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What? Traditional RDBMS doesn't scale on multicore, multi-socket hardware
Why?  Various centralized bottlenecks, especially logging
How?  Distributed logging + byte-addressable, non-volatile memory PCM = Memristor — NVDIMM
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It reduces buffer contention, but...
O Log space partitioning: by page or xct?
— Impacts locality, recovery strategy

® Dependency tracking: before commit,
T4 must persist log records written by:

— itself
— direct xct deps: T4 > T2
— direct page deps: T4 > T3
— transitive deps: T4 > {T3, T2} > T1
© Storage is slow
— T4 flushes all four logs upon commit
(instead of one)
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Solution: buffer log records in byte-addressable, non-volatile memory (de-stage to disk/flash)

" NVM: A brave new world of storage
= Persistent like disk/flash, byte-addressable like DRAM
= DIMM form factor, attached to the memory bus
" Performance similar to DRAM
= Available today: DRAM backed by flash/super-capacitor

Distributed logging and NVM challenges

O Log records only partially ordered
— Recovery needs total order within any log/page/transaction
Solution: logical clock style global sequence number (GSN)
— Update page, log and xct GSNs at each access

O NUMA effect — threads prefer to access local NVM node
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© Durability — CPU cache still volatile! Records must leave CPU
before commit, preferably without heavy dependency tracking

Solution: passive group commit
— Workers flush own caches, record dGSN, enqueue xct

— Commit daemon monitors min dGSN, dequeues durable xct
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" NVM as log buffers — log records durable once written
" No dependency-tracking
" No flush-before-commit

" Major distributed logging and NVM challenges
" Partial order of log records, NUMA effect, volatile CPU cache

Performance

mp» NVM allows a cheap d-log!

HW: 4-socket 6-core Intel E7-4807, 64GB RAM, data on tmpfs
Implemented in Shore-MT, comparing systems:

O Baseline: traditional centralized logging

@ Aecther: state-of-the-art centralized logging

© Distributed logging : page/xct level + passive group commit

/750
TATP D 90 Xct level ——
|_
Update Location = 250 Page level ——
(stresstest) 3 Xct + PGC ——
< 300 Page + PGC
5 RN Aether —=m—
~3Xb€tter E 150 S S ced Baseline ———
o L | | |
4 8 16 24 32 4044
# Threads
30
TPC-C N Xct level ——
|_
Transaction Mix = Page level —
: S Xct + PGC ——
write-heav 2
( v) -b% Page + PGC
S Aether —=—
~2X better rE 5 Baseline ——
oL | | | |

4 8 16 24 32
# Threads



