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Abstract

The MCS lock is one of the most prevalent queuing locks. It pro-
vides fair scheduling and high performance on massively paral-
lel systems. However, the MCS lock mandates a bring-your-own-
context policy: each lock user must provide an additional context
(i.e., a queue node) to interact with the lock. This paper proposes
MCSg, a variant of the MCS lock that relaxes this restriction.

Our key observation is that not all lock users are created equal.
We analyzed how locks are used in massively-parallel modern
systems, such as NUMA-aware operating systems and databases.
We found that such systems often have a small number of “regular”
code paths that enter the lock very frequently. Such code paths are
the primary beneficiary of the high scalability of MCS locks.

However, there are also many “guest” code paths that infre-
quently enter the lock and do not need the same degree of fairness
to access the lock (e.g., background tasks that only run periodically
with lower priority). These guest users, which are typically spread
out in various modules of the software, prefer context-free locks,
such as ticket locks.

MCSg provides these guests a context-free interface while reg-
ular users still enjoy the benefits provided by MCS. It can also be
used as a drop-in replacement of MCS for more advanced locks,
such as cohort locking. We also propose MCSg++, an extended
version of MCSg, which avoids guest starvation and non-FIFO be-
haviors that might happen with MCSg.

Our evaluation using microbenchmarks and the TPC-C database
benchmark on a 16-socket, 240-core server shows that both MCSg
and MCSg++ preserve the benefits of MCS for regular users while
providing a context-free interface for guests.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords Spin locks, queued locks, MCS, locking API, fairness,
throughput, latency, scalability

1. Introduction

Concurrent threads and processes must coordinate accesses to
shared data. A synchronization mechanism for the coordination,
typically locks, must scale up to the growing concurrency of to-
day’s massively parallel processors.
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frequent_func() {

lock->acquire();

/* critical section */

lock->release();

}

(a) Frequently invoked code paths 

causing scalability bottleneck.

(b) Many other code paths using the 

same lock, but much less frequently.

TATAS/ticket lock: context-free, but non-scalable.

MCS: scales better, but requires a Context in all code paths.

infrequent_func_1(context) {

qnode = context->my_qnode();

lock->acquire(qnode);

/* critical section */

lock->release(qnode);

}

frequent_func(context) {

qnode = context->my_qnode();

lock->acquire(qnode);

/* critical section */

lock->release(qnode);

}

frequent_func(context) {

qnode = context->my_qnode();

lock->acquire(qnode);

/* critical section */

lock->release(qnode);

}

MCSg: allows Guest Users yet keeps MCS’s scalability.

(a) Regular users enjoy the 

same benefits as with MCS.

(b) Guest users do not need 

context or code modifications.

infrequent_func_... () {

lock->acquire();

/* critical section */

lock->release();

}

infrequent_func_2() {

lock->acquire();

/* critical section */

lock->release();

}

infrequent_func_1() {

lock->acquire();

/* critical section */

lock->release();

}

infrequent_func_... () {

lock->acquire();

/* critical section */

lock->release();

}

infrequent_func_2() {

lock->acquire();

/* critical section */

lock->release();

}

infrequent_func_1() {

lock->acquire();

/* critical section */

lock->release();

}

Threads

Figure 1. Not all lock users are created equal. Frequent lock users
need high scalability while occasional “guests” need not the best
performance but context-free locking. MCSg satisfies both users.

Compared to centralized spinlocks, such as test-and-test-and-
set (TATAS) and ticket (TKT) locks, software queuing locks such
as MCS [15] and CLH [4, 14] locks scale better under high con-
tention. In particular, the MCS lock has two advantages that make
it well suited for massively parallel computers. First, the lock-entry
(doorway [9] ) protocol in the MCS lock is wait-free and FIFO
because it uses an atomic swap (XCHG) instruction rather than a
compare-and-swap (CAS) instruction for a thread to enqueue itself.
Second, once a thread has enqueued its request, it spins locally. Lo-
cal spinning reduces interconnect traffic among CPU cores.

These advantages led to the successful adoption of MCS locks
in real production software. For instance, the Linux kernel has
recently begun to replace some of its non-scalable locks with MCS
locks. The result is a ∼3–5× performance improvement [2] in
major benchmarks. Recent scalable database systems designed for
parallel hardware have also adopted MCS locks for synchronization
of their internal data structures [7, 8] .



1.1 MCS Adoption Challenges and Key Observations

Figure 1 illustrates challenges to adopting MCS locks in complex
production systems. The high performance and scalability of MCS
locks come with the price of bring-your-own-context—each lock
user must provide an extra “context”, or a queue node (qnode),
in addition to a reference to the lock itself. A qnode is typically
pre-allocated for each lock user in a NUMA-aware fashion so that
the lock user spins locally on its own qnode. The qnode is often
allocated in a region of memory shared between processes so that
users in other processes can access it. Whether we allocate qnodes
on-demand or in advance, the added complexity of bring-your-own-
context impedes adoption of MCS locks.

Several developers in Hewlett Packard Enterprise have been
contributing to the open-source community for improving the scala-
bility of OSes and databases on many-core servers. One example is
the adoption of the MCS lock in the Linux kernel [2] . Throughout
the efforts, we have repeatedly observed the performance benefit of
the MCS lock as well as the challenge to its adoption. Furthermore,
we made two key observations in real codebases that motivated and
guided this work.

Key Observation 1: Complex code paths necessitate a context-

free lock interface. TATAS and TKT locks need no additional con-
texts. They require only that the user hold a pointer to the lock
for acquiring and releasing the lock. Much existing code in real
systems assumes such a “context-free” interface. In fact, by far
the most widely used locking interface in the Linux kernel con-
sists of the spin lock(lock*) and spin unlock(lock*) macro
families, which receive only a pointer to the lock object. Count-
less invocations of these macros involve infrequent code paths that
do not require the same level of scalability or fairness as more
frequently executed code paths. Re-writing all code paths that em-
ploy these macros to appropriately allocate, pass, and de-allocate
conventional MCS lock qnodes would be a formidable task with
meager benefits.

Therefore, the Linux kernel initially limited the adoption of
MCS locks only to certain places. The developer who introduced
MCS locks to the Linux kernel stated that:

“When trying to convert some of the existing Linux ker-
nel spinlocks to MCS locks, it was especially complicated
when the critical section spanned multiple functions. This
required some functions to accept additional MCS node pa-
rameters, which was not practical.” [11]

We observed the same issue in an open-source database [8] . In
this case, the database has already adopted MCS locks for higher
scalability, pre-allocating qnodes for each transaction processing
thread. The problem arises when the database needs to add new
functions that manipulate shared data protected by the existing
MCS locks. The new functions are occasionally invoked from vari-
ous modules without pre-allocated qnodes. Moreover, it is difficult
to know a priori how many distinct threads will invoke the func-
tions. The issue was more pressing because it impedes functionality
rather than performance.

Key Observation 2: In most cases, complex code paths are

infrequent while frequent code paths are simple. A lock protects
shared data against various code paths that access the data. While
the complexity of each code path’s critical section varies, there is
a strong correlation between the complexity and frequency of the
code paths.

As described above, we observed many complex critical sec-
tions that cannot easily incorporate qnodes. It turns out that all such

complex code paths infrequently enter the lock. Local spinning in
these code paths thus does not improve scalability much. We never
encountered frequent and complex code paths for an intuitive rea-
son. Such complex critical sections run longer, and thus cannot be
repetitively invoked over short durations. In fact, all of the frequent
lock users that caused bottlenecks were found to have substantially
simple critical sections. For example, the kernel developers found
that one of the locking bottlenecks in Linux occurs when a 3-line
code block triggers more than 100, 000 lock acquisitions per sec-
ond [12] .

The kernel developer stated that:

“Out of the 300+ places that make use of the dcache lock,
99% of the contention came from only 2 functions. Chang-
ing those 2 functions to use the MCS lock was fairly trivial
because both of them had straightforward lock/unlock calls
within the same function. The call-sites with the complicated
locking made up much less than 1% of the bottleneck since
they were called less often.” [11]

The database developers made a similar statement.

To summarize, we observed that skews and inequality funda-
mentally abound in locking. Throughout the entire kernel and
database code, extremely frequent code paths (e.g., > 100k [/s]) in
a highly contended lock are very rare. We can address 99% of the
locking bottleneck by imposing the duty of queue-based protocol
on a few code paths (i.e., top 1% lock users). On the contrary, 99%
of the development cost to employ MCS locking is attributed to
other, infrequent code paths. Relieving the other 99% lock users
from code modification significantly eases the adoption of MCS
locks especially because they might have complex critical sections
spanning multiple functions and modules. These observations nat-
urally guide us to the dual-interface design of our new MCS lock
variant explored in this paper.

1.2 Paper Summary

The key contribution of this paper is a new variant of the MCS
lock, the MCSg lock, which addresses the aforementioned issues.
The MCSg lock provides a different interface for both frequent and
infrequent code paths. The interface for frequent code paths, or
“regular” users, is the same as that of the MCS lock. It provides
the regular users with high scalability and fairness at the cost
of bring-your-own-context. Another interface, for infrequent code
paths, or “guest” users, is context free, but the code paths receive
less scalability and fairness to access the lock.

MCSg facilitates adoption into complex systems in two ways.
First, MCSg can replace MCS locks in existing code to allow new
guest code paths, such as sporadic background tasks. MCSg is
a perfect drop-in replacement for MCS that keeps all the good
properties of MCS with minimal code changes. Second, MCSg
can replace non-scalable context-free locks in existing code to
improve scalability. Unlike with MCS, one can gradually adopt
MCSg with minimal effort, starting with zero changes (all guest
users), identifying a small number of frequent lock users, and then
modifying only those specific code paths as regular users.

The rest of this paper is organized as follows. Section 2 details
the key properties MCSg is designed to satisfy. Section 3 explains
the new MCSg algorithm. Section 4 proposes MCSg++, which
extends MCSg to give fair scheduling in the presence of guest users.
We expect that many readers are already familiar with MCS locks,
hence we discuss the original MCS lock and other related prior
work in Section 5. Readers unfamiliar with MCS locks may wish
to read Section 5 first. Section 6 empirically evaluates MCSg and
MCSg++. Finally, Section 7 concludes.



2. Desiderata

MCS locks have properties that make them applicable to a wide
range of settings. MCSg is designed to keep all of them in addition
to the new context-free interface. This section details these desider-
ata to clarify the key principles behind MCSg.

2.1 High Scalability

As already described in Section 1, MCS provides a wait-free door-
way, NUMA-friendly local spinning, and FIFO ordering among
lock users. MCSg must maintain the same scalability at least for
regular users unless guest users enter the lock extremely often, in
which case such guest users should be upgraded to regular users.

2.2 Simplicity, Applicability, and Pluggability

Performance is often deemed as the most important factor of syn-
chronization mechanisms. However, the simplicity of the algorithm
sometimes weighs even more in practice, especially in huge, com-
plex, and critical codebases, such as OSes and databases. This is
where more basic spinlocks (e.g., TATAS) are still preferable. For
a locking mechanism, we categorize the concept of simplicity into
the following aspects.

Single-word Lock State: The MCS lock places just a single
word as the shared state, the lock tail. The MCSg lock must keep
this property. This has two benefits: reduced space consumption
and code complexity. Some locking algorithms require additional
words as the lock state. For example, cohort locks [5] have to
reserve additional lock memory for each NUMA node.

Even when space consumption is not an issue, the complexity of
the code to allocate/deallocate and identify such memory becomes
significant. This issue is especially significant when we do not
know a priori the number of locks or the number of lock users
in the system, which is the case for many dynamic storage systems,
such as databases and file systems.

For instance, such applications often embed locks into data
pages. It is not even known in advance which bytes will be used as a
lock. Hence, trivial initialization/destruction by a simple memzero
is vital.

Context-free Interface: This is the feature the MCS lock does
not provide. MCSg must provide a context-free interface similar to
those of TATAS/TKT locks. It should receive only a pointer to the
lock without any thread-specific context or global information.

Inter-Process Uses: The MCS lock is applicable to inter-
process mutual exclusion. Many systems run a collection of in-
dividual processes with shared memory instead of running threads
in the same process [8, 10, 13, 20] . For instance, virtually all major
databases share memory among multiple processes.

Pointers (i.e., virtual addresses) do not work across processes.
Hence, a typical MCS lock implementation on shared memory
stores an identifier of the process/thread and a memory offset in
each qnode [8] . This offset approach comes with an added bene-
fit for advanced synchronization methods to be combined with the
lock. It allows more bits than raw pointers for additional informa-
tion, such as delete-flags, ABA counters, etc [6] .

Some locking algorithms, however, cannot use offsets because
they share a pointer to stack memory or thread-local-storage (TLS)
that does not allow accesses from another process. MCS does not
have this issue; MCSg must also avoid it.

Environment Independence: Some lock algorithms depend
on environment-specific features. For example, qspinlock, which
has recently been introduced to the Linux kernel [3] , requires the
kernel-space ability to disable pre-emption. Another example is
a locking algorithm that requires efficient access to TLS. Some
platforms are equipped with a special register to efficiently support
TLS, e.g., the %fs segment register in x86 and tpidr el registers
in ARM. Without such hardware support, accessing TLS involves

Algorithm 1 MCSg Algorithm. Guests simply spin with CAS.
Regular Users differ from original MCS only in Line 7-10.

1 def regular acquire(lock_tail, my_qnode):

tail_qnode = my_qnode

retry:

4 pred = atomic_swap(lock_tail, tail_qnode)

if pred == NULL:

return

7 elif pred == π:

# A guest has the lock, put back π and retry

tail_qnode = atomic_swap(lock_tail, π)

10 goto retry

else

# A regular user holds the lock, join the queue

13 my_qnode->flag = WAITING <mem release>

pred->next = my_qnode <mem release>

16 # Spin on my (local) wait flag

spin_while my_qnode->flag != GRANTED <mem acquire>

return

19
def regular release(lock_tail, my_qnode):

... Exactly the same as the original MCS lock

22
def guest acquire(lock_tail):

while (!atomic_cas(lock_tail, NULL, π));

25
def guest relrease(lock_tail):

while (!atomic_cas(lock_tail, π, NULL));

far higher costs. Even x86/ARM incurs high overhead for TLS
variables in shared libraries or other modules due to the cost of
adjusting TLS offset (e.g., tls get addr).

MCS does not demand TLS, and MCSg must not.
Composability: The MCS lock can easily be used in com-

bination with other locks, albeit not as easily as TATAS. For in-
stance, an MCS lock can trivially provide the cohort-detection [5]
property by checking its own qnode and provide the thread-
obliviousness [5] property with a minor change. MCSg should
keep the exact same composability as MCS. In other words, MCSg
must be a drop-in replacement for MCS, and work everywhere
MCS works.

3. Basic MCSg Locks

We now introduce MCSg, a new variant of the MCS lock that
satisfies all desiderata in Section 2.

As shown in Algorithm 1, MCSg only slightly modifies the
MCS algorithm. MCSg does not require any change to the MCS
lock’s data structure and adds only additional logic in the lock
acquire procedure for regular users. It behaves exactly the same as
the original MCS lock when there are few or no guests. The basic
idea is for guests to treat the MCS lock word (the tail pointer) like a
TATAS lock when trying to acquire it; regular users will spin-wait
when they notice that a guest has acquired the lock and re-join the
queue after the guest has released the lock.

The following subsections describe in more detail how guests
and regular users interact with MCSg locks.

3.1 Guests

The lock is treated like a TATAS lock for guests trying to acquire
it. Instead of joining the wait queue using an XCHG instruction,
the guest issues a CAS against the lock tail (lines 23–24), trying
to change it from NULL to a special sentinel value π1. The thread

1 Our implementation uses an exponential backoff strategy in guest lock
acquisition to reduce memory traffic. It is an obvious optimization that is
orthogonal to the design of MCSg, so we omit it in the rest of the paper.



retries until the CAS succeeds, which indicates that it has acquired
the lock.

Lock release is also straightforward for guests although it is
more complex than in TATAS. The lock holder issues (and retries
if it fails) a CAS against the lock tail (lines 26–27), trying to change
it from π back to NULL.

In a nutshell, the guest only needs to issue and retry a CAS in
each acquire and release operation. The only requirement for guests
is to have a pointer to the lock. They do not have to provide a self-
prepared qnode (context). The acquire procedure for regular users
provides guarantees for this machinery to work.

3.2 Regular Users

In the original MCS lock’s acquire procedure, lock users could see
either a valid (lines 11–17) or a null pointer (lines 5–6) on swapping
the tail pointer. In the MCSg lock’s acquire procedure, however,
they might see the sentinel value π when the lock is being held by
a guest user.

To handle this case, MCSg adds a “swap-and-spin” loop (lines
7–10) for the regular user when it notices that a guest holds the
lock. Suppose a guest user has acquired the lock right before a
regular user R comes to line 4. R will receive π as the return value on
performing XCHG with the lock tail. In this case, R will first XCHG
π back to the lock tail. Note that this XCHG can return a value V
that might not be the same as a reference to R. This is because,
between the time R performed an XCHG with the tail pointer and the
time when it performs another XCHG, an arbitrary number of other
regular users might have XCHGed the tail pointer and enqueued
behind R (lines 12–17). Therefore, when R retries to acquire the
lock (lines 4), it XCHGs this latest lock tail V in its list, instead of a
reference to its own qnode.

The above procedure causes two atomic operations, yet R does
not acquire the lock. One optional optimization for reducing mem-
ory traffic, again, is to spin-wait with a backoff until the lock tail
becomes non-π. We note that this optimization should be triggered
after at least one iteration of XCHG. We empirically observed that,
when we read the lock tail for this purpose before the initial XCHG,
it causes more traffic on the contended cache line and slows down
the most important use case: no or few guests.

Observant readers might have noticed that, when retrying to
acquire the lock, a regular user is not guaranteed to maintain its
original place in the wait queue; another regular user could conduct
the XCHG at line 4 faster and get a return value of NULL, violating
FIFO order among groups. We discuss and address this issue in
Section 4.

3.3 Key Properties of MCSg

Before moving on to the extended version of MCSg, let us analyze
the basic MCSg algorithm regarding the desiderata listed in Sec-
tion 2.

Assuming the frequency of guest users entering the lock is
negligibly low, MCSg preserves scalability benefits for regular
users brought by the original MCS lock: scalable doorway, local
spinning, and FIFO ordering.

For guests, MCSg behaves similarly to a TATAS lock. We rely
on a sentinel value π stored in the lock tail to indicate that the lock
is held by a guest. Guests’ lock acquisitions and releases succeed iff
the CAS successfully changes the lock tail from NULL to π and from
π to NULL respectively. Regular users whose XCHG against the lock
tail returns the sentinel π are responsible for swapping π back to the
lock tail and then fall back to a spin-retry cycle. As a consequence,
guests do not need any context to join and leave the lock, satisfying
the context-freeness.

MCSg does not change anything on the MCS’s lock-state data
structure. Therefore, it also maintains the single-word lock state

Group 1 Group 2

T1Lock

W

T1 T2

T2Lock

nextW nextW

T1

T2

�Lock

nextW nextW

T1

T2

�Lock

nextW nextW

T1

T4

T4Lock

nextW nextW

T3

T4

nextW W

T3

T4

T2

nextG nextW

T3 T2

nextW nextW

T1

(a) Lock held 

by a guest

next

(e) T3 and T4 try to acquire.(d) T1 resets lock tail and spins.

(g) Guest has left; Group 1 rejoins behind Group 2 (FIFO order violated).

(c) Regular user T2 joins.

(f) T1 is still spinning (left); T3 resets the lock tail and spins on it (right).

Lock

(b) T1 tries to acquire

Spin

Valid pointer Spinning

Spin

Spin

Null pointer

�Lock

next

G: Granted, W: Waiting.

Figure 2. An example of (rare) FIFO order violation that could
happen under MCSg. Note that FIFO ordering within each group is
preserved.

property, the inter-process property, and the compose-ability. It
does not pose any new requirement on the environment, either.
In sum, MCSg is an ideal “drop-in” replacement for MCS locks
with minimal changes. In fact, we have replaced MCS locks with
MCSg locks in an open source database system [8] , replacing its
MCS code with just ∼20 LoC changes. Section 6.3 evaluates the
performance of the MCSg lock in that database.

4. MCSg++ Extensions

MCSg satisfies the aforementioned scalability and simplicity re-
quirements for regular users. MCSg, however, can potentially
starve guest users and violate FIFO order among regular users.

4.1 Issue 1: Guest Starvation

MCSg retries a CAS for guests to acquire and release the lock.
Although the steps are straightforward, a guest might starve by
repeatedly failing the CAS when competing with regular users and
other guests. It is possible that a steady stream of regular users lock
out all guests forever. This is due to an inherent limitation of CAS:
there is no guarantee that CAS will succeed in a bounded number of
steps, violating MCS’s wait-freeness of its doorway.

4.2 Issue 2: Non-FIFO Behaviors among Regular Users

Figure 2 pictorially represents how non-FIFO ordering ensues in
the presence of guests. In this example, a guest user initially holds
the lock (a). Another thread T1 tries to acquire the lock (b). Yet
another thread T2 trying to acquire the lock will enqueue itself
behind T1 because T2 observed the lock tail was neither NULL nor π
(c). T1’s XCHG, executed at line 9 of Algorithm 1, will return a lock
tail pointing to T2 because T2’s XCHG at line 4 happened before T1’s
at line 9. As shown in Figure 2(d), as an optimization, T1 will start
to spin on the lock tail and retry after the guest has released the
lock. Meanwhile, T2 has set T1’s next field to point to its qnode.

If the guest now released the lock, T1 might notice that the lock
tail is pointing to NULL. T1 then executes another XCHG to retry



acquiring the lock. In the meantime, another two regular users—
T3 and T4—attempt to acquire the lock while T1 is spinning on the
lock tail. T3 and T4 will go through the same steps as T1 and T2 did,
as shown in (e). This might result in the intermediate state shown
in (f). After T3 realizes that a guest is holding the lock, it will also
issue an XCHG and start spinning on the lock tail. As a result, there
could be multiple threads spinning on the lock tail. Each thread
spinning on the lock tail leads a group of users trying to acquire the
lock. We call such threads group leaders. Formally, group leaders
are the threads that found the lock tail’s previous value returned by
the XCHG to be π. T1 and T3 in (f) are two group leaders. T2 and T4
are not group leaders but two regular successors that spin on their
own flag fields.

When the guest releases the lock, the group leaders will notice
that the lock tail has changed and retry the XCHG (line 4 of Algo-
rithm 1), setting the lock tail to point to the tail of the group (ob-
tained at line 9 of Algorithm 1).

If a later arriving group leader wins in installing its group
tail, then FIFO ordering among groups of regular users is not
guaranteed. In (g), T3’s XCHG succeeded earlier than T1’s. Group
1 (led by T1) then queues up after Group 2 (led by T3) by installing
T1 in T4’s next field.

Assuming that guest users are rare, FIFO ordering is still guar-
anteed for regular users in most cases. Still, this could potentially
become an issue when there is an unexpected burst of guest users
in a highly contended lock.

4.3 Guaranteed Guest Lock Acquisition

MCSg++, an enhanced variant of MCSg, addresses the above is-
sues.

The first enhancement addresses the guest starvation issue. The
key idea is that a guest user attaches itself to a regular user’s qnode
in a scalable manner. In MCSg++, a guest follows a “declare-and-
wait” paradigm to acquire the lock without using a self-provided
qnode. This protocol is reminiscent of regular users and the CLH
lock [4, 14] .

In MCSg++, a regular user followed by a guest is responsible
for passing the lock to the enqueued guest in its release protocol.
To release the lock, the guest atomically swaps the lock tail with
NULL so that group leaders and other incoming users can resume to
compete for the lock.

Handshakes between Guest and Regular Users: MCSg++
relaxes the meaning of π and the use of regular user’s qnode. In ad-
dition to the original meaning of π in MCSg (a guest has acquired
the lock), in MCSg++ a π value in the lock tail could also mean
that a guest is waiting for the lock.

MCSg++ introduces sentinel values to the qnode’s next field
for communicating with guests. Therefore, the next field has a dual
use of (1) holding a pointer to a regular successor and (2) serving
as a communication channel between the regular user and its guest
successor. MCS and MCSg only use the next field for (1).

The sentinel values that could appear in the next field are:

• GW: The successor is a guest waiting for the lock;

• GG: The lock is granted to the guest successor;

• GA: The guest successor has acquired the lock;

• NS: No successor.

We next describe how guest and regular users interact with the lock.
Guest Lock Acquisition: The acquire protocol for guests un-

der MCSg++ is reminiscent of that in the CLH lock [4, 14] . Instead
of retrying CAS on a centralized memory location or spinning on its
own qnode, a guest registers itself in the next field of its regular
predecessor’s qnode by storing GW there. The guest then spins on
the next field and waits to be “woken up”. A regular user that has a

Algorithm 2 MCSg++ locking protocol for guests.

def guest acquire(lock_tail):

retry:

3 pred = atomic_swap(lock_tail, π)

if pred == NULL:

return

6 elif pred == π:

goto retry

else # The predecessor is a regular user

9 pred->next = GW <mem release>

# Wait for the predecessor to pass the lock

12 spin_while pred->next != GG <mem acquire>

# Acknowledge the predecessor

pred->next = GA <mem release>

15
def guest release(lock_tail):

tail = atomic_swap(lock_tail, NULL)

18 if tail != π:

tail->next = NS <mem release>

guest successor must be responsible to set GG in its own next field
to pass the lock to the guest.

Algorithm 2 gives details on how guests proceed to acquire the
lock. Instead of retrying CAS, the guest issues an XCHG against the
lock tail, setting it to π (line 3). A π value in the lock tail makes
other incoming users (regular or guest) aware of the existence
of a guest. The return value (pred) of this XCHG identifies the
predecessor: no predecessor (NULL), a guest (π), or a regular user.
If pred points to NULL, then the lock is not contended and the
guest now has successfully acquired the lock (line 5). If pred is
π, another guest has already acquired the lock or announced its
intention to acquire the lock. In this case, the guest simply retries
by going back to line 2.2 When the predecessor is a regular user, the
acquiring guest needs to indicate its existence in the predecessor’s
qnode instead of in the lock tail (line 9). The guest then spins
on the next field in the predecessor’s qnode (line 12) until the
predecessor changes its next field to GG. The guest then stores GA
in next to inform the predecessor that it has acquired the lock. This
acknowledgment is necessary for the regular predecessor to safely
reuse the qnode for future lock acquisitions.

Guest Lock Release: Releasing the lock as a guest is wait-free
in MCSg++: the guest simply atomically swaps the lock tail with
NULL (line 17 of Algorithm 2). This enables waiting group leaders
and guests to compete for the lock again. If the return value of this
XCHG is not π (i.e., the successor is a regular user), as shown by line
19, the guest “marks” the successor as the tail of the group with a
sentinel value NS. The regular user will observe NS when releasing
the lock. The next requester (regular user or guest) whose XCHG
returns NULL will acquire the lock.

As we have discussed above, MCSg++ relies on the next field
in the qnode to track guest status. In particular, it takes advantage
of the following invariant:

Invariant 1. If there is a waiting guest, the lock-holding regular
user’s next field will eventually become non-NULL.

When a regular user fails the CAS for lock release in the original
MCS lock, the next field of the regular user is guaranteed to
become non-NULL eventually. Invariant 1 still holds in the presence
of guests. In Algorithm 2, guests maintain this invariant by storing
and reading sentinel values in next. We next show regular users’
protocols that rely on and also preserve the invariant.

2 Similarly to the optimization in Section 3.2, one could reduce memory
traffic with a backoff when the lock tail is obviously π.



Algorithm 3 MCSg++ locking protocol for regular users.

1 def regular acquire(lock_tail, my_qnode):

group_tail = my_qnode

retry:

pred = atomic_swap(lock_tail, group_tail)

5 if pred == NULL:

return

elif pred == π:

while true:

9 if group_tail == π:

goto retry # Retrying with a guest in the tail

spin_while group_tail->next == NULL <mem acquire>

13 if group_tail->next == NS:

group_tail->next = NULL

goto retry # No successor, retry as a new group

elif group_tail->next == GW:

17 # A guest queued up after me; put π in the

# lock tail for other users to notice

group_tail = π

goto retry

21 else

group_tail = group_tail->next # Follow successors

else

my_qnode->flag = WAITING <mem release>

25 pred->next = my_qnode <mem release>

spin_while my_qnode->flag != GRANTED <mem acquire>

def regular release(lock_tail, my_qnode):

29 if atomic_cas(lock_tail, my_qnode, NULL):

return

spin_while my_qnode->next == NULL <mem acquire>

33 if my_qnode->next == GW:

my_qnode->next = GG <mem release>

# Wait for the guest to pick up the lock

spin_while my_qnode->next != GA <mem acquire>

37 else

my_qnode->next->flag = GRANTED <mem release>

Regular User Lock Acquisition: The lock acquisition proto-
col for regular users in MCSg++ differs from that in MCSg when
the acquiring regular user notices that the lock tail contains π. If the
lock is not contended or the lock tail is pointing to a regular user,
the user can acquire the lock in the same fashion as in MCS and
MCSg (lines 5–6 and 23–26 of Algorithm 3).

When a guest is present (either having acquired or still waiting
for the lock), the acquiring regular user will form a new group as
more regular users come to acquire the lock (lines 7–22). Unlike in
MCSg, a regular user in MCSg++ does not immediately put π back
to the lock tail. Therefore, unless there are more guests coming to
compete for the lock, incoming regular users will queue up after
one another. The first regular user whose pred points to π will be
the group leader. For a group leader, the gist of the algorithm is a
loop in which it tries to reach the end of the group (represented by
group tail).

Based on Invariant 1, the group leader first waits for its succes-
sor field (next) to become non-NULL (line 12). group tail ini-
tially points to my qnode, the requester’s own qnode, as indicated
by line 2. Depending on the status of other concurrent users, the
current group tail’s next field could be NS/GW or point to another
regular user. If it is pointing to a regular user, the group leader sim-
ply follows the pointer and enters the next iteration, jumping from
line 22 to line 8.

The other two cases are results of interactions with guests. If
the current group tail’s next field is NS (line 13), it means a guest
has released the lock and “notified” the acquiring group leader that
there are no more successors in the current group as described in
line 16 of Algorithm 2 . As shown by lines 13–15 of Algorithm 3,
the group leader can now lead the group to retry as if nothing had

happened. The only difference is that the group leader will put the
group tail—instead of its own— in the lock tail. This process is
similar to how a group leader retries to acquire the lock on behalf
of its members in MCSg. The difference is that a group leader in
MCSg++ follows the next fields to find out the “real” group tail
and guest status. MCSg could easily obtain this information from
the return value of XCHG.

The case illustrated by lines 16–20 happens when another
guest—other than the one noticed by the group leader earlier at
line 4—tries to acquire the lock. Recall that a guest will register
itself to the regular predecessor by storing GW in the predecessor’s
next field (line 9 of Algorithm 2). In this case, the acquiring group
leader then needs to install π back to the lock tail and retry so that
incoming regular users will form new groups (lines 17–20 and 3–4
of Algorithm 3). Concurrent guests in this case will have to retry
until a regular user becomes its predecessor or the current guest
that is holding the lock exits.

Regular User Lock Release: Similar to the original MCS, re-
leasing an MCSg++ lock as a regular user also starts by attempting
a CAS, expecting that the lock was not contended (line 29 of Algo-
rithm 3). If this CAS fails, it means another guest or regular user has
tried to acquire the lock: the releasing regular user is responsible
for notifying the successor.

Relying on Invariant 1, the regular user first waits until the
next field becomes non-NULL. If the successor is a regular user,
it will register itself in next. If the successor is a guest, it stores
GW and waits for GG in the next field (lines 9–12 of Algorithm 2).
Therefore, Invariant 1 always holds in the presence of guests. To
pass the lock to a regular successor, the releasing regular user
simply writes to the successor’s flag field as MCS and MCSg do.
To pass the lock to a guest, the releasing regular user puts GG in
next. When the guest detects the transition from GW to GG, it will
set next to GA, acknowledging the regular user that the guest has
acquired the lock. Upon detecting next has become GA, the regular
user can now leave (lines 35–36 of Algorithm 3).

The above state transitions GW → GG → GA guarantee the in-
tegrity of the communication channel between the guest and its reg-
ular predecessor. Suppose that a guest was pre-empted after setting
its predecessor’s next field to GW. Suppose also that the predecessor
has released the lock without waiting for the acknowledgment be-
fore the guest starts to spin at line 12 of Algorithm 2. If the regular
user started another round of lock acquisition and release using the
same qnode, the guest might be spinning indefinitely for next to
become GG. Therefore, we need to ensure that the guest has picked
up the lock before letting the regular user leave.

4.4 Reducing Non-FIFO Behaviors

In the presence of guests, an older regular user group might queue
up after a younger one in MCSg. FIFO order is preserved for all
users within the same group, but not always among groups.

MCSg++ does not guarantee FIFO ordering between a regular
user and a guest, either. Completely preserving a total order among
both regular users and guests generally requires maintaining a list-
like structure for them. This violates the simplicity principle for
guests because guests need to be associated with some context as
well. Because of the relative rareness of guest users, the chance
of forming many groups is not high in our targeted use cases. We
therefore focus on preserving the FIFO behavior among regular
user groups.

Our solution is inspired by ticket locks. A ticket lock has two
counters: ticket owner and next ticket. Threads atomically
read and increment next ticket to enter the lock. The thread
whose ticket equals to ticket owner can enter the critical section.
Other threads will spin for ticket owner to match their tickets.



Algorithm 4 MCSg++’s lock acquire protocol that reduces FIFO
order violations among regular user groups. Additional logics are
added on top of Algorithm 3, most of which are omitted for clarity.

def regular acquire(lock_tail, my_qnode):

2 group_tail = my_qnode

my_ticket = INVALID_TKT

retry:

if my_ticket 6= INVALID_TKT:

6 spin_while(ticket_owner != my_ticket) <mem acquire>

pred = atomic_swap(lock_tail, group_tail)

if pred == NULL:

if my_ticket 6= INVALID_TKT:

10 atomic_increment(ticket_owner)

return

elif pred == π:

if my_ticket == INVALID_TKT:

14 my_ticket = atomic_increment(next_ticket)

... lines 8 -- 22 of Algorithm 3 ...

else

if my_ticket 6= INVALID_TKT:

18 atomic_increment(ticket_owner)

... lines 24 -- 26 of Algorithm 3 ...

Similarly, MCSg++ maintains these two counters in addition to
the lock tail. Whenever a regular user realizes it is a group leader, it
obtains a ticket and waits for its turn before retrying. Algorithm 4
shows the revised lock acquire protocol for regular users. For clarity
we omit most of the code that overlaps with Algorithm 3. At line
3 a user enters the lock without obtaining a ticket. It then conducts
the XCHG operation at line 7. If the regular user finds that the return
value is π (line 13), it is a group leader and will obtain a ticket by
atomically reading and incrementing next ticket. This is usually
done through an atomic-fetch-and-add instruction. The group
leader continues as illustrated by lines 8–22 of Algorithm 3. Before
the group leader retries at line 7, it first spins on the ticket owner
to wait for its turn (lines 5–6). Ticketing gives ordering to all group
leaders competing for the lock in the presence of guests.

The ticket owner field is incremented under two circum-
stances: (1) the group leader acquired the lock (lines 9–10) and
(2) the group leader has to queue after another group (lines 17–
18). In case (1), the group leader waited for its turn and the return
value of the XCHG is NULL (line 8). Case 2 is the “unlucky” sce-
nario where another regular user’s XCHG succeeded earlier while
the group leader is waiting for its turn. This could happen if a
regular user got the lock right after a guest released the lock (i.e.,
the regular user’s XCHG returned NULL) while the group leader was
spinning on next ticket. Therefore, ticketing only reduces FIFO
order violations among regular user groups. We quantify the impact
of case 2 in Section 6. In most cases, ticketing can reduce 50–70%
of FIFO order violations.

4.5 Discussion

Under MCSg, guests might starve in the presence of a steady stream
of regular users. MCSg++ uses XCHG to allow guest users to attach
after regular users, which upon lock release will pass the lock to
the awaiting guest. MCSg++ makes it easier for guests to acquire
the lock. However, we also note that MCSg++ does not always
guarantee a guest will be able to acquire the lock, especially when
guests are the majority. Specifically, if there is a single guest and
an arbitrary number of regular users, then the guest will enter its
doorway in bounded time. If most users are guests, however, or
if there is a steady stream of guests intermixed with regular users,
then an individual guest can starve.

5. Prior Work

Our work in this paper stands upon the shoulders of much prior
work on queuing locks. In this section, we briefly discuss the MCS
and CLH queuing locks, followed by other related work.

5.1 MCS-Lock

Mellor-Crummey and Scott [15] invented the MCS lock. In an
MCS lock, the lock word represents a tail pointer to a linked list
of lock requesters. Each lock requester arrives with its own record
and swaps the tail pointer to its own record using the XCHG atomic
primitive. Thus, the tail pointer always points to the last requester,
or NULL if none. The record has two cache-line aligned fields:
(1) a status flag and (2) a pointer (next) to a successor record.
Swapping the tail pointer informs each requester of its predecessor.
If there is none, then such requester immediately enters the critical
section. If there is a predecessor, then such requester sets the flag
field in its record to WAITING, installs a reference to its own record
in its predecessor’s next field, and spins on its flag field until
the flag is toggled to GRANTED. The release protocol involves
setting a successor’s flag field to GRANTED, if present. If there
is no successor, then such releaser CASes the tail pointer to NULL.
If the CAS fails due to some successor XCHGing the tail pointer,
then the releaser waits until the successor installs the next pointer
and then toggle’s the successor’s flag field. In the MCS lock, the
record node is both brought by the requester during acquisition and
reclaimed by the requester after releasing the lock.

5.2 CLH-Lock

The CLH lock [4, 14] is a variant of the MCS lock where each lock
requester, instead of spinning on its own flag, spins on its prede-
cessor’s. Each queue node in a CLH lock maintains a pointer to its
predecessor, whereas in the MCS lock it maintains a pointer to its
successor. The head of the queue is a dummy node. A key differ-
ence between CLH and MCS is that, in CLH, a requester leaves
behind its record for its successor and reclaims its predecessor’s
record during its release protocol. As a result of reclaiming the pre-
decessor’s record, the CLH lock needs to additionally manage its
memory. Scott [17] proposes a technique to avoid the overhead by
thread-local memory allocations.

5.3 Advances in MCS and CLH

There have been many prior efforts to enhance the MCS and
CLH locks to accomplish other objectives. Mellor-Crummey and
Scott [16] relaxed the MCS lock for reader-writer synchroniza-
tion accommodating multiple readers in a critical section. They
explored three variants—fair-reader-writer, reader-preference, and
writer-preference locks. For example, the fair-reader-writer lock en-
ables a requestor to safely access fields in its predecessor’s record.
A reader who is enqueued immediately after another reader can no-
tice the status of its predecessor (waiting or holding the lock) and
enter its critical section without waiting for the predecessor to fin-
ish. If a successor reader finishes before a predecessor reader, the
last finishing reader takes the additional responsibility of passing
the lock to the first waiting writer.

Scott and Scherer [18] enhanced both MCS and CLH locks
with the timeout capability allowing an enqueued process to abort
after a period of waiting. The enhancement to the CLH lock adds
additional states—transient, leaving, and recycled—to the
flags field. These states are used to establish a handshake among
the aborting thread, its predecessor, and its successor. When a
thread wanting to abort is at the tail of the queue, it follows a
more complex protocol to ensure consistency with an intervening
successor that might abort as well. The modifications to the MCS
lock are even more complex, especially when the aborting thread
is at the tail of the queue. The MCS queue is transformed into a



doubled-linked list from its original singly-linked list. The modified
MCS lock uses a few special values to make sure an aborting thread
leaves without causing dangling pointers in the linked list.

5.4 Queueing Locks that support Guests

The idea of using “special” value(s) to indicate deviation(s) from
normal behavior is not uncommon in the synchronization literature.
For example, the aforementioned MCS and CLH locks with time-
out also used a handful of “special” values when aborting. However,
we are not aware of any prior work that uses such a special value
in order to treat one type of user differently from another. Put in an-
other way, to the best of our knowledge, this paper is the first one to
explore the problem of occasional guest users that cannot provide
a context (i.e., a queue node).

K42: Notable prior art in terms of context-less locking is the
variant of MCS lock implemented in K42 [1] . It is a queue lock,
but a lock user does not need to provide a context. However, it
loses the wait-freeness of MCS’s doorway protocol because it uses
CAS to enter the lock acquisition. Experiments in Section 6 observe
a degraded scalability due to this. Moreover, K42 uses the stack
memory of the thread as the queue node. This rules out its use in
inter-process locking and in cohort-locking described next.

In Section 6, we evaluate a variant of the K42 lock that ad-
dresses these shortcomings with TLS as [17] proposes. However,
we observe that this approach demands efficient TLS support in the
platform and also does not scale as well as MCS/MCSg due to its
lack of NUMA-awareness.

5.5 Lock Cohorting

In the context of NUMA locks, Dice et al. [5] devised lock co-
horting, which composes two different synchronization protocols.
Cohort locks are two-level locks—a global lock and a local lock.
The global lock can be of any kind, whereas the local lock should
be able to express the fact that there are waiters—e.g., MCS, CLH,
ticket etc. The cohort locks dedicate a local lock per socket on a
node and there is one global lock. Each thread wanting to enter the
critical section competes for its local lock. The first thread to ac-
quire the local lock proceeds to compete for the global lock; other
threads wait for the local lock. Once a thread acquires the global
lock and finishes its critical section, it releases its local lock if it no-
tices local waiters. A waiting thread immediately enters the critical
section without competing for the global lock after it is granted a
local lock, effectively inheriting the global lock. A thread can pass
the global lock within its NUMA domain for a “threshold” number
of times to take advantage of locality. On reaching the threshold,
the global lock is relinquished to another NUMA domain. A global
back-off lock (BO) with local MCS locks makes a cohort C-BO-
MCS lock. Similarly, one can devise C-BO-CLH, C-MCS-MCS,
C-CLH-CLH, C-BO-TKT, C-TKT-MCS locks, among others.

6. Evaluation

This section empirically evaluates MCSg/MCSg++ and compares
them with other candidates described in Section 5 to confirm the
following claims:

• MCSg maintains the same scalability of MCS when guests are
rare (§ 6.2);

• MCSg admits guests yet preserves all the good properties of
MCS as a drop-in replacement (§ 6.3);

• MCSg++ gives more fairness to guests and can reduce FIFO
order violations (§ 6.4).

6.1 Setup

We conducted experiments on a server equipped with 16 Xeon E7-
4890 processors clocked at 2.8 GHz, each of which has 15 cores.
The server has 240 physical cores and 12 TB of DDR3 DRAM
clocked at 1333 MHz. The processor has 256 KB of L2 cache per
core and 38 MB of L3 cache per socket. We use a microbenchmark
and a database workload for our experiments.

All threads are pinned to physical cores in a compact manner,
meaning we assign threads to a minimal number of sockets. We al-
ways leave an unused core per socket so that watchdog and other
kernel tasks do not hinder our threads. We do not use hyperthreaded
hardware contexts to maximize the performance under high con-
tention. We thus use at most 224 cores over 16 sockets.

Lock algorithms: We have implemented MCSg and MCSg++
in addition to MCS, TATAS, CLH, and a few more variants of MCS
for comparison, detailed below. To measure the overhead and ef-
fectiveness of MCSg++’s ticketing machinery for preserving FIFO
ordering among regular users, we have also implemented MCSg+,
a stripped-down version of MCSg++ without the ticketing machin-
ery. To show that MCSg can be used as a drop-in replacement of
MCS everywhere, we implemented a cohort lock, C-MCSg-MCS,
in which we use an MCSg lock in place of the global MCS lock.
The C-MCSg-MCS lock is described in detail in Section 6.3.

The qnodes used by MCS, CLH, and C-MCSg-MCS are pre-
allocated. Regular users in MCSg and MCSg++ also use pre-
allocated qnodes. These pre-allocated qnodes are organized as
a global array, with an entry for each thread. For CLH, we use the
algorithm described in [17] . Because a successor in CLH spins on
its predecessor’s qnode, a qnode cannot be reused until the succes-
sor notices the next field has been changed by its predecessor. In
this implementation, each thread inherits its predecessor’s qnode
to solve this problem.

Our implementation of K42’s MCS variant follows the algo-
rithm described in [17] , which allocates qnodes on the stack. We
also compare with our own extension of K42 to analyze its per-
formance without the restriction on inter-process use described in
Section 2. Instead of using a stack-allocated qnodes, our K42-TLS
maintains a global qnode pool from which a thread can atomically
borrow and return a qnode. To avoid the cost of borrowing and
returning a qnode each time, K42-TLS uses a thread-local (TLS)
variable to hold the borrowed qnode for each thread. This intro-
duces another requirement on efficient TLS support in the platform,
but this experiment is run on a CPU that satisfies the requirement
(x86 64, on which Linux can use %fs register for TLS).

Likewise, our CLH implementation uses a global array of pre-
allocated qnodes for inter-process use without stack variables. To
enable guest access, we implement CLH-TLS, a variant CLH with
standard interface based on the proposal in Section 4.3.2 of [17] .
We use a TLS variable to store thread qnode ptrs[self] as
[17] recommends.

Finally, a TATAS lock is implemented as a baseline. Each
thread in the critical section reads four cache lines and then re-
leases the lock. We run each experiment for ten seconds and report
the averages of five runs.

Database Workload: MCS is used in various complex systems
for its performance and simplicity. For example, modern database
systems designed for massively parallel hardware, such as Shore-
MT [7] and FOEDUS [8] . In such systems, there often are infre-
quent yet various background tasks in addition to regular worker
threads that run database transactions.

We have implemented MCSg in FOEDUS for its superior
performance on many-core systems. The guests are background
threads that need to hold a page lock when installing snapshots.
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Figure 3. Lock throughput without guests. MCSg and MCSg++
keep the scalability of MCS. K42 sacrifices some scalability due to
its use of CAS; CLH’s node inheritance design puts more pressure
on the interconnect, making it less scalable than MCS.

MCSg is applied to FOEDUS’s existing codebase.3 We run TPC-
C [19] , a standard database benchmark that models an online trans-
action processing workload of a wholesale supplier when process-
ing orders. We use the Payment transaction, which is a write-heavy
transaction that updates the customer’s balance and generates rel-
evant statistics about the warehouse. We run Payment with 192
worker threads. The database size is set to one warehouse to gener-
ate enough contention. We compare its throughput (million trans-
actions per second, or MTPS) among MCS, MCSg, and TATAS
(supposing FOEDUS had to use a centralized lock to allow guests).

6.2 Maintaining MCS’s Scalability

In this section, we focus on two basic settings: no guests and
one guest. MCSg and MCSg++ should preserve the scalability
of the original MCS when there are few guests. In both settings,
we evaluate the locks under high contention: threads repeat the
acquire–access–release cycle without any delays.

No Guests: Although the sole purpose behind MCSg and
MCSg++ is to allow guests, it is crucial to maintain the perfor-
mance in existing code paths for MCSg and MCSg++ to be a supe-
rior drop-in replacement of the original MCS.

Figure 3 shows the throughput of each lock implementation
with a varying number of regular users. Both MCSg and MCSg++
match MCS’s throughput.

K42 and CLH exhibit less scalability than MCS/MCSg. Al-
though K42 can handle guests, its use of CAS rather than XCHG
causes many retries under high contention, making it less scalable
than MCS/MCSg.

K42-TLS suffers from the same issue. Furthermore, the addi-
tional overhead to access TLS variables makes it slightly slower
than K42, about 10%-20% around the peak performance under low
contention. Under higher contention, the CAS effect becomes more
important so that the overhead of TLS access is less visible.

CLH and CLH-TLS do not scale as well as the MCS family
because of the node-passing design. CLH-TLS largely follows the
performance of CLH although not as close as K42-TLS and K42
because the algorithm in [17] has a few performance improve-
ments over the original CLH. Still, we observed that the lack of

3 Available at https://github.com/hkimura/foedus_code.
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Figure 4. Lock throughput with 223 regular users and one guest.
The number for MCS with 224 regular users are used as a baseline.
A small number of guests do not affect the throughput of MCSg.

Table 1. Throughput of TPC-C’s Payment transaction under high
contention (one warehouse, 192 threads). MCSg achieves the same
performance as MCS yet provides a standard interface for guests.

Lock Throughput (MTPS) Standard deviation

TATAS 0.33 ±0.095
MCS 0.46 ±0.011

MCSg 0.45 ±0.004

NUMA-awareness in CLH fundamentally limits the scalability in
many-socket servers. In fact, we observed that the performance of
CLH/K42 and their TLS versions is much closer to MCS/MCSg’s
on a smaller number of NUMA sockets, such as 2-sockets rather
than 16-sockets in this experiment.

MCSg, MCSg+ and MCSg++ keep the scalability of MCS.
They achieve much better performance under high contention
thanks to the local spinning protocol.

With One Guest: We now repeat the same experiment with
one guest and 223 regular users. Locks that cannot support guests
(MCS and CLH) are excluded from this experiment, but we still
include the throughput of MCS and CLH with 224 regular users
for reference. Figure 4 shows the throughput of regular users in the
presence of one guest user. The throughput of MCSg is statistically
equivalent to that of MCS. MCSg++ has a slight slowdown due to
additional ticketing mechanism, but still matches the original MCS
lock. In line with the results shown in Figure 3, K42 and CLH-TLS
do not scale as well as other MCS variants. K42-TLS again closely
follows the performance of K42. TATAS, not surprisingly, does not
scale at all. We describe how the locks perform with more guests in
Section 6.4.

6.3 Being MCS’s Drop-in Replacement

MCS is simple and pluggable. It can be used in conjunction with
many other techniques and in various complex systems. This sec-
tion demonstrates that MCSg can be used a drop-in replacement of
MCS in the context of databases and cohort-locks.

MCSg in a Database System: As Section 6.1 described, we
have implemented MCSg in FOEDUS and then run TPC-C. Ta-
ble 1 shows the throughput of TPC-C’s Payment transaction under
high contention with one warehouse and 192 worker threads. We
observe that MCS and MCSg improve end-to-end performance by
up to 50% compared to TATAS. MCSg has performance equiva-
lent to MCS yet allows guest users. Although the 50% difference
is not as dramatic as the orders of magnitude differences seen in
the microbenchmarks, it is a surprisingly significant improvement

https://github.com/hkimura/foedus_code


considering that database transactions are substantially more com-
plex than locking itself. The complexity is also the source of much
higher variance in this experiment. Especially with TATAS, the
progress of transactions is highly random, sometimes causes mil-
liseconds of latency to a single transaction that usually finishes in
sub-microseconds.

Because MCSg does not change the data structure and interface
of the original MCS, the change required to adopt MCSg in FOE-
DUS was minimal—as few as 20 LoC—showing MCSg’s plugga-
bility. Keeping the same data structure and interface is vital. Like
many other complex systems, FOEDUS needs to embed many lock
objects in each fix-sized data page (usually of 4 KB). Combining
MCS with other locks (e.g., to compose a cohort lock) or adopt-
ing locks with a different data structure/interface incurs much more
space overhead and code complexity compared to MCS and MCSg,
which occupy only a single word.

Although K42 provides a standard lock interface, it requires the
ability to point to each thread’s stack memory. Its use is there-
fore limited to intra-process synchronization. Like many other
databases, FOEDUS uses shared-memory for most data objects
to be referenced across processes. K42 cannot be implemented in
such systems because the pointer must be valid across in all pro-
cesses. One can extend K42 for multi-process use with TLS, such
as our K42-TLS. However, as we observed in previous experiments,
it incurs another requirement on efficient TLS support, an overhead
to access TLS variables, and complexity of a global qnode pool.

MCSg satisfies all the requirements and works as a pure drop-in
replacement for MCS without any special hardware or additional
complexity.

MCSg in a Cohort Lock: MCS is an important building block

for more advanced/complex locks. Cohort locking [5] is such a
composite lock implementation. For example, the C-MCS-MCS
lock uses an MCS lock as the global lock and another for each
NUMA node to get better scalability. In order to show that MCSg
can be used as a drop-in replacement anywhere MCS is useful,
we used MCSg to compose a cohort lock, C-MCSg-MCS, which
uses MCSg as the global lock, and the original MCS as local locks.
Guests contend directly on the global lock. Regular users first try
to acquire the local MCS lock. The first winning regular user will
then compete for the global lock and pass it to its successors for
a “threshold” number of times. In our experiments, we set the
threshold to 64, which is the recommended value in [5] .

Table 2 shows the throughput in the microbenchmark with 224
regular users. C-MCSg-MCS outperforms MCSg and MCSg++ by
3×, which coincides with the findings of [5] . Plugging MCSg in
place of MCS is trivial. Composing C-MCSg-MCS thus did not re-
quire any more effort than C-MCS-MCS. In large NUMA systems
with the need to support guests, C-MCSg-MCS is a preferable lock
implementation. MCSg can also provide equivalent enhancement
to other flavors of cohort locks and MCS-based hierarchical locks.

6.4 Getting more Fairness with MCSg++

We have discussed the performance of regular users in previous
sections. This section focuses on guests and their interactions with
regular users.

Guest Starvation: Recall that MCSg might starve guests be-
cause guests rely on CAS to acquire and release the lock. This will
become a serious problem when the lock is highly contended. To
solve this problem, MCSg++ uses XCHG for guests to acquire and
release the lock, with extra handshake protocols between regular
users and guests. Figure 5 compares the average latency using locks
that support guests for a single guest to acquire the lock with 223
regular users and one guest. The y-axis is in log scale. MCS is miss-
ing from the figure because it does not support guests.

Table 2. Microbenchmark comparison of MCS, MCSg, MCSg++
and C-MCSg-MCS with 240 regular users (no guests).

Lock Throughput Average latency

MCS 1.77M/s 126.21µs
MCSg 1.86M/s 120.34µs

MCSg++ 1.72M/s 129.58µs
C-MCSg-MCS 5.22M/s 42.79µs
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Figure 5. Average latency for a guest to acquire the lock when run-
ning at 223 regular users and one guest. The number for MCS with
224 regular users are used as a baseline. MCSg starves guests, while
MCSg+ and MCSg++ siginificantly improves guests’ fairness.

As shown in the figure, when the lock is heavily contended,
guests starve under MCSg because CAS does not have any bounded
guarantee on when a guest can get the lock. In almost all runs,
the guest under MCSg acquires the lock only for a few times.
K42 supports guests by giving them an implicit qnode living on
the stack, which gives guests equal opportunity as regular users.
However, K42 could issue many CASes during lock acquire and
release, resulting in high latency for both guests and regular users.
We observed the exact same behavior in K42-TLS. MCSg++ and
MCSg+ achieve orders of magnitude lower average guest latency
because they issue a single XCHG instead of CAS in most operations.
Moreover, the only guest is the absolute minority among all users in
this experiment. Therefore, under MCSg+ and MCSg++ the guest
will be able to easily find a regular predecessor to attach to and grab
the lock thereafter with low latency.

Figure 6 shows the total throughput with a varying number of
guests. The total number of threads is fixed at 224. Among the locks
we tested, K42/K42-TLS and CLH/CLH-TLS give fair scheduling
for both guests and regular users. Therefore, they all maintained
steady performance across the x-axis in Figure 6. MCSg behaves
similarly because it favors regular users much more and starves
guests. Correspondingly, Figure 7 shows that MCSg does not per-
form well for guests. MCSg+ and MCSg++ both give much more
fairness to guests, but at the cost of lower throughput for regular
users when there are many guests, as shown by Figure 8. This is
because of the complexity to handle handshakes between guest and
regular users, while MCSg does not have.

FIFO Ordering: In order to evaluate the effectiveness of
MCSg++’s ticketing mechanism, we compare the number of FIFO
order violations among regular users that happen during 10-second
runs with a varying number of guests. Since MCSg often starves
guests under high contention, we focus on comparing MCSg+ and
MCSg++ in this experiment. We use a TLS counter to record the
number of FIFO order violations at runtime, and sum up all the
counters after each experiment. As shown in Algorithm 4, a group
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Figure 6. Total throughput when running at a varying number
of guests (224 users in total). MCSg favors regular users and
starves guests, thus providing stable performance. K42 and K42-
TLS also show stable performance because they treat all users
equally. MCSg+ and MCSg++ sacrifice total throughput to give
guests fairness.
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Figure 7. Guest throughput when running at a varying number
of guests with a total number of users of 224. MCSg++ performs
consistently better than MCSg+, because ticketing causes more bias
toward guests; regular users are “throttled” by waiting for turns.
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Figure 8. Regular user throughput when running at a varying num-
ber of guests. The number of total users is fixed to 224. The num-
bers for MCSg+ and MCSg++ drops faster than K42 and CLH
families due to their bias toward guests. Compared to MCSg+,
MCSg++’s is more biased toward guests because with ticketing,
regular users are “throttled” by waiting for turns.
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Figure 9. The number of priority inversions with 224 users in total.
Ticketing in MCSg++ can reduce up to 70% of priority inversions
among regular user groups.

leader can exit the retry loop only in two cases: (1) its XCHG returned
NULL (lines 5–6), or (2) it successfully attached after another regu-
lar user (lines 24–27). Therefore, combined with Algorithm 3, we
increment the TLS counter whenever a group leader queues after
another regular user with a valid ticket (lines 24–27 of Algorithm 3).
We added the ticketing machinery in MCSg+ for counting FIFO or-
der violations only. Regular users acquire tickets like they do with
MCSg++, but do not use them. In other experiments, MCSg+ does
not implement the ticketing machinery at all.

Figure 9 shows the result. Compared to MCSg+, MCSg++ can
reduce FIFO order violations for up to 70%. Because a regular
group leader in MCSg++ waits for its turn via the ticketing machin-
ery, guests have a higher chance to acquire the lock while regular
group leaders are waiting for their turns. Figure 7 verifies that tick-
eting favors guests. MCSg++ consistently achieves much higher
guest throughput than MCSg+.

Finally, we note that ticketing trades off regular user throughput
for guest performance. Figure 8 shows that, as the number of guests
increases, the regular user throughput of MCSg++ drops faster than
that of MCSg+. With more guests, regular users have a higher
chance to be “chopped” and form more groups to acquire and wait
on their tickets, causing a higher contention.

7. Conclusions

We have described a new variant of MCS locks, which allows
lock acquisition and release without any bring-your-own-context
and without degrading the high scalability of MCS locks. The key
observation behind this work is that complex multi-thread/multi-
process software often has two kinds of lock users: regular users
and guest users.

MCSg behaves as an MCS lock to regular users and as a central-
ized lock to guest users, providing benefits of both. We recommend
using MCSg as a drop-in replacement for existing locks in three
scenarios.

The first scenario is to replace an existing MCS lock that needs
to allow guest users. As we have observed in Section 6.3, it requires
only a small change to transform an existing MCS lock to MCSg.

The second scenario is to replace an existing centralized spin-
lock (e.g., TATAS) that is a scalability bottleneck. It is trivial for
the developer to replace the lock with an MCSg lock where all ex-
isting lock users (i.e., functions) are guests. Then, the developer
can gradually identify the few most frequent lock users and modify
them to be regular users with MCS qnodes. While the lock will en-
joy high scalability as an MCS lock, the majority of lock users can
still remain as guests without any code change.



The third scenario is to use MCSg as a building block for com-
bined locks, such as cohort locking. MCSg keeps the simplicity
and pluggability of MCS locks, hence it can be used wherever
MCS locks could be used. For example, C-MCSg-MCS instead of
C-MCS-MCS and C-BO-MCSg++ instead of C-BO-MCS can pro-
vide the guest user functionality in addition to the high scalability
of the original cohort locks.

Finally, we have also proposed an extended version of MCSg,
MCSg++. MCSg++ provides guest users with a guaranteed lock
acquisition on highly contended locks. MCSg++ also alleviates
priority inversion between groups of regular users at the cost of
less simplicity (e.g., no longer a single word). We recommend
developers to start with MCSg because of its simplicity and perfect
compatibility to the original MCS lock. As frequent code paths are
upgraded to regular users, MCSg rarely poses any issue. When it is
somehow difficult to upgrade a frequent code path to be a regular
user (e.g., an untouchable code path in a complex legacy codebase),
we recommend MCSg++ to ameliorate the issues.
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