Future Database Engine Development:
You Will Only Need One Programming Language

Tianzheng Wang
Simon Fraser University
tzwang@sfu.ca

Database systems must make good use of the hard-
ware for high performance. This is usually done by
implementing their core components (storage engine,
optimizer and query execution engine) in a low-level
programming language (PL) such as C/C++ that can
directly “talk to the hardware.” But these PLs tradi-
tionally lacked high-level abstractions, lowering DBMS
developer productivity. Some systems [10, 16, 18] then
mix different PLs to balance productivity and perfor-
mance. For example, Presto [16] and Spark [18] origi-
nally used Java but are now replacing their query en-
gines with new ones [1, 12] built in C++ for higher
performance. However, doing so brings such non-trivial
challenges as interacting with different PL runtimes [1].

Recent advances in PLs, in particular C++ and Rust,
have the potential of removing such need. They intro-
duce many desirable features that improve productiv-
ity without sacrificing performance. This means core
DBMS components could all be implemented in one PL
(although other non-performance critical parts may still
stick with higher-level PLs). To see why, let us first re-
view the requirements DBMSs pose for PLs.

What does a DBMS Need from a PL?! Different DBMS
components pose varying requirements on productiv-
ity and performance. The optimizer is logic-centric, so
there is a strong need for coding productivity to easily
express various optimizations. The storage and query
engines, however, need to handle parallelism and con-
currency by taking full advantage of the hardware, mak-
ing performance the top priority. Developers are will-
ing to tolerate extra complexity for better performance,
such as implementing lock-free indexes [11]. A query en-
gine also needs to implement complex relational algebra
and extensions, posing higher requirements on coding
productivity than storage engines. As a result, the de
facto standard for programming storage and query en-
gines has been traditional C/C++, whereas developers
may choose a higher-level PL for optimizers. This has
led to the state of mixing PLs for DBMS components.

IThis paper targets PLs used to implement DBMSs them-
selves, instead of “database programming languages” which
explored the convergence of database systems and PLs [2].

The Case for Modern C++. At a first glance, C++ may
be too “low-level” as a native language. However, mod-
ern C++4 (17, 20 and later) comes with features that
improve performance and productivity. For example,
C++420 allows dynamic memory allocations at compile-
time, improving performance by shifting calculations to
compile-time and generating smaller binaries [6]. They
can also improve productivity as the compiler can de-
tect certain undefined behaviors and leaks at compile-
time [7]. In a DBMS, memory used by optimizers typi-
cally has a lifespan of queries, yet for storage engines the
lifespan is a transaction, requiring different allocators.
Some may be a bump allocator that reclaims all memory
chunks as a whole, while others should support “real”
deallocations of individual chunks. The polymorphic
memory resource (std: :pmr) [17] provides a promising
solution, with a set of utilities to manage runtime poly-
morphism of memory allocations with unified interfaces.

Another example is C++20 coroutines [5] which are
being adopted by recent work [9, 13]. Traditionally,
query engines implement the iterator model with little
PL support and thus an operator must manually main-
tain states and intermediate data, such as current scan
cursor position. C+-+20 coroutines can help alleviate
this problem with a generator-based model. A scan op-
erator’s get_next can be turned into a coroutine that
directly yields each valid row without having to main-
tain the current row cursor, simplifying implementation.

Future Directions. I believe it is now feasible to sat-
isfy the needs of core DBMS components using a single
PL, and many more modern PL features remain to be
explored. Beyond C++, Rust [15] and Carbon [4] have
gained much attention. It is promising to quantitatively
compare these PLs for DBMS implementation. Earlier
efforts such as EXODUS [3] and the E programming
language [8, 14] have contributed to PL designs. Revis-
iting them and devising new PLs for DBMS implemen-
tation is also promising. Despite the new PL features,
compiler and ecosystem support often fall short for se-
rious DBMS development. It is time again for DBMS
developers to participate and influence PL and compiler
design to push the desired features early into future PLs.

References

[1]

A. Behm, S. Palkar, U. Agarwal, T. Armstrong,
D. Cashman, A. Dave, T. Greenstein, S. Hov-
sepian, R. Johnson, A. Sai Krishnan, P. Leven-
tis, A. Luszczak, P. Menon, M. Mokhtar, G. Pang,
S. Paranjpye, G. Rahn, B. Samwel, T. van Bus-
sel, H. van Hovell, M. Xue, R. Xin, and M. Za-
haria. Photon: A fast query engine for lakehouse
systems. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD ’22,
page 23262339, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

M. J. Carey and D. J. DeWitt. Of objects and
databases: A decade of turmoil. In Proceedings of
the 22th International Conference on Very Large
Data Bases, VLDB ’96, page 3-14, San Francisco,
CA, USA, 1996. Morgan Kaufmann Publishers Inc.

M. J. Carey, D. J. DeWitt, D. Frank, M. Mura-
likrishna, G. Graefe, J. E. Richardson, and E. J.
Shekita. The architecture of the EXODUS exten-
sible DBMS. In Proceedings on the 1986 Interna-
tional Workshop on Object-Oriented Database Sys-
tems, page 52-65, 1986.

C. Carruth. Carbon language: An experimental
successor to C++. CppNorth, 2022.

Coroutines. https://en.cppreference.com/w/
cpp/language/coroutines, 2022.

A. Fertig. C++4+20 dynamic
tions at compile-time, 2021.
//andreasfertig.blog/2021/08/
cpp20-dynamic-allocations-at-compile-time/.

B. Filipek. constexpr dynamic memory alloca-
tion, C4++420, 2021. https://www.cppstories.
com/2021/constexpr-new-cpp20/.

E. N. Hanson, T. M. Harvey, and M. A. Roth.
Experiences in DBMS implementation using an
object-oriented persistent programming language
and a database toolkit. In Conference Proceed-
ings on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA ’91, page
314-328, New York, NY, USA, 1991. Association
for Computing Machinery.

Y. He, J. Lu, and T. Wang. Corobase: Coroutine-
oriented main-memory database engine. PVLDB,
14(3):431-444, Nov 2020.

alloca-
https:

[10]

[11]

[12]

[14]

[17]

[18]

M. Kornacker, A. Behm, V. Bittorf, T. Bobrovyt-
sky, C. Ching, A. Choi, J. Erickson, M. Grund,
D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Ku-
mar, A. Leblang, N. Li, I. Pandis, H. Robinson,

D. Rorke, S. Rus, J. Russell, D. Tsirogiannis,
S. Wanderman-Milne, and M. Yoder. Impala: A

modern, open-source SQL engine for Hadoop. 2015.

J. J. Levandoski, D. B. Lomet, and S. Sengupta.
The Bw-Tree: A B-tree for new hardware plat-
forms. In 2013 IEEE 29th International Confer-
ence on Data Engineering (ICDE), pages 302-313,
2013.

P. Pedreira, O. Erling, M. Basmanova, K. Wilfong,
L. Sakka, K. Pai, W. He, and B. Chattopadhyay.
Velox: Meta’s unified execution engine. PVLDB,
15(12):3372-3384, Aug 2022.

G. Psaropoulos, T. Legler, N. May, and A. Ail-
amaki. Interleaving with coroutines: A practi-
cal approach for robust index joins. PVLDB,
11(2):230-242, Oct 2017.

J. E. Richardson, M. J. Carey, and D. T. Schuh.
The design of the E programming language. ACM
Trans. Program. Lang. Syst., 15(3):494-534, Jul
1993.

Rust Foundation.
2022.

Rust programming language,

R. Sethi, M. Traverso, D. Sundstrom, D. Phillips,
W. Xie, Y. Sun, N. Yegitbasi, H. Jin, E. Hwang,
N. Shingte, and C. Berner. Presto: SQL on ev-
erything. In 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), pages 1802
1813, 2019.

std: :pmr: :polymorphic_allocator.
//en.cppreference.com/w/cpp/memory/
polymorphic_allocator, 2022.

https:

M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Im-
plementation, NSDI'12, USA, 2012. USENIX As-

sociation.

