Tianzheng Wang and Ryan Johnson

What? Traditional RDBMS doesn't scale on multicore, multi-socket hardware
Why?  Various centralized bottlenecks, especially logging
How?  Distributed logging + byte-addressable, non-volatile memory PCM = Memristor — NVDIMM

== oncommit O Grab log buffer mutex
L
.

3

® \Write log records

vwwN\ = B Flush
w* —  © Release mutex
Transaction DRAM ,
threads  Log buffer >°"8€] @ Flush log buffer at commit
CPU cycles: Lock managerw  ~ Other contention

Log work (20%) Log contention (46%) Other work (21%)

— 750 | |
E 600 Contention for the single log
= 450  ldeal buffer is a serious bottleneck
Q.

< 300 Reality

3 150 — Group and async. commit?

= 0 - Better I/O performance

16 24 32 40
# Threads

4 8 - But contention unchanged

It reduces buffer contention, but...
O Log space partitioning: by page or xct?
— Impacts locality, recovery strategy

® Dependency tracking: before commit,
T4 must persist log records written by:

— itself
— direct xct deps: T4 > T2
— direct page deps: T4 > T3
— transitive deps: T4 > {T3, T2} > T1
© Storage is slow
— T4 flushes all four logs upon commit
(instead of one)

Partition log by page
logl Log2 Log3 Logé

afiidicl e/ fiie

T1 T2 T3 T4
IS SN
alefiii il fld
logl Log2 Log3 Log4
Partition log by xct

A prohibitively slow

Heavy e /0O
d-log based system!

1
dep-tracking overheads

Solution: buffer log records in byte-addressable, non-volatile memory (de-stage to disk/flash)

" NVM: A brave new world of storage
= Persistent like disk/flash, byte-addressable like DRAM
= DIMM form factor, attached to the memory bus
" Performance similar to DRAM
= Available today: DRAM backed by flash/super-capacitor

Distributed logging and NVM challenges

O Log records only partially ordered
— Recovery needs total order within any log/page/transaction
Solution: logical clock style global sequence number (GSN)
— Update page, log and xct GSNs at each access

O NUMA effect — threads prefer to access local NVM node

Transaction level.: Page level:
NUMA NUMA P1 EE NUMA NUMA
node 1 é node 2 é node 1 é nhode 2 é
HNEEE ° NEEEN ° ~2CEH0 NENEE © NEEED

© NUMA-friendly ® Cross NUMA boundary

© Durability — CPU cache still volatile! Records must leave CPU
before commit, preferably without heavy dependency tracking

Solution: passive group commit
— Workers flush own caches, record dGSN, enqueue xct

— Commit daemon monitors min dGSN, dequeues durable xct

é é é Passive group commit daemon
::d_G_SN " dGSN dGSN ':J—» Get min dGSN: 8  Transaction |dGSN
on commit: @ & >
1. Flush local caches Dequeue xct with Xct 2 10

2. Update local dGSN
3. Enqueue transaction

dGSN<=38 Commit queue

" NVM as log buffers — log records durable once written
" No dependency-tracking
" No flush-before-commit

" Major distributed logging and NVM challenges
" Partial order of log records, NUMA effect, volatile CPU cache

Performance

mp» NVM allows a cheap d-log!

HW: 4-socket 6-core Intel E7-4807, 64GB RAM, data on tmpfs
Implemented in Shore-MT, comparing systems:

O Baseline: traditional centralized logging

@ Aecther: state-of-the-art centralized logging

© Distributed logging : page/xct level + passive group commit

/750
TATP D 90 Xct level ——
|_
Update Location = 250 Page level ——
(stresstest) 3 Xct + PGC ——
< 300 Page + PGC
5 RN Aether —=m—
~3Xb€tter E 150 S S ced Baseline ———
o L | | |
4 8 16 24 32 4044
# Threads
30
TPC-C N Xct level ——
|_
Transaction Mix = Page level —
: S Xct + PGC ——
write-heav 2
( v) -b% Page + PGC
S Aether —=—
~2X better rE 5 Baseline ——
oL | | | |

4 8 16 24 32
# Threads



