
 NVM as log buffers – log records durable once written
 No dependency-tracking
 No flush-before-commit
 Major distributed logging and NVM challenges
 Partial order of log records, NUMA effect, volatile CPU cache

Scalable Logging through Emerging Non-Volatile Memory
Tianzheng Wang and Ryan Johnson Department of Computer Science, University of Toronto

What? Traditional RDBMS doesn't scale on multicore, multi-socket hardware
Why? Various centralized bottlenecks, especially logging
How? Distributed logging + byte-addressable, non-volatile memory PCM – Memristor – NVDIMM

Distributed logging considered impractical

Transaction
threads

DRAM
Log buffer

Storage

Traditional, centralized logging

Reality

Ideal

on commit

Flush

A prohibitively slow
d-log based system!

Heavy
dep-tracking

I/O
overheads

 NVM: A brave new world of storage
 Persistent like disk/flash, byte-addressable like DRAM
 DIMM form factor, attached to the memory bus
 Performance similar to DRAM
 Available today: DRAM backed by flash/super-capacitor

Solution: buffer log records in byte-addressable, non-volatile memory (de-stage to disk/flash)

 Grab log buffer mutex

Write log records

 Release mutex

 Flush log buffer at commit

Group and async. commit?

- Better I/O performance

- But contention unchanged

It reduces buffer contention, but…

 Log space partitioning: by page or xct?

– Impacts locality, recovery strategy

 Dependency tracking: before commit,
T4 must persist log records written by:

– itself

– direct xct deps: T4  T2

– direct page deps: T4  T3

– transitive deps: T4  {T3, T2}  T1

 Storage is slow

– T4 flushes all four logs upon commit

(instead of one)

Log work (20%) Log contention (46%) Other work (21%)

CPU cycles: Lock manager Other contention

NVM allows a cheap d-log!

Distributed logging and NVM challenges

 Log records only partially ordered

– Recovery needs total order within any log/page/transaction

Solution: logical clock style global sequence number (GSN)

– Update page, log and xct GSNs at each access

NUMA
node 1

Transaction level: Page level:

 NUMA effect – threads prefer to access local NVM node

 Durability – CPU cache still volatile! Records must leave CPU
before commit, preferably without heavy dependency tracking

Solution: passive group commit
– Workers flush own caches, record dGSN, enqueue xct
– Commit daemon monitors min dGSN, dequeues durable xct

NUMA
node 2

NUMA
node 1

NUMA
node 2

P1

P2

a b c

d e f

 NUMA-friendly  Cross NUMA boundary

Commit queue

Get min dGSN: 8

on commit:
1. Flush local caches
2. Update local dGSN
3. Enqueue transaction

dGSN dGSN dGSN

Passive group commit daemon

Dequeue xct with
dGSN <= 8

Performance

TATP
Update Location

(stress test)

~3x better

HW: 4-socket 6-core Intel E7-4807, 64GB RAM, data on tmpfs

Implemented in Shore-MT, comparing systems:

 Baseline: traditional centralized logging

 Aether : state-of-the-art centralized logging

 Distributed logging : page/xct level + passive group commit

Transaction dGSN

Xct 1 5

Xct 2 10

TPC-C
Transaction Mix

(write-heavy)

~2x better

Contention for the single log
buffer is a serious bottleneck

a b c d e f g h

Partition log by page

a d c
Log 1 Log 2

e f
Log 3

g
Log 4

Partition log by xct

a e g
Log 1 Log 2

f d
Log 3

c
Log 4

T1 T2 T3 T4

T1 T2 T3 T4

