—

Hewlett Packard
Enterprise

n

b

RRRRR

UNIVERSITY OF

TORONTO

Mostly-Optimistic Concurrency Control
for Highly Contended Dynamic Workloads on 1000 cores

Tianzheng Wang, University of Toronto
Hideaki Kimura®, Hewlett Packard Labs

* Currently with Oracle

OLTP on modern & future hardware

u| Multi-socket
B g’ Tens of cores

=Ty HPE Superdome X
&l | 16 sockets, 576 HW threads

CRAY XC
== B o
E- -~ @@== The Machine Knights
o The Machine Landing

Very high parallelism
Need lightweight concurrency control (CC)

—

Hewlett Packard
Enterprise

UNIVE

¥ TO RONTO 2

Modern Optimistic CC 101 L m;ij/W
Database [.NNEE

3. Commit/abort

Transaction 1 Transaction 2
Read set: {A, B} Read set: {A, B}
Write set: {A”} Write set: {B’}
Read A
Read A Read B Lock(B)
U Read B Write B’ A, B changed?
E Write A’ Commit B=B
it? Unlock(B
Commlt.\ Lock(A) (B)
A, B changed?
v Unlock(A)
Abort

—

Hewlett Packard
Enterprise

UNIVERSITY OF

TORONTO 3

i
a8 88
9

Why does OCC work well?

Only lock writes
=>» No shared memory writes for reads

Only lock at commit time

Sort writes before locking
=>»No deadlock possible

Simplifies lock implementation

—

s

&%
ewlett Packard UNT
rise \1

H VERSITY OF
Enterp > TORONTO

High contention: OCC doesn’t work
— 256 threads + 50 records YCSB, 10 ops/tx

orts

0 2 4 6 8 10
Writes (out of 10 in total)
s & s Reads not protected

Mostly-Optimistic Concurrency Control

Key idea: protect hot records with locks

|

High-cont.:
2PL good at

| . ' MOCC:
Low contention: OCC good at best(2PL) + best(OCC)

Only lock hot records (keep OCC’s benefits)
Must lock as of the access

Could Need better locks
deadloc New sync.
— ® primitive
6

ewlett Packard
rise

H e UNIVERSITY OF
Enterp b TORONTO

Must only lock hot records

— Read-only, 256 threads

[H
-
-

Interconnect
flooded

Throughput (MTPS)
-
o

2 (1) 16 (2) 60 (4) 288 (16)
CPU Cores (# Sockets)

— %

s

Hewlett Packard UNIVERSITY OF
Enterprise & TORONTO ,

Less physical contention with
approximate counter*

Real temperature
~= 9pTemp

Page

Al B ..

Increment upon abort
with prob. = 1/2rTemp

Reduces cache line invalidation
Easy to tell really hot records/pages
Saves space

* R. Morris. Counting large numbers of events in small registers. CACM 1978

—

H
En

ew

t

erp

lett Packard
rise

&%
TORONTO

Lock(hot) re-introduces deadlocks

Hot records ﬂ

Transaction 1 Transaction 2
Read set: {B} Read set: {A}
Write set: {A”} Write set: {B’}
X-Lock(A X-Lock(B
V Write A /- ock(A) Write B /- ockiB)
£ Read B Read A
|_
_ S-Lock(B) \- S-Lock(A)
- Wait for T2 - Wait for T1
Worse: no control over application footprint

Hewlett Packard UNIVERSITY OF
Enterprise & TORONTO 9

Problem: locks acquired out-of-order

i.e., Some locks acquired too early

Write B /- X-Lock(®)
v Read A
£
= _ S-Lock(A)
- Wait for T1

What if T2 Unlock(B) now?

—
Hewlett Packard &) UNIVERSITY OF
Enterprise 2 TORONTO 0

&

Canonical mode (CM):

All locks acquired in order
< Alphabetical, address...

Goal: keep transaction in canonical mode

Problems

1. Restore canonical mode
2. Maintain canonical mode on retry

—

s

ewlett Packard UNT
rise \1

H VERSITY OF
Enterp > TORONTO

11

Restore canonical mode

Eeaj é Unlock C

i €a / Lock(B)

Transaction 1 cead B

Read set: {A, C}

Write set: {} v

Locks held: {A, C} E Non
Breaking twophase

canonical
mode

Non-twophase locking + OCC verification

- o
Hewlett Packard UNI
= 4
126

Enterprise 2 TORONTO 12

Retrospective lock list:

A safety net upon retry
Keep the footprint and lock at retry

Read A

Read C
Read set: {A, C} Read B

Write set: {} Abort
Locks held: {A, C}

1st run

Time

Retry

Read set: {}

Write set: {}

Locks held: {}
Retro. list: {A, B, C}

- o
Hewlett Packard UNI
b3 4
23]

Enterprise & TORONTO

Retrospective lock list:

A safety net upon retry
Keep the footprint and lock at retry

1st run

Read set: {A, C}
Write set: {}
Locks held: {A, C}

Retry
Read set: {A, B, C}
Write set: {}

Locks held: {}
Retro. list: {A, B, C}

—

Hewlett Packard
Enterprise ¢

i

5y TORONTO

&

2

Time

Read A
Read C

Read B

Abort

Read(A) — Check RLL, Lock A

Lock(C)?
‘x Check RLL
Lock B

Lock C

No risk of deadlock

14

Native locking

— No centralized lock tables or blocking

— Synchronization primitive directly as database locks

Mode Description Use in MOCC

Read/- Allows concurrent read- | All cases

Write ers. Write 1s exclusive.

Uncond- | Indefinitely wait until ac- | Canonical mode.
itional quisition.

Try Instantaneously gives up. | Non-canonical mode.

Does not leave gnode.

Record access.

Asynch- | Leaves gnode for later

ronous

check. Allows multiple
requests in parallel.

Non-canonical mode.
Record access and pre-
commit (write set).

— MOCC queuing lock = MCS RW + MCS timeout

—

Hewlett Packard
Enterprise

UNIVERSITY O
a8 88
\15,

23]

TORONTO

15

Evaluation

— HW: four machines of varying scale |
Model EB840 2820 DL580 GryphonHawk

— YCSB for high contention workloads
— 10 random RMWs, vary # of writes, 50 records

— More results/CC schemes in the paper
—TPC-C: few conflicts = same as OCC

—
ewlett Packard UNIV
rise

H a ERSITY OF
Enterp ¥ TORONTO 16

MOCC keeps the best of OCC

Read—only YCSB MOCC —e— PCC
OCC -8 Dreadlock —*—

—

-

o
|

=
o
IIIII| T T TTTH

110MTPS

:O.65I\/ITPS>

[EN

0.1 |
2 (1) 16 (2) 60 (4) 288 (16)

CPU Cores (# Sockets)

» TORONTO 17

YCSB Throughput (MTPS)

—

H
Enterp &

Keeps away the worst of OCC

Read-write YCSB

= =
o O
=N

Throughput (MTPS)

ﬁr_nﬁy/g
' d

~deadlocks ~
0 2 4 6 8 10

. # Writes (out of 10 in total)

» TORONTO 18

—

H
Enterp

TPC-C results

— Aggregate of all transactions

Scheme | Throughput [MTPS+Stdev] | Abort Ratio
MOCC 16.9+0.13 0.12%
FOEDUS 0.12%
PCC 0. TE0. 0.07%
ERMIA 3.94:04 0.01%

Almost no overhead under low contention

—

Hewlett Packard é UNIVERSITY OF
Enterprise & TORONTO -

Qs

Robust CC needed for OLTP

Mostly-optimistic concurrency control
= best(2PL) + best(OCC)

Protect hot records with locks
1. Approx. counter for temperature
2. Non-twophase lock + retrospective lock list
3. MOCC queuing lock

Find out more in our paper and code repo
https://github.com/HewlettPackard/foedus code

— &
=
:
)

HowlettPackerd &5 TORONTO Thank you!

