
Mostly-Optimistic Concurrency Control
for Highly Contended Dynamic Workloads on 1000 cores

Tianzheng Wang, University of Toronto

Hideaki Kimura*, Hewlett Packard Labs

* Currently with Oracle

OLTP on modern & future hardware

HPE Superdome X
16 sockets, 576 HW threads

CRAY XC
with

Knights
Landing

Multi-socket
Tens of cores

Very high parallelism
Need lightweight concurrency control (CC)

HPE
The Machine

2

Transaction 1

Modern Optimistic CC 101

Database BA

Ti
m

e

Read A
Read B
Write A’
Commit?

Read set: {A, B}
Write set: {A’}

Transaction 2

Read set: {A, B}
Write set: {B’}

Read A
Read B
Write B’
Commit

Lock(B)
A, B changed?
B = B’
Unlock(B)

Lock(A)
A, B changed?
Unlock(A)
Abort

1. Local R/W
2. Verify
3. Commit/abort

3

Why does OCC work well?

Only lock writes
 No shared memory writes for reads

Only lock at commit time

Sort writes before locking
No deadlock possible

Simplifies lock implementation

4

High contention: OCC doesn’t work

– 256 threads + 50 records YCSB, 10 ops/tx

5

> 98%
aborts

Reads not protected

Key idea: protect hot records with locks

Only lock hot records (keep OCC’s benefits)
Must lock as of the access

Need better locks

Mostly-Optimistic Concurrency Control

Could
deadlock

6

New sync.
primitive

Low contention: OCC good at

High-cont.:
2PL good at

MOCC:
best(2PL) + best(OCC)

Must only lock hot records

– Read-only, 256 threads

7

Interconnect
flooded

Less physical contention with
approximate counter*

* R. Morris. Counting large numbers of events in small registers. CACM 1978

Page

BA

pTemp

…

Real temperature
~= 2pTemp

Increment upon abort
with prob. = 1/2pTemp

Reduces cache line invalidation
Easy to tell really hot records/pages

Saves space

8

Lock(hot) re-introduces deadlocks

Hot records BA

Transaction 1

Read set: {B}
Write set: {A’}

Transaction 2

Read set: {A}
Write set: {B’}

Ti
m

e Write A
Read B

Write B
Read A

X-Lock(A) X-Lock(B)

S-Lock(A)
- Wait for T1

S-Lock(B)
- Wait for T2

9

Worse: no control over application footprint

Problem: locks acquired out-of-order

i.e., Some locks acquired too early

What if T2 Unlock(B) now?

Write B
Read A

X-Lock(B)

S-Lock(A)
- Wait for T1

Ti
m

e

10

Canonical mode (CM):
All locks acquired in order

Alphabetical, address…

Goal: keep transaction in canonical mode

11

1. Restore canonical mode
2. Maintain canonical mode on retry

Problems

Restore canonical mode

Ti
m

e

Read A
Read C
Read B
…

Commit

Transaction 1

Read set: {A, C}
Write set: {}
Locks held: {A, C}

Breaking
canonical

mode

Unlock C
Lock(B)

Non-twophase locking + OCC verification

12

Verify A, B, C

Non-
twophase

Retrospective lock list:
A safety net upon retry

Keep the footprint and lock at retry

Ti
m

e

Read A
Read C
Read B
Abort

1st run

Read set: {A, C}
Write set: {}
Locks held: {A, C}

Retry

Read set: {}
Write set: {}
Locks held: {}
Retro. list: {A, B, C}

13

Retrospective lock list:
A safety net upon retry

Ti
m

e

Read A
Read C
Read B
Abort

Read(A) – Check RLL, Lock A
Lock(C)?
…

No risk of deadlock

Retry

Read set: {A, B, C}
Write set: {}
Locks held: {}
Retro. list: {A, B, C}

Keep the footprint and lock at retry

1st run

Read set: {A, C}
Write set: {}
Locks held: {A, C}

14

Check RLL
Lock B
Lock C

Native locking
– No centralized lock tables or blocking

– Synchronization primitive directly as database locks

– MOCC queuing lock = MCS RW + MCS timeout

15

Evaluation

– HW: four machines of varying scale

– YCSB for high contention workloads
– 10 random RMWs, vary # of writes, 50 records

– More results/CC schemes in the paper
–TPC-C: few conflicts  same as OCC

16

Model EB840 Z820 DL580 GryphonHawk

Sockets 1 2 4 16

Cores (HT) 2 (4) 16 (32) 60 (120) 288 (576)

Frequency 1.9 GHz 3.4 GHz 2.8 GHz 2.5 GHz

MOCC keeps the best of OCC
Read-only YCSB

110MTPS

0.65MTPS

17

Keeps away the worst of OCC

Read-write YCSB

~50%
abort

>98%
abort

Too many
deadlocks

18

TPC-C results

– Aggregate of all transactions

19

Almost no overhead under low contention

Mostly-optimistic concurrency control

= best(2PL) + best(OCC)

Protect hot records with locks

1. Approx. counter for temperature

2. Non-twophase lock + retrospective lock list

3. MOCC queuing lock

Robust CC needed for OLTP

Find out more in our paper and code repo
https://github.com/HewlettPackard/foedus_code

Thank you! 20

