Mostly-Optimistic Concurrency Control -—

Hewlett Packard
for Highly Contented Dynamic Workloads on 1000 cores =nterprise

Tianzheng Wang, University of Toronto

Hideaki Kimura, Hewlett Packard Labs (currently with Oracle)
https://github.com/hewlettpackard/foedus code

UNIVERSITY OF

What? High-contention workloads are common, but not well supported under 1000 cores
Why? Optimistic concurrency control (OCC) doesn’t protect reads: extremely hard to commit
How? Hybrid approach: lock hot records upon access + OCC verification for serializability

OLTP on modern and future hardware OCC: high contention tx hardly commits

" 288-core, 16-socket, 50-record table, 10 ops per tx
ol ' B HPE Superdome X
- (| 16 sockets, 288 cores ° ; i _
o = 0 Key reason:
Multi-socket 8800 = Szoo : - 06 F }
-+-Z22s HPE The Machine 5 0.4 4 reads not
Tens of cores e TR 1000 EEe
— cores < 0.2 OCC-Aborts —#— ~ protected
. . . . 0
Very high parallelism =» favor lightweight, 0 2 4 6 8 10
optimistic concurrency control (OCC) # Writes (out of 10 in total)

Mostly-Optimistic Concurrency Control = best(2PL) + best(OCC)

Key idea: protect hot accesses with pessimistic locks Challenges:

" Hot records under contention: lock upon access " Accurately and cheaply detect “real” hot records
" Prevents clobbered reads =» more likely to " Lock-upon-access can lead to deadlocks
succeed verification during pre-commit = Need an efficient cancellable, reader-writer lock
" Cold records: same as in OCC Must not revive all the overheads of traditional 2PL
Know the real hot: approximate counter® Efficient native locking
Page = Per-page (preferred) or per- " Desired properties
record temperature field " Native locking: synchronization primitives
bl = Real temperature ~= 2prTemp directly as database locks
H- " |ncrement upon abort with = Decentralized: co-locate locks with records
probability = 1/2pTemp = Scalable, cancellable, reader-writer locks
= Larger pTemp => harder to increment = easy to » Cancel a request in case of possible deadlock
tell “real” hot records " Solution: MOCC queuing lock
= Need not be accurate — no concurrency control = MCS Reader-Writer + MCS Timeout

needed = less cacheline invalidation

Keeps OCC’s best and keeps away its worst

* Robert Morris. Counting large numbers of events in small registers.
Commun. ACM 21, 10 (October 1978), 840-842.

HW: 288-core, 16-socket, Intel E7-8890, 12TB RAM

: : : @ 107 | | | = “WIi -
Canonical mode and retrospective locking [EESeeR\Veldis pcc -»- | Read-write TPS:
= 100 & OCC -8 Dreadlock =+~ 1 MOCC: 65k, OCC: 7k
Reason for deadlock: locks acquired out-of-order 31014 A oo o o o s Purelocking (PCC):
def: a transaction in canonical mode if all of its locks ED 10‘2 2 #8888 554 toomanydeadlocks
. . O -3 L — .
are acquired in order (so far) giooe \ 7 Dreadlock: too many
Ways to recover: =10 interthread
1st run 2ead A Unlock C 0 2 4 6 8 10 communications
Read set: {A, C} CéJ Qeac Lock(B) # Writes (out of 10 in total)
€ad Set. eacC
’ k= MOCC —e- PCC
Write set: {} - or try-lock(B) Read'Only ?‘.’_T OCC 8= Dreadlock ——
Locks held: {A, C} .) . S 100
Bottom line: verify upon commit MOCC matches OCC: <= |
Retry Retrospective locking: a safety net ~ Nooverheadforiow & 19
tenti w
weac set: 14, & 8] Read A — Lock (A) I(;Z:eelr;cllc()ir:\g (Pcc): £
: : <D : = :
Write set: {} E| Read C—Lock (B, C) too much physical E, 0.1
Locks held: {} I_v Read B — already locked contention > 2 (1) 16 (2) 60(4) 288 (16)

RLL: {A, B, C} # CPU Cores (# Sockets)

