
Ways to recover:
Unlock C
Lock(B)

or try-lock(B)

Read A
Read C
Read B

…

Mostly-Optimistic Concurrency Control
for Highly Contented Dynamic Workloads on 1000 cores

Tianzheng Wang, University of Toronto
Hideaki Kimura, Hewlett Packard Labs (currently with Oracle)

What? High-contention workloads are common, but not well supported under 1000 cores
Why? Optimistic concurrency control (OCC) doesn’t protect reads: extremely hard to commit
How? Hybrid approach: lock hot records upon access + OCC verification for serializability

OLTP on modern and future hardware

Key idea: protect hot accesses with pessimistic locks

▪ Hot records under contention: lock upon access

▪ Prevents clobbered reads  more likely to 
succeed verification during pre-commit

▪ Cold records: same as in OCC

Know the real hot: approximate counter*

Canonical mode and retrospective locking

Keeps OCC’s best and keeps away its worst

Key reason:

reads not 
protected

HW: 288-core, 16-socket, Intel E7-8890, 12TB RAM

▪ Desired properties

▪ Native locking: synchronization primitives 
directly as database locks

▪ Decentralized: co-locate locks with records

▪ Scalable, cancellable, reader-writer locks

▪ Cancel a request in case of possible deadlock

▪ Solution: MOCC queuing lock 

= MCS Reader-Writer + MCS Timeout

OCC: high contention tx hardly commits

Mostly-Optimistic Concurrency Control = best(2PL) + best(OCC)

> 98%

▪288-core, 16-socket, 50-record table, 10 ops per tx

Efficient native locking

Read-write TPS:
MOCC: 65k,  OCC: 7k

Pure locking (PCC): 
too many deadlocks

Dreadlock: too many
interthread 
communications

Read-only
MOCC matches OCC:

No overhead for low 
contention

Pure locking (PCC): 
too much physical 
contention

Very high parallelism  favor lightweight, 
optimistic concurrency control (OCC)

HPE The Machine
1000 cores

HPE Superdome X
16 sockets, 288 cores

Multi-socket
Tens of cores

Challenges:

▪ Accurately and cheaply detect “real” hot records

▪ Lock-upon-access can lead to deadlocks

▪ Need an efficient cancellable, reader-writer lock

Must not revive all the overheads of traditional 2PL

Page

BA

pTemp

…

▪ Per-page (preferred) or per-
record temperature field

▪ Real temperature ~= 2pTemp

▪ Increment upon abort with 
probability = 1/2pTemp

▪ Larger pTemp harder to increment  easy to 
tell “real” hot records

▪ Need not be accurate – no concurrency control 
needed  less cacheline invalidation

* Robert Morris. Counting large numbers of events in small registers. 
Commun. ACM 21, 10 (October 1978), 840-842.

Reason for deadlock: locks acquired out-of-order 

def: a transaction in canonical mode if all of its locks 
are acquired in order (so far)

Ti
m

e

1st run

Read set: {A, C}
Write set: {}
Locks held: {A, C}

Bottom line: verify upon commit

Retry

Read set: {A, C, B}
Write set: {}
Locks held: {}
RLL: {A, B, C}

Read A – Lock (A)
Read C – Lock (B, C)
Read B – already locked

Ti
m

e

Retrospective locking: a safety net

https://github.com/hewlettpackard/foedus_code


