
Parallelizing Filter-Verification based
Exact Set Similarity Joins on Multicores

Fabian Fier B1, Tianzheng Wang2, Erkang Zhu3, and Johann-Christoph
Freytag1

1 Humboldt-Universität zu Berlin, Germany
{fier,freytag}@informatik.hu-berlin.de

2 Simon Fraser University, Canada tzwang@sfu.ca
3 Microsoft Research, USA ekzhu@microsoft.com

Abstract. Set similarity join (SSJ) is a well studied problem with many
algorithms proposed to speed up its performance. However, its scalability
and performance are rarely discussed in modern multicore environments.
Existing algorithms assume a single-threaded execution that wastes the
abundant parallelism provided by modern machines, or use distributed
setups that may not yield efficient runtimes and speedups that are pro-
portional to the amount of hardware resources (e.g., CPU cores). In this
paper, we focus on a widely-used family of SSJ algorithms that are based
on the filter-verification paradigm, and study the potential of speeding
them up in the context of multicore machines. We adapt state-of-the-art
SSJ algorithms including PPJoin and AllPairs. Our experiments using
12 real-world data sets highlight important findings: (1) Using the exact
number of hardware-provided hyperthreads leads to optimal runtimes for
most experiments, (2) hand-crafted data structures do not always lead
to better performance, and (3) PPJoin’s position filter is more effective
in the multithreaded case compared to the single-threaded execution.

1 Introduction

The set similarity join (SSJ) operation takes two collections (or a single collec-
tion) of records and finds all pairs of records with similarities greater than a
user-defined threshold. Many data management problems are modeled as SSJ,
such as fuzzy join of two tables on a pair of text columns, record deduplication to
remove highly similar near-duplicates, and plagiarism detection to find similar
sentences or paragraphs.

In particular, a fruitful line of research work has contributed to speeding up
filter-verification based SSJ algorithms [1,3,4,12]. The basic idea is to generate
candidate pairs of records, which are a superset of the result set. Computationally
cheap filters are used to keep the number of candidate pairs far below the size of
the cross product of the input collection(s). Then, a verification step computes
the similarity of each candidate pair. However, filter-verification approaches ei-
ther use single-threaded or shared-nothing, distributed computing paradigms
(e.g., MapReduce [6,11]). Neither approach fully exploits the parallelization po-
tential provided by modern multi-socket multicore machines. Single-threaded

2 F. Fier et al.

solutions waste the available parallelism on modern hardware. Distributed so-
lutions can use local parallelism by running multiple executors on one node,
but assume a shared-nothing architecture that replicates data structures such
as inverted indexes multiple times on the same machine, wasting memory and
introducing cache inefficiency [6]. Surprisingly, they often cannot compete with
single-threaded algorithms in terms of runtime and data set sizes [8].

In this paper, we explore the potential of parallelizing such filter-verification
based SSJ algorithms on modern multicore machines. These machines often fea-
ture high core counts over multiple processors and exhibit non-uniform mem-
ory access (NUMA) in which remote memory access is much slower than local
accesses. In this context, we adapt existing single-core SSJ algorithms to be-
come parallel algorithms and discuss the performance impact of various design
decisions such as thread placement, filtering and record inlining to improve lo-
cality.4 Experimentally, we show how local parallelization significantly speeds
up existing single-threaded approaches, without data replication and the high
complexity and cost of managing a cluster of machines. Furthermore, we find
some optimizations such as position filters can work even better in parallel SSJ
algorithms than in sequential algorithms.

We provide the necessary background in Section 2. We then describe our
approach to parallelizing SSJ algorithms in Section 3, followed by experimental
evaluation in Section 4. Section 5 concludes this paper.

2 Background

In this section, we first define the exact SSJ problem formally and survey state-of-
the-art algorithms and related work that parallelizes SSJ on different hardware
platforms. We then give background on the hardware platform we target at, i.e.,
multi-socket, multicore servers with large main memory.

2.1 Exact Set Similarity Join

There are two categories of SSJ problems: approximate SSJ and exact SSJ. For
approximate SSJ problems, it is acceptable to output pairs that are below the
similarity threshold, and miss pairs that are above the threshold. We focus on
the exact SSJ problem: the output pairs must be correct and there should be no
missing correct pairs.

Given two collections (sets), S and R, formed over the same universe U of
tokens (set elements), and a similarity function between two sets, sim : P(U)×
P(U) → [0, 1], the SSJ between S and R computes all pairs of sets (s, r) ∈
S × R whose similarity exceeds a user-defined threshold t, where 0 < t ≤ 1.
That is, the output is the set of all pairs (s, r) with sim(s, r) ≥ t. Following
previous work [8,1,12] on SSJ algorithms, we hereafter exemplarily focus on
all-pairs self-joins using the inverse Jaccard distance as a similarity function.

4 Our implementation is available at https://github.com/fabiyon/ssj-sisap.

https://github.com/fabiyon/ssj-sisap

Parallelizing Set Similarity Joins on Multicores 3

Algorithm 1: Sequential AllPairs algorithm.

Data: R, invertedIndex, t
Result: {(r, s)|(r, s) ∈ R×R, r 6= s, sim(r, s) ≥ t}

1 foreach r ∈ R do
2 candidates← {}
3 foreach token ∈ GetPrefix(r, t) do
4 foreach s ∈ GetList(invertedIndex, token) do
5 candidates← candidates ∪ {s}

6 foreach s ∈ candidates do
7 Verify(r, s, t)

However, all subsequently described approaches can be adapted to the R × S
join and are applicable to other set similarity measures such as Cosine or Dice.
All our datasets are a single collection R of sets consisting of sorted tokens. In
the following, we use the terms set and record interchangeably.

2.2 State-of-the-Art Approaches

The exact SSJ computation can be expensive: to compute the SSJ over R, |R|·|R|
set comparisons need to be performed in the worst case. To speed up SSJ, a line of
prior work focused on minimizing the number of candidates generated. Efficient
techniques for SSJ use filters to avoid comparing hopeless record pairs, i.e., pairs
that provably cannot pass the threshold [1,4,12]. We distinguish two classes of
filters. Filter-verification techniques use set prefixes or signatures followed by
an explicit verification of candidate pairs (e.g., [1,12]). Metric-based approaches
regard each record as a point in space with each token as dimension. It partitions
the space such that similar records fall into the same or nearby partitions (e.g.
[7]). The study in [6] suggests that this approach is not efficient. Thus, we focus
on the filter-verification approach.

To generate candidate pairs, for each set r in the input collection R, the
filter-verification approach aims to find other sets s in R which contain tokens
(set elements) from r. Inverted indexes are used to speed up the process. For a
given similarity threshold t and a set R, we only need to probe the inverted index
for a subset of tokens in R (i.e., the prefix) to discover all possible candidates.
For a Jaccard similarity threshold t, the size of the prefix can be computed as
|R|−d|R| ·te+1 (referred to as prefix filter [4]). Any prefix-sized subset of tokens
in R can be used as prefix. Thus, choosing the subset of the least frequent tokens
would be the most efficient and likely yield the least number of candidates. As
a result, most exact SSJ algorithms sort tokens in every set using inverse global
token frequency, so that the prefix can be obtained by reading the inverted lists
of the tokens starting from the beginning.

Several SSJ algorithms use prefix filtering, such as AllPairs [1], PPJoin [12]
and GroupJoin [3]. Algorithm 1 shows the major steps of AllPairs. In lines

4 F. Fier et al.

2–5, the candidates of set R are found from the inverted lists of the prefix of R;
at lines 6–7 the exact similarity of each pair (r, s) is computed. PPJoin extends
AllPairs by using a position filter which helps remove candidates based on
the position of the first intersecting tokens in R and S [12]. GroupJoin further
extends PPJoin by merging identical prefixes over multiple sets; this avoids the
re-computation of the same overlaps [3]. MPJoin [10] introduces a removal filter.
It disregards entries in the inverted index that do not pass future applications of
the position filter. It uses the observation that records are indexed and probed in
ascending order in length such that the required overlap increases monotonically.

Besides the CPU-based algorithms described previously, some recent work
focuses on speeding up SSJ using different hardware platforms, notably GPUs.
Quirino et al. proposed a standalone GPU algorithm that runs both candi-
date generation and verification within GPU using a block-based probing ap-
proach [9]. Bellas et al. proposed a different framework that uses GPU for can-
didate verification, while keeping candidate generation a CPU task [2]: working
under a much-limited GPU memory, candidate pairs are verified by GPU in
chunks. The experimental result in [2] indicates that the CPU-GPU solution
out-performs the standalone GPU algorithm in [9]. It batches candidate pairs
for verification when the number of candidates are large, which is the case for
low similarity thresholds. As noted by the authors of [2], the bottleneck in SSJ is
often the candidate generation rather than candidate verification, thus the accel-
eration provided by GPU is limited. In comparison, our work exclusively focuses
on the parallelization potential of multi-core hardware in combination with ex-
isting filtering approaches and implementation optimizations – it is orthogonal
to the recent work on GPU-based SSJ.

2.3 Modern Multicore Systems

We target single-node shared memory systems with multiple processors and a
high core count. All processors in such a system are connected through an inter-
connect (e.g., Intel QPI) that implements a coherence protocol. Each processor
can access it’s local memory through an integrated memory controller. Local
memory access is fast, while accessing remote memory attached to other proces-
sors on the same machine, comes with additional latency. This is referred to as
“NUMA effect.”

Modern processors use caches for performance. There are usually three levels
of caches with a total size of tens of MBs. The last level cache (LLC) is usu-
ally shared among all cores in a processor. The first-level cache L1 is typically
small and core-local. Modern processors usually provide hyperthreading. The
idea is to better utilize a processor by allowing two processes to concurrently
access different resources of one core, i. e. the arithmetic logic unit (ALU) or the
floating point unit. Another important technique for performance is prefetching.
Processors probabilistically read data from main memory which is likely to be
used subsequently by a running program. Prefetching can hide memory stalling,
i.e., a core waiting for data to arrive from main memory. Prefetching is done
automatically or explicitly as instructed by software.

Parallelizing Set Similarity Joins on Multicores 5

Data

B
lo

ck
s

Data

Filter+
VerifyFilter+

VerifyFilter+
Verify

Filter 1

Filter 2

Verification

Threads Threads

Fig. 1. Data-parallel (left) vs. pipelined (right) execution models.

3 Parallelizing Filter-Verification based Set Similarity
Join

We choose the AllPairs algorithm [1] as the basis filter-verification algorithm.
First, we discuss the execution model (i.e., how to assign threads tasks to run
SSJ algorithms), and then discuss the design considerations in the context of
multicores. We show the impact of different design decisions experimentally in
Section 4.

3.1 Execution Model

An SSJ algorithm can be parallelized using data parallelization or pipelining.
Figure 1 shows the basic idea of each design choice. In data parallelization, the
input data is partitioned into disjoint batches consist of a tunable number of
records. Each thread then runs the AllPairs algorithm (or PPJoin when the
position filter is activated) on a different batch. Multiple threads can proceed in
parallel without conflicts. In practical implementations, a pool of threads can be
created upon system start. After a batch is processed, the thread continues with
the next batch, avoiding the cost of creating and destroying threads at runtime.

Another possible parallelization model is pipelined execution. The SSJ task
can be subdivided into sub-tasks, each of which can be executed on a dedicated
thread. The entire join algorithm is finished cooperatively by multiple threads
which communicate through message passing.

Compared to data parallelization, pipelining requires frequent inter-thread
communication and synchronization using message queues. We experimentally
verified that such overheads were too high to make the parallel algorithm effi-
cient. Therefore, in the rest of the paper we focus on data parallelization.

3.2 Design Considerations

Under the data-paralell execution mode, we identify four important issues in
designing parallel SSJ algorithms.

Filters. It was not clear how filter techniques used in single-core algorithms
may behave on multicores. Prior study [8] has shown that the prefix filter in
AllPairs is the most effective filter technique. Besides the prefix filter, AllPairs
also includes the important length filter. Furthermore, we explore the use of
PPJoin’s position filter. Our parallel SSJ algorithm ignores by default the entries

6 F. Fier et al.

in the inverted index which cannot be similar due to length differences. This is
comparable to the deletion filter of MPJoin, which deletes such entries in the
inverted index which cannot pass the position filter for following probe records.
Since it has a significant positive impact in all our experimental cases, we decided
to use this optimization by default.

Record Inlining. Records consist of a record ID (integer) and a variable
number of integer tokens. A straightforward record implementation is to use a
struct which contains the id and a pointer to an array of integer tokens. In
order to access the tokens, the pointer has to be dereferenced first which often
incurs expensive cache misses and CPU stalls as the processor waits for data to
be fetched from memory to CPU caches. By inlining, we co-locate the tokens
with the record ID without such extra layer of indirection. We expect this to be
more efficient as it avoids pointer-chasing during record access. AllPairs reads
the records including their tokens one-by-one in the filter phase, so we expect
a positive effect on runtime. On the other hand, inlining introduces overhead
when accessing records randomly due to the variable-length tokens. For random
reads, we introduce a pointer array that maps token IDs to the location of the
corresponding record in the record array. AllPairs accesses records randomly
in the probe phase. As a result, in the probe phase, both variants (with and
without inlining) do pointer chasing once per record.

Thread Affinity. Threads running SSJ tasks may get migrated among cores
by the OS scheduler because of various events if they are not pinned to specified
hardware threads or cores. This can degrade performance due to the NUMA
effect in case a thread is migrated to a socket but the data it is accessing is on
another socket.

Batching. In the data-parallel execution model, each thread runs the SSJ
algorithm by batches. The batch size controls the number of records that are
joined on one thread without synchronizing with other threads. Thus, we expect
the batch size to influence the runtime.

4 Experiments

In this section, we empirically quantify the impact of the design considerations
discussed in the previous section.

4.1 Setup

Our implementation uses C++11 and allows tuning of various parameters as
described in the previous section. We run experiments on a server with two
Intel(R) Xeon(R) CPU E5-2620 processors clocked at 2.0GHz and 32 GB of
DRAM. Each CPU has six cores (12 hyperthreads) and 32KB/256KB/15MB
of L1/L2/L3 caches. We use the machine exclusively for the experiments. Since
system processes and hardware events (network etc.) can influence the measure-
ments, we repeat each experiment three times and report the average to even
out such effects.

Parallelizing Set Similarity Joins on Multicores 7

Datasets. We use 10 real-world and two synthetic datasets from a prior
non-distributed experimental survey [8]. Table 1 summarizes the characteristics
of these datasets. We omit more detailed descriptions of the datasets available
elsewhere [8]. Similar to prior work [8], we assume that records in the input
collection R are sorted by ascending lengths. This is important for applying
length filter and reducing index accesses. Tokens within each record are sorted
by global token frequency. Using the least frequent tokens for the prefix reduces
the number of candidates. There are no exact duplicates in the datasets; finding
exact duplicates is an important but orthogonal problem, and does not impact
our design. In order to analyse the runtime behavior on larger datasets we scale
each dataset 5 and 10 times using the method from [11]. We copy each record n
times, and in the copied records, each contained token is replaced with the next
token in the global token frequency. Token lengths and distributions remain
unchanged. Note that the approach does not introduce duplicates. Similar to
prior work on sequential SSJ algorithms, we assume the input datasets fit in
main memory: modern multicore servers often feature 100s of GBs or even TBs
of main memory. Even if the dataset does not fully fit in memory, we expect for
a majority of workloads, the working set will fit in memory such that during SSJ
execution no disk I/O is involved on the critical path.

Metrics. We vary the Jaccard similarity threshold among 0.6, 0.75, and 0.9.
We assume these are sensible values for many SSJ applications. We measure
the runtime within our program from including the index build until the join
computation is completed. We do not store the join result itself, only its size.
We run our code with all combinations of variables described in the previous
section and report on the results in the following. In each run, we also profile the
execution using perf to gather metrics such as cache misses. This adds a small
and constant amount of overhead, however, it does not affect relative runtimes,
which are important in our discussion.

Table 1. Characteristics of the experimental datasets.

recs Record length Universe ·103

Dataset ·105 max avg size maxFreq
Size (B)

AOL 100 245 3 3900 420 396M

BPOS 3.2 164 9 1.7 240 17M

DBLP 1.0 869 83 6.9 84 41M

ENRO 2.5 3162 135 1100 200 254M

FLIC 12 102 10 810 550 92M

KOSA 6.1 2497 12 41 410 46M

LIVE 31 300 36 7500 1000 873M

NETF 4.8 18000 210 18 230 576M

ORKU 27 40000 120 8700 320 2.5G

SPOT 4.4 12000 13 760 9.7 41M

UNI 1.0 25 10 0.21 18 4.5M

ZIPF 4.4 84 50 100 98 33M

8 F. Fier et al.

4.2 Speedups and Scalability

We first investigate how the number of threads affects runtime.

Speedup over Single-Core Execution. Using multithreading is benefitial
for the SSJ runtime under all combinations of our input datasets and thresholds.
We observed speedups of roughly 2-10 times on our hardware. We omit the
detailed results for brevity. The absolute runtimes of the multithreaded version
vary between rougly 0.2 and 262 seconds for all datasets and thresholds. For each
combination of input and threshold, we evaluated the parameter combination of
number of threads, core affinity, position filter, inlining, and batch size leading
to the lowest runtime. Overall, the best runtimes were achieved by using 24 or
32 threads. 70% of the best runtimes were achieved for a batch size of 125 or
250. The position filter is effective for most (70%) of the cases. However, we did
not find an optimal parameter configuration for all the combinations of dataset
and threshold. In the following, we discuss the influence and interdependencies
of and between the variables and draw conclusions under which conditions which
variable values are favorable.

Scalability. Figure 2 shows the speedup of our experiments relative to the
number of threads. Without loss of generality we only consider results with the
following parameters: no inlining, batch size 500, no CPU affinity, and no posi-
tion filter. Other parameter combinations show a similar behavior, so we omit
them here. For the majority of results, the speedup increases linearly up to 12
threads (number of physical cores). Starting with 16 threads, we record decreas-
ing speedups. The optimal runtime is achieved at 24 threads for all datasets
except ORKU and LIVE (0.75 and 0.9 similarity thresholds), and ENRO (0.9
similarity threshold). Since the machine has 12 physical cores, this result shows
that SSJ algorithms generally benefit from hyperthreading which can hide mem-
ory access latency caused by cache misses. This is not a trivial result, as hyper-
threading was shown to be only benefitial in a limited range of cases [5].

The results show that the scalability varies depending on the input dataset,
the threshold, and the number of threads. Note that SPOT is an exception
showing a hard limit at a speedup of 2, independent of the threshold and the
number of threads. We found that the scability behavior is related to index
lengths (the number of record IDs for each token). For SPOT, the average index
length varies between 2.19 and 0.82 (for thresholds 0.6 and 0.9, respectively).
The index lengths of other datasets and thresholds varies between roughly 1500
(for UNI and threshold 0.6) and 2.6 (AOL, threshold 0.9). Only ENRO, FLIC,
LIVE and ORKU reveal comparably short index lengths for a threshold of 0.9.
The low speedup of SPOT can be explained by data access patterns which can
improve or prevent prefetching. Our implementation probes the inverted index
for each prefix token in each record. If there are sufficiently many entries in the
postings list, the CPU can guess that they are needed subsequently. If there is
only a small number contained, prefetching does not apply and wait can occur.
Longer postings lists in the inverted index give better scaleups as we show in
the following section.

Parallelizing Set Similarity Joins on Multicores 9

●

●

●

●
●

● ● ●

AOL

0
2

4
6

8

●

●

●

●
●

● ● ●

●

●

●

● ●
● ● ●

●

●

●

●
●

● ● ●

BPOS

●

●

●

●
●

● ● ●

●

●

●

●
●

●
● ●

0.6

●

●

●

●
●

● ● ●

DBLP

●

●

●

●
●

● ● ●

●

●

●

●

●

● ● ●

0.75 0.9

●

●

●

●
●

● ● ●

ENRO

0
2

4
6

8

●

●

●

● ●
● ●

●

●
●

● ● ● ● ● ●

●

●

●

●
●

● ● ●

FLIC

●

●

●

● ●
● ● ●

●
●

● ● ● ● ●
●

●
●

●

●
●

● ● ●

KOSA

●

●

●

●
●

● ●
●

●

●

●

● ●
● ●

●

●

●

●

●
●

● ● ●

LIVE

0
2

4
6

8

●

●

●

●
● ● ●

●

●
●

● ● ● ● ● ●

●
●

●

● ●
● ● ●

NETF

●

●

●

●
●

● ● ●

●

●

●

●
●

● ● ●

●

●

●

● ●
● ● ●

ORKU

●

●

●
● ●

● ●
●

●
● ● ● ●

● ● ●

●
●

● ● ● ●
●

●

SPOT

0 20 40 60

0
2

4
6

8

●
● ● ● ● ● ● ●

●
●

● ● ● ● ● ●

●

●

●

●
●

● ● ●

UNI

0 20 40 60

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

● ●
●

ZIPF

0 20 40 60

●

●

●

●
● ●

●
●

●

●

●
● ● ● ●

●

Number of Threads

S
pe

ed
up

Fig. 2. Speedup under various datasets and similarity thresholds.

10 F. Fier et al.

4.3 Impact of Data Size

We enlarge our datasets synthetically as described in Section 4.1. With 5× larger
data, the runtime increases between 3.6× and 44×; the numbers for 10× larger
data are 6.1× and 182×. In most cases, the runtime does not increase linearly
with respect to data size. This is expected because SSJ is a quadratic opera-
tion. The filter-verification framework only optimizes the operation depending
on favorable data characteristics.

Only ENRO, FLIC, LIVE, ORKU, SPOT, and ZIPF show roughly a linear
runtime increase for a threshold of 0.9; for SPOT we observe linear runtime in-
creases under thresholds 0.75 and 0.6. As we have shown in the previous section
with the original datasets, SPOT was not well parallelizable. The relative run-
time increase for 5/10× larger data is below 5/10× for all thresholds, hence the
scalability is better for the enlarged datasets. With larger datasets, the postings
list lengths in the inverted index also increase. We attribute the reason to be
that this makes it easier for the CPU to prefetch the larger SPOT datasets.

4.4 Impact of Inlining

Inlining only has a positive impact on runtime for a minority of our experiments.
It has a generally positive impact on experiments with the AOL dataset. Fig-
ures 3-4 show the runtime gain of AOL compared to the non-inlined version
relative to the parameters method (single-threaded [allp], multithreaded [allph],
multithreaded with CPU affinity [allps]) and threshold. There are no clear inter-
dependencies to the other parameters number of threads, batching and position
filter. The figures show that the biggest runtime gain occurs for a threshold of
0.6. Furthermore, only the multicore implementations profit from inlining. BPOS
shows a similar behavior like AOL. We omit the figures for brevity. DBLP shows
only small positive effects using inlining. The biggest runtime gain occurs for a
threshold of 0.9. For KOSA, there is only a positive effect at 0.6. SPOT only
shows a positive effect for 0.9. Inlining has a generally neutral or negative effect
on the runtimes of ENRO, FLIC, LIVE, NETF, ORKU, UNI, and ZIPF.

We expected inlining to have a positive effect on the filter phase, because it
saves pointer chasing to obtain the prefix tokens. It helps the CPUs to perform
prefetching. However, if prefixes are much shorter than the complete records,
many tokens must be skipped to read the next record. As shown in Table 1,
AOL has the smallest average record size of 3. For such short lengths, the prefix
is usually not much shorter than the record. Thus, prefetching may increase the
runtime if there are many short records in the input dataset.

4.5 Impact of Batching

We grouped the experimental results by all variables except the batch size and
computed the percentaged difference between the lowest and the highest runtime.
It varies between 0.7% and 1%. Thus, we consider the impact of batching on the
runtime as rather low. Our runtime experiments suggest that the batch size of

Parallelizing Set Similarity Joins on Multicores 11

●

●

allp allph allps

−
5

0
5

10

Method

P
er

fo
rm

an
ce

 G
ai

n
(P

er
ce

nt
)

Fig. 3. AOL: Runtime gain of inlining
relative to single-threaded (allp), multi-
threaded without (allph), and with CPU
affinity (allps).

●

●

●

●
●

●

●

●

●

0.6 0.75 0.9

−
5

0
5

10

Similarity Threshold

P
er

fo
rm

an
ce

 G
ai

n
(P

er
ce

nt
)

Fig. 4. AOL: Runtime gain of inlining rel-
ative to thresholds.

125 is the best in most cases (23 times) and 250 is the second best (10 times). We
could not find a pattern that tells us when which batch size is optimal. It seems
to be a complex relation with other variables and with the data characteristics.

4.6 Position Filter

Using position filter is benefitial in most cases with thresholds of 0.6 and 0.75.
Figure 5 shows the relative runtime gains using the position filter grouped by
threshold. For a threshold of 0.6 the runtime gain varies between 20-50% except
for SPOT, where the median is close above zero. The position filter only has a
small impact on SPOT for all thresholds. This can be explained by the number
of candidates. For SPOT 0.6 the position filter saves roughly 8% of candidates,
or in absolute numbers 50 000. The verification of this number of additional
candidates is cheaper than to filter them out before. On other datasets this filter
saves 28% of candidates on average. Only for AOL, the savings with the position
filter are equally low with 7%. However, the absolute number of saved candidates
is orders of magnitude higher with 86 600 000, so the position filter pays off for
AOL. The maxFreq of tokens (cf. Table 1) gives a hint on the effectiveness of
the prefix filter. The most frequent token in SPOT occurs roughly 9 700 times,
which is very low compared to all other datasets. This implies that the prefix
filter generates few candidates. The position filter only pays off if the prefix filter
is less effective, which is the case for all other datasets and thresholds below 0.9.
For a threshold of 0.75, the gain varies between 5-50% for all datasets except for
SPOT (as discussed before) and AOL. For AOL the number of saved candidates
relative to the number of candidates without position filter is 0.3% and thus
comparably low. For a threshold of 0.9, all gains are close to zero except for
DBLP and NETF where there is still a gain of 40% to 50%. One explanation is
also the number of saved candidates.

12 F. Fier et al.

●●

●●●●

●
●

●

●

●
●

AOL

−
10

20
50

●

●

BPOS
●

DBLP

●●●

ENRO

−
10

20
50

●●●●
●

●

●

●

●

●

●

●●

FLIC KOSA

●

LIVE

−
10

20
50

NETF ORKU

●

●

SPOT

0.6 0.75 0.9−
10

20
50

●

UNI

0.6 0.75 0.9

●

●

●

●

ZIPF

0.6 0.75 0.9
Threshold

S
pe

ed
up

Fig. 5. Runtime gain/loss of using the position filter grouped by similarity threshold.

Parallelizing Set Similarity Joins on Multicores 13

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

2 4 8 12 16 24 32 64

−
10

0
10

20

Number of Threads

P
er

fo
rm

an
ce

 G
ai

n
(P

er
ce

nt
)

Fig. 6. Runtime gain/loss of using CPU
affinity on the ENRO dataset.

●

●
●

●

●● ●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●
●

●

2 4 8 12 16 24 32 64

0
20

40
60

Number of Threads

LL
 C

ac
he

 M
is

s
G

ai
n

(P
er

ce
nt

)

Fig. 7. Reduction of LLC misses using
CPU affinity on the ENRO dataset.

We compared the effect of the position filter between the single-threaded SSJ
vs. the multithreaded (using average runtimes). For brevity, we omit the detailed
results. The effect is the same for the majority of cases. However, for AOL 0.75,
FLIC 0.9, KOSA 0.9, ORKU 0.9, and SPOT 0.6 and 0.75 the position filter has
a positive effect in the multicore case, while it does not have a positive effect in
the single-core case. This observation suggests that the overhead of the position
filter pays off more often in the multicore case. There is no obvious relationship
between the runtimes using the position filter and the remaining parameters
inlining, batching, the number of threads, and CPU affinity.

4.7 Impact of Thread Placement

By statically assigning the CPU affinity we expected a more optimal use of the
cores and prevent thread migrations. However, our experiments reveal that stat-
ically assigning the CPU affinity is only benefitial for the runtime in a minority
of cases. Figure 6 shows the performance gain using CPU affinity for ENRO
exemplarily. There is a performance gain for 2 to 4 threads. This gain decreases
down to 12 threads, stays nearly the same up to 24 threads, and decreases for
more threads. This can be explained by the saved cache misses. Figure 7 shows
the percentage of saved LLC misses with CPU affinity. The runtime is gener-
ally the best from a number of threads starting from 24. Our results show that
manually setting CPU affinity is not very helpful for optimizing SSJ algorithms.

5 Conclusion

Filter-verification based SSJ algorithms were either single-threaded or distributed,
wasting much computing capability provided by multicore processors. In this pa-
per, we fill the gap to explore the potential of parallelizing SSJ on multicores. We
propose a data-parallelization execution model along with various design consid-
erations, including the use of filters, CPU affinity, record inlining and batching.

14 F. Fier et al.

Experiments using real-world datasets revealed several important insights. Using
multithreading improves SSJ runtime by 2–10× on a 12-core machine; the opti-
mal number of threads is often the number of hardware threads (hyperthreads).
Surprisingly, unlike in many other workloads, using hand-crafting data struc-
tures (e.g., using inlining) or CPU affinity do not always lead to significantly
higher performance. We also find that the position filter is more effective than
in the single-core scenario and should generally be used for parallel SSJ. One
interesting direction of future work is to use a multithreaded CPU and GPU
parallelization for the computation of the SSJ and find the optimal point (i. e.,
number of candidates) from where the usage of the GPU is benefitial.

Acknowledgements This work was partially supported by a LexisNexis re-
search grant. We thank Panagiotis Bouros for the sequential SSJ source code.

References

1. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Pro-
ceedings of the 16th international conference on World Wide Web. pp. 131–140.
ACM (2007)

2. Bellas, C., Gounaris, A.: Exact set similarity joins for large datasets in the GPGPU
paradigm. In: Neumann, T., Salem, K. (eds.) Proceedings of the 15th International
Workshop on Data Management on New Hardware. pp. 5:1–5:10. ACM (2019)

3. Bouros, P., Ge, S., Mamoulis, N.: Spatio-textual similarity joins. Proceedings of
the VLDB Endowment 6(1), 1–12 (2012)

4. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins
in data cleaning. In: Proceedings of the 22nd International Conference on Data
Engineering (ICDE). pp. 5–5. IEEE (2006)

5. Drepper, U.: What every programmer should know about memory. Red Hat, Inc
11, 2007 (2007)

6. Fier, F., Augsten, N., Bouros, P., Leser, U., Freytag, J.C.: Set similarity joins on
MapReduce: an experimental survey. PVLDB 11(10), 1110–1122 (2018)

7. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM Transactions on
Database Systems (TODS) 33(2), 7 (2008)

8. Mann, W., Augsten, N., Bouros, P.: An empirical evaluation of set similarity join
techniques. PVLDB 9(9), 636–647 (2016)

9. Quirino, R.D., Ribeiro-Júnior, S., Ribeiro, L.A., Martins, W.S.: Efficient filter-
based algorithms for exact set similarity join on gpus. In: Hammoudi, S., Smialek,
M., Camp, O., Filipe, J. (eds.) Enterprise Information Systems - 19th International
Conference, ICEIS. Lecture Notes in Business Information Processing, vol. 321, pp.
74–95. Springer (2017)

10. Ribeiro, L.A., Härder, T.: Generalizing prefix filtering to improve set similarity
joins. Information Systems 36(1), 62–78 (2011)

11. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using mapre-
duce. In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. pp. 495–506. ACM (2010)

12. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient similarity joins for near-
duplicate detection. ACM Transactions on Database Systems (TODS) 36(3), 15
(2011)

	Parallelizing Filter-Verification basedExact Set Similarity Joins on Multicores

