
Be My Guest –
MCS Lock Now Welcomes Guests

Tianzheng Wang, University of Toronto

Milind Chabbi, Hewlett Packard Labs

Hideaki Kimura, Hewlett Packard Labs



Protecting shared data using locks

foo() {

lock.acquire();

data = my_value;

lock.release();

}

Contention on a 
centralized location

Centralized spin locks

– Test-and-set, ticket, etc.

– Easy implementation

– Widely adopted

– Waste Interconnect traffic

– Cache ping-ponging

lock



MCS Locks

3

Non-standard interface

foo(qnode) {

lock.acquire(qnode);

data = my_value;

lock.release(qnode);
}

Queue nodes 
everywhere

granted
next

waiting
next

R1 R2

lock

– Local spinning

– FIFO order

SWAP



4

“…it was especially complicated when 
the critical section spans multiple 
functions. That required having 
functions also accepting an additional 
MCS node in its parameter.”

- Jason Low, HPE’s Linux kernel developer

Not easy to adopt MCS lock
with non-standard API



5

“…out of the 300+ places that make use 
of the dcache lock, 99% of the contention 
came from only 2 functions. Changing 
those 2 functions to use the MCS lock 
was fairly trivial...”

- Jason Low, HPE’s Linux kernel developer

Not all lock users are created equal



infrequent_func…(qnod
e)

– Transaction workers vs. DB snapshot composer

– Worker threads vs. daemon threads

6

frequent_func(qnode) {

lock.acquire(qnode);

...

lock.release(qnode);
}

infrequent_func2(qnode
)infrequent_func1(qnode){

lock.acquire(qnode);

...

lock.release(qnode);
}

Regular users Guests



Existing approaches

7

Multi-process 
applications

Storage requirements

Thread-local
queue nodes

Works
Bloated memory 
usage

K42-MCS
Queue nodes on 
the stack

Satisfies

Cohort locks Works

Extra memory per
node
Possible data layout 
change



MCSg: best(MCS) + best(TAS)

8

Regular users

foo(qnode) {

lock.acquire(qnode);

...

lock.release(qnode);

}

Keeps all 
the benefits of MCS

Guests

bar() {

lock.acquire();

...

lock.release();

}

No queue node needed



MCSg: use cases

9

– Drop-in replacement for MCS to support guests

– Replace a centralized spinlock for performance
– Start from all guests,

– Gradually identify regular users and adapt

– As a building block for composite locks
– Same interface as MCS

– Same storage requirement



Guests in MCSg

10

lock

: “guest has the lock”

acquire ()

CAS(NULL,)

release()

CAS(,NULL)

Guests: similar to using a centralized spin lock

Retry until 
success

Retry until 
success

Standard 
interface



Regular users – change in acquire()

11

 No guest: 
same as MCS

waiting | NULL
acquire(N1)

r = SWAP(N1)



Regular users – change in acquire()

12

N1

waiting | NULL
acquire(N1)

r = SWAP(N1)



Regular users – change in acquire()

13

r == , return  for the guest to release the lock

t = SWAP()

t == N1/another ptr

Retry with r = SWAP(t)

r == NULL

Got lock

+5 LoC in acquire(…), no change in release(…)



waiting | NULL
acquire(N1)

r = SWAP(N1)



14

MCSg++ extensions

– Guest starvation

– CAS: no guaranteed success in a bounded # of steps

– Solution: attach the guest after a regular user

– FIFO order violations

– Retrying XCHG might line up after a later regular user

– Solution: retry with ticket



15

Reducing guest starvation

granted
next

waiting
next

R1 R2 G

r = XCHG()

r.next = Guest Waiting

spin until r.next == Guest Granted

r.next = Guest Acquired

R2



16

Reducing guest starvation

granted
next

waiting
next

R1 R2

R2

G

r = XCHG()

r.next = Guest Waiting

spin until r.next == Guest Granted

r.next = Guest Acquired

r = SWAP()



17

Reducing guest starvation

granted
next

waiting
GW

R1 R2

R2

G

r = XCHG()

r.next = Guest Waiting

spin until r.next == Guest Granted

r.next = Guest Acquired

r = SWAP()

spin



18

Reducing guest starvation

granted
next

waiting
GG

R1 R2

R2

G

r = XCHG()

r.next = Guest Waiting

spin until r.next == Guest Granted

r.next = Guest Acquired

r = SWAP()

spin



19

Reducing guest starvation

granted
next

waiting
GA

R1 R2

R2

G

r = XCHG()

r.next = Guest Waiting

spin until r.next == Guest Granted

r.next = Guest Acquired

r = SWAP()

ack



– HP DragonHawk
– 15-core Xeon E7-4890 v2 @ 2.80GHz

– 16 sockets  240 physical cores

– L2 256KB/core, L3 38MB/socket, 12TB DRAM

– Microbenchmarks
– MCSg, MCSg++, CLH, K42-MCS, TATAS

– Critical section: 2 cache line accesses, high contention

– TPC-C with MCSg in FOEDUS, an OSS database

20

Evaluation



21

Maintaining MCS’s scalability

– TPC-C Payment
– 192 workers

– Highly contented – one warehouse

Lock MTPS STDEV

TATAS 0.33 0.095

MCS 0.46 0.011

MCSg 0.45 0.004



One guest + 223 regular users

22

224 regular 
users



One guest + 223 regular users

23

Starved



Varying number of guests

24

Total throughput

No ticketing



Varying number of guests

25

Guest throughput

No 
ticketing



– Not all lock users are created equal
– Pervasive guests prevent easy adoption of MCS lock

– MCSg: dual-interface
– Regular users: acquire/release(lock, qnode)

– Infrequent guests: acquire/release(lock)

– Easy-to-implement: ~20 additional LoC

– As scalable as MCS (guests being minority at runtime)

26

Conclusions

Find out more in our paper!


