
Future Database Engine Development:
You Will Only Need One Programming Language

Tianzheng Wang
Simon Fraser University

tzwang@sfu.ca

Database systems must make good use of the hard-
ware for high performance. This is usually done by
implementing their core components (storage engine,
optimizer and query execution engine) in a low-level
programming language (PL) such as C/C++ that can
directly “talk to the hardware.” But these PLs tradi-
tionally lacked high-level abstractions, lowering DBMS
developer productivity. Some systems [10, 16, 18] then
mix different PLs to balance productivity and perfor-
mance. For example, Presto [16] and Spark [18] origi-
nally used Java but are now replacing their query en-
gines with new ones [1, 12] built in C++ for higher
performance. However, doing so brings such non-trivial
challenges as interacting with different PL runtimes [1].

Recent advances in PLs, in particular C++ and Rust,
have the potential of removing such need. They intro-
duce many desirable features that improve productiv-
ity without sacrificing performance. This means core
DBMS components could all be implemented in one PL
(although other non-performance critical parts may still
stick with higher-level PLs). To see why, let us first re-
view the requirements DBMSs pose for PLs.

What does a DBMS Need from a PL?1 Different DBMS
components pose varying requirements on productiv-
ity and performance. The optimizer is logic-centric, so
there is a strong need for coding productivity to easily
express various optimizations. The storage and query
engines, however, need to handle parallelism and con-
currency by taking full advantage of the hardware, mak-
ing performance the top priority. Developers are will-
ing to tolerate extra complexity for better performance,
such as implementing lock-free indexes [11]. A query en-
gine also needs to implement complex relational algebra
and extensions, posing higher requirements on coding
productivity than storage engines. As a result, the de
facto standard for programming storage and query en-
gines has been traditional C/C++, whereas developers
may choose a higher-level PL for optimizers. This has
led to the state of mixing PLs for DBMS components.

1This paper targets PLs used to implement DBMSs them-
selves, instead of “database programming languages” which
explored the convergence of database systems and PLs [2].

The Case for Modern C++. At a first glance, C++may
be too “low-level” as a native language. However, mod-
ern C++ (17, 20 and later) comes with features that
improve performance and productivity. For example,
C++20 allows dynamic memory allocations at compile-
time, improving performance by shifting calculations to
compile-time and generating smaller binaries [6]. They
can also improve productivity as the compiler can de-
tect certain undefined behaviors and leaks at compile-
time [7]. In a DBMS, memory used by optimizers typi-
cally has a lifespan of queries, yet for storage engines the
lifespan is a transaction, requiring different allocators.
Some may be a bump allocator that reclaims all memory
chunks as a whole, while others should support “real”
deallocations of individual chunks. The polymorphic
memory resource (std::pmr) [17] provides a promising
solution, with a set of utilities to manage runtime poly-
morphism of memory allocations with unified interfaces.

Another example is C++20 coroutines [5] which are
being adopted by recent work [9, 13]. Traditionally,
query engines implement the iterator model with little
PL support and thus an operator must manually main-
tain states and intermediate data, such as current scan
cursor position. C++20 coroutines can help alleviate
this problem with a generator-based model. A scan op-
erator’s get_next can be turned into a coroutine that
directly yields each valid row without having to main-
tain the current row cursor, simplifying implementation.

Future Directions. I believe it is now feasible to sat-
isfy the needs of core DBMS components using a single
PL, and many more modern PL features remain to be
explored. Beyond C++, Rust [15] and Carbon [4] have
gained much attention. It is promising to quantitatively
compare these PLs for DBMS implementation. Earlier
efforts such as EXODUS [3] and the E programming
language [8, 14] have contributed to PL designs. Revis-
iting them and devising new PLs for DBMS implemen-
tation is also promising. Despite the new PL features,
compiler and ecosystem support often fall short for se-
rious DBMS development. It is time again for DBMS
developers to participate and influence PL and compiler
design to push the desired features early into future PLs.



References
[1] A. Behm, S. Palkar, U. Agarwal, T. Armstrong,

D. Cashman, A. Dave, T. Greenstein, S. Hov-
sepian, R. Johnson, A. Sai Krishnan, P. Leven-
tis, A. Luszczak, P. Menon, M. Mokhtar, G. Pang,
S. Paranjpye, G. Rahn, B. Samwel, T. van Bus-
sel, H. van Hovell, M. Xue, R. Xin, and M. Za-
haria. Photon: A fast query engine for lakehouse
systems. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD ’22,
page 2326–2339, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[2] M. J. Carey and D. J. DeWitt. Of objects and
databases: A decade of turmoil. In Proceedings of
the 22th International Conference on Very Large
Data Bases, VLDB ’96, page 3–14, San Francisco,
CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[3] M. J. Carey, D. J. DeWitt, D. Frank, M. Mura-
likrishna, G. Graefe, J. E. Richardson, and E. J.
Shekita. The architecture of the EXODUS exten-
sible DBMS. In Proceedings on the 1986 Interna-
tional Workshop on Object-Oriented Database Sys-
tems, page 52–65, 1986.

[4] C. Carruth. Carbon language: An experimental
successor to C++. CppNorth, 2022.

[5] Coroutines. https://en.cppreference.com/w/
cpp/language/coroutines, 2022.

[6] A. Fertig. C++20 dynamic alloca-
tions at compile-time, 2021. https:
//andreasfertig.blog/2021/08/
cpp20-dynamic-allocations-at-compile-time/.

[7] B. Filipek. constexpr dynamic memory alloca-
tion, C++20, 2021. https://www.cppstories.
com/2021/constexpr-new-cpp20/.

[8] E. N. Hanson, T. M. Harvey, and M. A. Roth.
Experiences in DBMS implementation using an
object-oriented persistent programming language
and a database toolkit. In Conference Proceed-
ings on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA ’91, page
314–328, New York, NY, USA, 1991. Association
for Computing Machinery.

[9] Y. He, J. Lu, and T. Wang. Corobase: Coroutine-
oriented main-memory database engine. PVLDB,
14(3):431–444, Nov 2020.

[10] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovyt-
sky, C. Ching, A. Choi, J. Erickson, M. Grund,
D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Ku-
mar, A. Leblang, N. Li, I. Pandis, H. Robinson,
D. Rorke, S. Rus, J. Russell, D. Tsirogiannis,
S. Wanderman-Milne, and M. Yoder. Impala: A
modern, open-source SQL engine for Hadoop. 2015.

[11] J. J. Levandoski, D. B. Lomet, and S. Sengupta.
The Bw-Tree: A B-tree for new hardware plat-
forms. In 2013 IEEE 29th International Confer-
ence on Data Engineering (ICDE), pages 302–313,
2013.

[12] P. Pedreira, O. Erling, M. Basmanova, K. Wilfong,
L. Sakka, K. Pai, W. He, and B. Chattopadhyay.
Velox: Meta’s unified execution engine. PVLDB,
15(12):3372–3384, Aug 2022.

[13] G. Psaropoulos, T. Legler, N. May, and A. Ail-
amaki. Interleaving with coroutines: A practi-
cal approach for robust index joins. PVLDB,
11(2):230–242, Oct 2017.

[14] J. E. Richardson, M. J. Carey, and D. T. Schuh.
The design of the E programming language. ACM
Trans. Program. Lang. Syst., 15(3):494–534, Jul
1993.

[15] Rust Foundation. Rust programming language,
2022.

[16] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips,
W. Xie, Y. Sun, N. Yegitbasi, H. Jin, E. Hwang,
N. Shingte, and C. Berner. Presto: SQL on ev-
erything. In 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), pages 1802–
1813, 2019.

[17] std::pmr::polymorphic_allocator. https:
//en.cppreference.com/w/cpp/memory/
polymorphic_allocator, 2022.

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Im-
plementation, NSDI’12, USA, 2012. USENIX As-
sociation.


