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What? High-contention workloads are common, but not well supported under 1000 cores
Why? Optimistic concurrency control (OCC) doesn’t protect reads: extremely hard to commit
How? Hybrid approach: lock hot records upon access + OCC verification for serializability

OLTP on modern and future hardware OCC: high contention tx hardly commits
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Mostly-Optimistic Concurrency Control = best(2PL) + best(OCC)

Key idea: protect hot accesses with pessimistic locks Challenges:

" Hot records under contention: lock upon access " Accurately and cheaply detect “real” hot records
" Prevents clobbered reads =» more likely to " Lock-upon-access can lead to deadlocks
succeed verification during pre-commit = Need an efficient cancellable, reader-writer lock
" Cold records: same as in OCC Must not revive all the overheads of traditional 2PL
Know the real hot: approximate counter® Efficient native locking
Page = Per-page (preferred) or per- " Desired properties
record temperature field " Native locking: synchronization primitives
bl = Real temperature ~= 2prTemp directly as database locks
H- " |ncrement upon abort with = Decentralized: co-locate locks with records
probability = 1/2pTemp = Scalable, cancellable, reader-writer locks
= Larger pTemp => harder to increment = easy to » Cancel a request in case of possible deadlock
tell “real” hot records " Solution: MOCC queuing lock
= Need not be accurate — no concurrency control = MCS Reader-Writer + MCS Timeout

needed = less cacheline invalidation

Keeps OCC’s best and keeps away its worst

* Robert Morris. Counting large numbers of events in small registers.
Commun. ACM 21, 10 (October 1978), 840-842.

HW: 288-core, 16-socket, Intel E7-8890, 12TB RAM
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