, load back

when powered on again

• SNIA standardized: NVDIMM-F, NVDIMM-N, etc.

• Also “persistent” and available today but:

• Doesn’t scale (due to DRAM)

• Same speed as DRAM (NVDIMM-N)

• Expensive

➔ A major research vehicle pre-Optane

11VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

CA$

• High capacity – easily TB level

• “Economical” (more later)

• ~CA$750 / 128GB Optane PMem

• ~CA$2000 / 128GB DRAM

Socket 1 Socket 2

DRAM DIMMs

75ns latency

BW >60-100 GB/s

(16 threads)

Optane PMem 100

300ns read latency

Read BW 7.4-40GB/s

Write BW 5.3-10GB/s

(16 threads)

~July 2019

Optane PMem
Aka “Optane DCPMM”

PMem

200: ~30%

higher

System Architecture and Operation Modes

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory 12

[41] J. Yang et al. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory

Still volatile CPU caches

Persistent

Volatile

(main focus)

Programming Model without eADR

• ADR: Asynchronous DRAM Refresh
• Includes write buffer and PMem, but not the CPU caches

13VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

PM Cache

A

PM Cache

A

B

Thread 1 Thread 2

PM

A

B

Unreachable

Case 1: Optane PMem 100, pre- Ice Lake

Actually persisted state:

Need explicit cacheline writeback (clflush, clflushopt, clwb)

Visible != durable

Restart

Enhanced ADR – no need to flush; fence still needed

Visible == durable

Programming Model with eADR

• eADR: Enhanced Asynchronous DRAM Refresh
• Includes write buffer and PMem, and the CPU caches

14VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

PM Cache

A

PM Cache

A

B

Thread 1 Thread 2

PM

A

B

Case 2: Optane PMem 200, pre- Ice Lake

Actually persisted state:

Restart

All reachable

Software Tools: PM Programming

• Access via load/store instructions

• Add fences and flushes (without eADR)

• Guaranteed: 8-byte atomic write
• Atomics (CAS, XCHG, etc.) also work

• Allocating/deallocating PMem
• malloc doesn’t work!

• Handling (persistent) memory leaks

• Solutions

• Ownership transfer protocol: application provides a tracked location for allocator

• “Transactions” (for durability): use logging

• Guaranteed by PM programming libraries
• Intel PMDK (https://pmem.io/pmdk)

• Research: NVHeaps [10], Mnemosyne [11], PMwCAS [12]

15VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

DRAM PM

Application address space

PM DIMMs

mmap

https://pmem.io/pmdk

Software Tools: Index Evaluation

• PiBench [18]
• Unified benchmarking framework

• Pluggable index shared lib

• Issue synthetic workloads
• R/W ration, varying core count

• Stats information
• Throughput, tail latency, bandwidth

• Not limited to PM; used by various recent index work

• Open-source:
• https://github.com/sfu-dis/pibench

16VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

https://github.com/sfu-dis/pibench

17VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Part 2: PM Range Indexes

Part Two: Outline

• Common range index choices: B+-Tree vs Trie

• Range indexes on PM
• Pre-Optane PM indexes

• State-of-the-art PM indexes

18VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Btree vs Trie

19VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

BTree:

• O(log n) access time

• Range scan locality

• Variable-length key support

Trie:

• O(L) access time (L = key length)

• Variable-length key support

• Pointer chasing during scan

https://cdn.programiz.com/sites/tutorial2program/files/b-tree.png

Inner node

Leaf node

[13] The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases

20

Range Indexes on Persistent Memory

Challenges:
• Consistency - 8-byte atomic write

• Performance - scarce write bandwidth

• Recovery - avoid persistent memory leak

Key optimization goal:
• Reduce PM accesses ➔ higher

performance

Perhaps 10s-100s of proposals by now
• Even before real devices appeared

• Even more with real devices

Root

Inner

node
Inner

node

KV pairs KV pairs KV pairs KV pairs

• No serialization/deserialization

• Directly persist on PM

• Tailor-made for Optane DCPMM

• (Near) Instant recovery

Could be

in DRAM

PM-

resident

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Pre-Optane: wBTree [14]

• Unsorted leaf with atomic update

• Indirection array

• 1 bit to indicate validity

• Logging during split

• Single-threaded

21VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[14] Persistent B+-trees in non-volatile main memory, VLDB 2015

*

Pre-Optane: NVTree [15]

• Selective consistency

• Contiguous inner nodes

• Gaped array to absorb split

• Unsorted leaf

• Append-only strategy

• Scan backwards to find key

22VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[15] NV-Tree: Reducing Consistency Cost for NVM-based Single Level Systems, FAST 2015

*

Inners can

reside on

DRAM

Pre-Optane: BzTree [16]

• Lock-Free (PMwCAS – Persistent Multi-word Compare And Swap)

• Unsorted leaf

• Periodically sort records

• Search method

• Binary search sorted area

• Linear search unsorted area

23VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[16] Bztree: a high-performance latch-free range index for non-volatile memory, VLDB 2018

*

Pre-Optane: FPTree [17]

• Selective persistence

• Unsorted leaf + fingerprints (one byte hash of key)

• Selective concurrency

• HTM for inner node update

• Locks for leaf node update

24VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[17] FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory, SIGMOD 2016

*

Pre-Optane PM Range Indexes (Pre-2019) [18]

• Proposed under emulation, evaluated under Optane PMem

25

​Index Architecture​ Node Architecture Concurrency​

wBTree [VLDB ’15]​ PM-only​ Unsorted;

Indirection array

Single-threaded

NV-Tree [FAST ’15]​ DRAM + PM Unsorted leaf;

Inconsistent inner node

Locking

FPTree [SIGMOD ’16] DRAM + PM Unsorted Leaf;

Fingerprints

HTM (inner) +

Locking (leaf)

BzTree [VLDB ’18]​ PM-only Partially unsorted leaf​ Lock-free​ +

PMwCAS

[18] Evaluating Persistent Memory Range Indexes, VLDB 2020

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Pre-Optane PM Range Indexes (Pre-2019) [18]

• 6 channels (solid + shadow) vs. 2 channels (shadow only)

• 23 threads

Key takeaways: save write bandwidth + leverage DRAM + fingerprinting

26VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[18] Evaluating Persistent Memory Range Indexes, VLDB 2020

*

Into the Era of Optane 2019-2022

• Even more indexes

• 10s of papers in VLDB/SIGMOD/SOSP, etc.

• More index structure choices

• B+-tree, trie, hybrid, learned

• Functionality

• NUMA-awareness, variable-length key support, etc.

27VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Optane: LB+-Tree [19]

• B+-tree based
• Inner nodes in DRAM

• Leaf nodes in PM

• HTM for traversal, locking for updates

• + New techniques to avoid:
• Excessive PM writes

• Logging overhead

28

[19] LB+-Trees: optimizing persistent index performance on 3DXPoint memory, VLDB 2020

Unsorted leaf

Fingerprints

(cf. FPTree)

256B: PMem

internal block

size

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Optane: μTree [20]

• B+-tree based

• Optimized for tail latency

• Coordinated concurrency control:
• Traverse B+-Tree, find predecessor node

• Update list layer using atomic CAS

• Lock array layer leaf and update entry

29

[20] μTree: a Persistent B+-Tree with Low Tail Latency, VLDB 2020

Entire B+-tree in

DRAM

Linked

list in PM

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Optane: ROART [21]

• Based on ART

• Optimized for range scan

• Compact subtrees into leaf arrays

• Delayed Check Memory Management

• Concurrency
• ART-ROWEX

• Non-temporal stores

30

[21] ROART: Range-query Optimized Persistent ART, FAST 2021

Entirely in

PM

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Optane: PACTree [22]

• Trie-based (ART)

• Search layer: persistent trie

• Data layer: linked list of leaves

• Asynchronous update

• SMOs by background threads

• NUMA-optimized

• Per-node PM pool

31

[22] PACTree: A High Performance Persistent Range Index Using PAC Guidelines, SOSP 2021

Entirely in

PM

Runs in

background

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

*

Optane: DPTree [23]

• Hybrid B+-tree and trie

• Front Buffer Tree
• B+-tree

• All modifications with logging

• Base Tree
• Read-only trie for inner nodes

• B+-Tree style leaf nodes

• Accumulates front buffer trees

• Lookup will traverse all trees

32

[23] DPTree: differential indexing for persistent memory, VLDB 2020

Entire B+-trees

in DRAM

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

*

33VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Optane: APEX [24]

[24] APEX: A High-Performance Learned Index on Persistent Memory, VLDB 2022

[25] ALEX: An Updatable Adaptive Learned Index, SIGMOD 2020

pos = a*key + b
• Learned, based on ALEX [25]

• Linear function to predict key location

• Probe-and-Stash collision handling
• Probe primary array up to 16 entries

• If empty slot found, insert into PA

• Otherwise insert to stashed array

• Concurrency
• Inner: Lock-free traversal

• Leaf: Optimistic locking

pos = a*key + b

Root

…….
….

Inner node

key_pos = a*key + b

Leaf node

Up to 256KB

in PM

Primary array

Stashed array

Volatile Metadata

Up to 16MB

Optane-Era PM Range Indexes (2019-2022) [26]

34

Architecture Node structure Concurrency

LB+-Tree [VLDB 20] B+-tree; DRAM (inner) +

PM (leaf)

Unsorted leaf; fingerprints;

extra metadata

HTM (traversal) +

locking (update)

uTree [VLDB 20] B+-tree; DRAM (B+-tree)

+ PM (linked list)

Sorted Locking (array layer)

+ lock-free (list layer)

DPTree [VLDB 20] Hybrid; DRAM (B+-tree,

trie inner) + PM(trie leaf)

Unsorted leaf; fingerprints;

indirection; extra metadata

Optimistic lock +

async. updates

ROART [FAST 21] Trie; PM-only B+-tree like unsorted leaf;

fingerprints

ROWEX

PACTree [SOSP 21] Trie; PM-only or option-

ally DRAM+PM

Unsorted leaf; fingerprints;

indirection

Optimistic lock +

async. Update

APEX [VLDB 22] Learned index; PM-mostly

(metadata in DRAM)

Partially unsorted leaf;

fingerprints; stashed array

Lock-free traversal +

optimistic locking

NUMA-

optimized

Support

var-keys

naturally

FPTree

[SIGMOD 16]

DRAM (inner nodes) +

PM (leaf nodes)

Unsorted leaf nodes;

fingerprints

HTM (inner nodes) +

locking (leaf nodes)

(mostly)

optimistic

(mostly)

unsorted +

Search techniques

B+-Trees:

extensive use of

DRAM

Tries: B+-

Tree styled leaf

VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Learned

Detailed performance comparison: Evaluating Persistent Memory Range Indexes: Part Two, VLDB 2022

35VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Part 3: PM Hash Tables

Part Three: Outline

• Range indexes vs hash tables

• Representative hashing schemes

• New challenges and new proposals

• Design summary

36VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Range Indexes vs. Hash Tables

Range Indexes Hash Tables

Pros

Cons

37VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

• Good at range queries

• Smooth growth (collision-

free)

• Average O(logN) time

complexity for

insertion/deletion/search

• Good at point queries

• Average O(1) time complexity for

insertion/deletion/search

• Lack support for range queries

• Unavoidable collisions

PM Range Indexes vs. PM Hash Tables

38VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Range Indexes Hash Tables

Pros

Cons
Common frenemy: PM access!

PM Range Indexes vs. PM Hash Tables

39VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Range Indexes Hash Tables

Pros

Cons

Common challenges:

#1 Consistency – 8-byte atomic write

#2 Performance – scarce write bandwidth

#3 Recovery – avoid persistent memory leak

Recap

A hash table implementation = hashing scheme + hash function

Static hashing schemes
• Linear probing

• Cuckoo hashing

• …

Dynamic hashing schemes
• Extendible hashing

• Linear hashing

• …

40VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Most PM hash tables are also based on

Static Scheme – Linear Probing

(Key, Value)

(A, Val)

(B, Val)

(…, …)

(…, …)

41VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Hash Table

… …

A Val

B Val

… …

Hash(A)=Hash(B)

Collision

Static Scheme – Cuckoo Hashing

42VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

(Key, Value)

(A, Val)

(B, Val)

(…, …)

(…, …)

HT2

… …

… …

B Val

HT1

… …

A Val

… …

Hash1(A)
Hash2(A)

Hash1(B)

Hash2(B)Collision

So, we need to rebuild the entire hash table when it is full.

From Static to Dynamic

43VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

But, rebuilding a hash table is very expensive even for DRAM.

How to smooth out the process?

Dynamic hashing schemes.

44VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Dynamic Scheme – Extendible Hashing

directory

0…

1…

1 global depth (00…, val)

(01…, val)

(empty)

1 local depth

(100…, val)

(101…, val)

(110…, val)

1 local depth

insert Hash(key) = 111…

bucket needs to split

before split

buckets

45VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Dynamic Scheme – Extendible Hashing

directory

00…

01…

10…

11…

2 global depth (00…, val)

(01…, val)

(empty)

1 local depth

(empty)

(empty)

(110…, val)

2 local depth

(100…, val)

(101…, val)

(empty)

2 local depth

after split

buckets

Split

So, we need to double the size of the directory when a bucket splits.

Dynamic Scheme – From Extendible to Linear

46VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Oof, can we make the growth even smoother?

Linear hashing scheme. (Similar challenges in practice)

Hash Tables on PM

• Static hashing variants
• Level hashing [27]

• Clevel [28]

• Dynamic hashing variants
• Cacheline-conscious extendible hashing (CCEH) [29]

• Dash [30]

47VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[27] Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory, OSDI ’18

[28] Lock-free Concurrent Level Hashing for Persistent Memory, ATC ’20

[29] Write-Optimized Dynamic Hashing for Persistent Memory, FAST ’19

[30] Dash: scalable hashing on persistent memory, VLDB ’20

Pre-Optane, Static: Level Hashing [27]

• Emulation-based bucketized cuckoo hashing

• Challenge #1: heavyweight consistency guarantee
• Overcome by atomic token update

• Challenge #2: excessive PM write
• Overcome by two-level bucketized hash table & in-place resizing

48VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[27] Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory, OSDI ’18

*https://www.usenix.org/system/files/atc20-paper227-slides-chen.pdf

*

Optane, Static + Resizing: Clevel [28]

• Lock-free concurrent level hashing
implemented on Optane PMem

• Based on level hashing with new
challenges!

• Challenge #1: performance degradation
during resizing

• Overcome by replacing coarse-grained
locks in level hashing with async rehashing

• Challenge #2: poor scalability of level
hashing

• Overcome by lock-free
search/insertion/update/deletion

49VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[28] Lock-free Concurrent Level Hashing for Persistent Memory, ATC ’20

Pre-Optane, Extendible: CCEH [29]

• Emulation-based extendible hashing

• Challenge #1: reducing cacheline accesses
• Overcome by the three-level structure which

makes sure that record can be found within two
cacheline accesses

• Challenge #2: crash consistency
• Overcome by keeping track of split history in

the split buddy tree and reducing dirty writes
through lazy deletion

50VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[29] Write-Optimized Dynamic Hashing for Persistent Memory, FAST ’19

Optane, Extendible/Linear: Dash [30]

• Optane-based extendible/linear hashing

• Challenge #1: excessive PM read
• For Optane, read latency > write latency

• Overcome by fingerprint

• Challenge #2: heavyweight concurrency
control (read-write lock)

• Overcome by optimistic lock

• Challenge #3: load factor optimization
• Overcome by bucket load balancing

• Challenge #4: instant recovery
• Overcome by lazy recovery

51VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

[30] Dash: Scalable Hashing on Persistent Memory, VLDB 2020

(a) Overview of Dash-EH

(b) Overview of Dash-LH

PM Hash Tables: Design Summary

52VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Level Hashing Clevel CCEH Dash

Reduce PM write ✅ ✅ ✅ ✅

Reduce PM read ✅

Lightweight concurrency control ✅ ✅

Lightweight consistency

guarantee

✅ ✅ ✅ ✅

Load factor optimization ✅ ✅ ✅

Resizing optimization ✅ ✅

NUMA optimization

Instant recovery ✅ ✅ ✅

Variable-length key support ✅

53VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Part 4: Implications and Outlook

Other Related/More-Recent Work

• This tutorial by no means exhaustive
• Still fast evolving

• Some more recent PM indexes
• Tree leveraging eADR: NB-Tree [34]

• Hash table: Plush [35]

• PM key-value stores
• Viper [38], FlatStore [39], Halo [40], etc.

• PMem-based full systems
• Tair [36], OpenMLDB [37]

54VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

55VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

* https://www.techtarget.com/searchstorage/news/252523339/Intel-pulls-the-plug-on-Optane

* https://www.anandtech.com/show/17515/intel-to-wind-down-optane-memory-business

* https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good

Not the first time

56VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Recent Timeline

2009 20192014 2016

Emulation or

NVDIMM

Didn’t come

but still

hopeful

“5 years

from now”

E
x
c
it
e
m

e
n
t

Proposals from

architecture

community

“Maybe another

3-5 years”

Intel/Micron

Optane

2022

The only vendor

drops off.

What now?
Optane-tailored

Another Bubble Memory [32] (1960-1981)?

• Was the hope, like today’s PM [31]

• Did not make it due to
• Scalability/price

• Complex to make

• Require memory controller help

• DRAM and magnetic disks caught up

• Optane with similar issues
• Performance per $: lower than SSDs [33]

• SSDs getting faster and faster

• More complex memory controller

• Single vendor

57VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Intel (!) 7110 bubble memory*

* https://en.wikipedia.org/wiki/Bubble_memory#/media/File:Bubble_memory_module.jpg

Relevance of today’s software techniques for PM?

Potential: PM Techniques on DRAM [26]

• Running PM range indexes on DRAM
• No extra flushes/fences, using DRAM allocator

1. PM index techniques also effective for DRAM

2. Should focus more on full functionality [26]
58VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Future: a Storage Jungle [33]

• NVDIMMs
• Always been there

• Carbon Nanotubes: WIP

• Optane PMem

• Storage
• Faster flash memory/SSDs

• SSDs with memory semantics

• 3D-stack DRAM

• CXL enabling pooled memory

59VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

Thank you! + Q&A

References
[1] Memory Scaling is Dead,
Long Live Memory Scaling, Yale’s “Mid Career” Celebration at University of Texas at Austin, Sept 19 2014
https://hps.ece.utexas.edu/yale75/qureshi_slides.pdf

[2] Strukov, D., Snider, G., Stewart, D. et al. The missing memristor found. Nature 453, 80–83 (2008).

[3] https://venturebeat.com/business/hp-enterprise-unveils-single-memory-160-terabyte-computer-the-machine/

[4] https://www.nextbigfuture.com/2020/11/memristors-and-hpe-machine-focused-computer-research-seems-almost-dead.html

[5] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. R. Das. Architecting on-chip interconnects for stacked 3D STT-RAM
caches in CMPs. In ISCA, 2011.

[6] B. Gervasi, "Will Carbon Nanotube Memory Replace DRAM?," in IEEE Micro, vol. 39, no. 2, pp. 45-51, 1 March-April 2019, doi:
10.1109/MM.2019.2897560.

[7] Ali Sheikholeslami and P. G. Gulak: A survey of circuit innovations in Ferroelectric random-access memories, Proceedings of the IEEE,
Vol. 88, No. 3, pp. 667-689, May 2000

[8] H. . -S. P. Wong et al., "Phase Change Memory," in Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, Dec. 2010, doi:
10.1109/JPROC.2010.2070050.

[9] Viking Technology, Non-Volatile Memory and Its Use in Enterprise Applications, https://snia.org/sites/default/files/Non-
Volatile%20Memory%20&%20Its%20Use%20in%20Enterprise%20Applications.pdf

[10] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-
Heaps: making persistent objects fast and safe with next-generation, non-volatile memories. In Proceedings of the sixteenth international
conference on Architectural support for programming languages and operating systems (ASPLOS XVI).

60VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

https://hps.ece.utexas.edu/yale75/qureshi_slides.pdf
https://venturebeat.com/business/hp-enterprise-unveils-single-memory-160-terabyte-computer-the-machine/
https://www.nextbigfuture.com/2020/11/memristors-and-hpe-machine-focused-computer-research-seems-almost-dead.html
https://snia.org/sites/default/files/Non-Volatile%20Memory%20&%20Its%20Use%20in%20Enterprise%20Applications.pdf

References
[11] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: lightweight persistent memory. In Proceedings of
the sixteenth international conference on Architectural support for programming languages and operating systems (ASPLOS XVI).

[12] Wang, Tianzheng & Levandoski, Justin & Larson, Per-Åke. (2018). Easy Lock-Free Indexing in Non-Volatile Memory. 461-472.
10.1109/ICDE.2018.00049.

[13] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree: ARTful indexing for main-memory databases. In
Proceedings of the 2013 IEEE International Conference on Data Engineering (ICDE 2013) (ICDE '13). IEEE Computer Society, USA, 38–
49. https://doi.org/10.1109/ICDE.2013.6544812

[14] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in non-volatile main memory. Proc. VLDB Endow. 8, 7 (February 2015), 786–797.
https://doi.org/10.14778/2752939.2752947

[15] Yang, Jun & Wei, Qingsong & Chen, Cheng & Wang, Chundong & Leong, Khai & He, Bingsheng. (2015). NV-Tree: Reducing
Consistency Cost for NVM-based Single Level Systems.

[16] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018. Bztree: a high-performance latch-free range index
for non-volatile memory. Proc. VLDB Endow. 11, 5 (January 2018), 553–565. https://doi.org/10.1145/3164135.3164147

[17] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM
Persistent and Concurrent B-Tree for Storage Class Memory. In Proceedings of the 2016 International Conference on Management of
Data (SIGMOD '16). Association for Computing Machinery, New York, NY, USA, 371–386. https://doi.org/10.1145/2882903.2915251

[18] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Willhalm. 2019. Evaluating persistent memory range
indexes. Proc. VLDB Endow. 13, 4 (December 2019), 574–587. https://doi.org/10.14778/3372716.3372728

61VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.14778/3372716.3372728

References
[19] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+Trees: optimizing persistent index performance on 3DXPoint memory. Proc.
VLDB Endow. 13, 7 (March 2020), 1078–1090. https://doi.org/10.14778/3384345.3384355

[20] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. UTree: a persistent B+-tree with low tail latency. Proc.
VLDB Endow. 13, 12 (August 2020), 2634–2648. https://doi.org/10.14778/3407790.3407850

[21] Ma, Shaonan, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hong Kyu Kang and Yongwei Wu. “ROART: Range-query
Optimized Persistent ART.” FAST (2021).

[22] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Changwoo Min. 2021. PACTree: A High Performance
Persistent Range Index Using PAC Guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP '21). Association for Computing Machinery, New York, NY, USA, 424–439. https://doi.org/10.1145/3477132.3483589

[23] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree: differential indexing for persistent memory. Proc. VLDB
Endow. 13, 4 (December 2019), 421–434. https://doi.org/10.14778/3372716.3372717

[24] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang. 2021. APEX: a high-performance learned index on
persistent memory. Proc. VLDB Endow. 15, 3 (November 2021), 597–610. https://doi.org/10.14778/3494124.3494141

[25] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes
Gehrke, Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned Index. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (SIGMOD '20). Association for Computing Machinery, New York,
NY, USA, 969–984. https://doi.org/10.1145/3318464.3389711

[26] Yuliang He, Duo Lu, Kaisong Huang and Tianzheng Wang, Evaluating Persistent Memory Range Indexes: Part Two. VLDB 2022

62VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

https://doi.org/10.14778/3384345.3384355
https://doi.org/10.14778/3407790.3407850
https://doi.org/10.1145/3477132.3483589
https://doi.org/10.14778/3372716.3372717
https://doi.org/10.14778/3494124.3494141
https://doi.org/10.1145/3318464.3389711
https://vldb.org/2022

References
[27] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-performance hashing index scheme for persistent memory. In
Proceedings of the 13th USENIX conference on Operating Systems Design and Implementation (OSDI'18). USENIX Association, USA,
461–476.

[28] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo. 2020. Lock-free concurrent level hashing for persistent memory. In Proceedings of
the 2020 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC'20). USENIX Association, USA, Article 55, 799–812.

[29] Moohyeon Nam, Hokeun Cha, Young-Ri Choi, Sam H. Noh, and Beomseok Nam. 2019. Write-optimized dynamic hashing for
persistent memory. In Proceedings of the 17th USENIX Conference on File and Storage Technologies (FAST'19). USENIX Association,
USA, 31–44.

[30] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: scalable hashing on persistent memory. Proc. VLDB Endow.
13, 8 (April 2020), 1147–1161. https://doi.org/10.14778/3389133.3389134

[31] W. Myers, "Key Developments in Computer Technology: A Survey," in Computer, vol. 9, no. 11, pp. 48-77, Nov. 1976, doi: 10.1109/C-
M.1976.218441.

[32] Baker, K.F.: 'A review of magnetic bubble memories and their applications', Radio and Electronic Engineer, 1981, 51, (3), p. 105-115,
DOI: 10.1049/ree.1981.0014IET Digital Library, https://digital-library.theiet.org/content/journals/10.1049/ree.1981.0014

[33] Kaisong Huang, Darien Imai, Tianzheng Wang and Dong Xie, SSDs Striking Back: The Storage Jungle and Its Implications on
Persistent Indexes.12th Annual Conference on Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

[34] Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng Huang. 2022. NBTree: a lock-free PM-friendly persistent B+-tree for eADR-
enabled PM systems. Proc. VLDB Endow. 15, 6 (February 2022), 1187–1200. https://doi.org/10.14778/3514061.3514066

[35] Plush: A Write-Optimized Persistent Log-Structured Hash-Table

63VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

https://doi.org/10.14778/3389133.3389134
https://digital-library.theiet.org/content/journals/10.1049/ree.1981.0014

References
[36] Tair-PMem: A Fully Durable Non-Volatile Memory Database

[37] Cheng Chen, Jun Yang, Mian Lu, Taize Wang, Zhao Zheng, Yuqiang Chen, Wenyuan Dai, Bingsheng He, Weng-Fai Wong, Guoan
Wu, Yuping Zhao, and Andy Rudoff. 2021. Optimizing in-memory database engine for AI-powered on-line decision augmentation using
persistent memory. Proc. VLDB Endow. 14, 5 (January 2021), 799–812. https://doi.org/10.14778/3446095.3446102

[38] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: an efficient hybrid PMem-DRAM key-value store. Proc. VLDB
Endow. 14, 9 (May 2021), 1544–1556. https://doi.org/10.14778/3461535.3461543

[39] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020. FlatStore: An Efficient Log-Structured Key-Value
Storage Engine for Persistent Memory. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS '20). Association for Computing Machinery, New York, NY, USA, 1077–1091.
https://doi.org/10.1145/3373376.3378515

[40] Daokun Hu, Zhiwen Chen, Wenkui Che, Jianhua Sun, and Hao Chen. 2022. Halo: A Hybrid PMem-DRAM Persistent Hash Index with
Fast Recovery. In Proceedings of the 2022 International Conference on Management of Data (SIGMOD '22). Association for Computing
Machinery, New York, NY, USA, 1049–1063. https://doi.org/10.1145/3514221.3517884

[41] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swanson. 2020. An empirical guide to the behavior and
use of scalable persistent memory. In Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST'20). USENIX
Association, USA, 169–182.

64VLDB 2022 Tutorial: The Past, Present and Future of Indexing on Persistent Memory

https://doi.org/10.14778/3446095.3446102
https://doi.org/10.14778/3461535.3461543
https://doi.org/10.1145/3373376.3378515

