—

Hewlett Packard
Enterprise

UNIVERSITY OF

@ TORONTO

RRRRR

Be My Guest —
MCS Lock Now Welcomes Guests

Tianzheng Wang, University of Toronto
Milind Chabbi, Hewlett Packard Labs
Hideaki Kimura, Hewlett Packard Labs



Protecting shared data using locks

foo() { Centralized spin locks

lock.acquire(); — Test-and-set, ticket, etc.

data = my value; _ _
— Easy implementation
lock.release();

) — Widely adopted
— Waste Interconnect traffic
o — Cache ping-ponging
Contention on a
centralized location

IIIIIIIIIIII

Hewlett Packard
Enterprise & TORONTO



MCS Locks

SWAP
v
granted waiting
next «— next
R1 R2
bt EGEE LR EE >

— Local spinning

— FIFO order

—

Hewlett Packard
Enterprise

Non-standard interface

foo(gnode) {
lock.acquire(gnode);
data = my_value;

lock.release(gnode);

}

Queue nodes
everywhere



“...it was especially complicated when
the critical section spans multiple

functions. That required having

functions also accepting an additional
MCS node in its parameter.”

- Jason Low, HPE’s Linux kernel developer

Not easy to adopt MCS lock
with non-standard API

— &
@ | UNIVERSITY OF

ewlett Packard

rise &

Foie TORONTO



“...out of the 300+ places that make use
of the dcache lock, 99% of the contention
came from only 2 functions. Changing
those 2 functions to use the MCS lock
was fairly trivial...”

- Jason Low, HPE’s Linux kernel developer

Not all lock users are created equal

[

Hewlett Packard s s
Enterprise

~



Regular users Guests

g g gé ééé infreguent func..(gnod é
infrequent func2(gnode
frequent func(gnode) { infrequent funcl(gnode){
lock.acquire(gnode); lock.acquire(gnode);
lock.release(gnode); lock.release(gnode);
} }

— Transaction workers vs. DB snapshot composer
— Worker threads vs. daemon threads

—

Hewlett Packard
Enterprise




Existing approaches

Multi-process

Storage requirements

applications
Thread-local Works Bloated memory
gueue nodes usage
kag-mcs  |Queuenodeson o g
the stack
Extra memory per
Cohort locks |Works nodg
Possible data layout
change

— 4

% |  UNIVERSITY OF
Hewlett Packard

i3]

Enterprise TORONTO v



MCSg: best(MCS) + best(TAS)

Regular users

foo(gnode) {

lock.acquire(gnode);

lock.release(gnode);

Keeps all
the benefits of MCS

tttttt

Guests

bar() {

lock.acquire();

lock.release();

¥

No queue node needed



MICSg: use cases

— Drop-in replacement for MCS to support guests

— Replace a centralized spinlock for performance
— Start from all guests,
— Gradually identify regular users and adapt

— As a building block for composite locks
— Same interface as MCS
— Same storage requirement

[

Hewlett Packard
Enterprise

~



Guests in MCSg

T “guest has th@

, . Standard
CAS(NULL, ) cAs (r,NuLL) -Interface
acquire () Retry until release()
success

Guests: similar to using a centralized spin lock

[

ewlett Packard
rise

H
Enterp 10

~



Regular users — change in acquire()

E No guest:
same as MCS

waiting | NULL

/)V
r = SWAP(N1)
acqufre(Nl)

— &
HewlettPackard @ 1o (N1 T
Enterprise & TORONTO 11



Regular users — change in acquire()

|

waiting | NULL

— &
HewlettPackard @ s o ioiiY OF
E b

nterprise Y TORONTO



Regular users — change in acquire()

. KN
r = SWAP(N1) 4 l
” | waiting | NULL
acquire(N1) t = SWAP () g |

r ==, return 7 for the guest to release the lock

t == N1/another ptr r == NULL
Retry with r = SWAP (t) Got lock

+5 LoC in acquire(...), no change in release(...)

[

ewlett Packard
rise

H
Enterp 13

~



MCSg++ extensions

— Guest starvation
— CAS: no guaranteed success in a bounded # of steps

— Solution: attach the guest after a regular user

—

Hewlett Packard
Enterprise

14



Reducing guest starvation

-

granted waiting é
next — | next
R1 R2 G
&
r = XCHG(n)

r.next = Guest Waiting
spin until r.next == Guest Granted
r.next = Guest Acquired

H wl ttpackard UNIVERSITY OF
Enterprise ¥ TORONTO "



Reducing guest starvation

granted waiting \\é
next —— | next
R1 R2 G
@
r = XCHG(nr)

r.next = Guest Waiting
spin until r.next == Guest Granted
r.next = Guest Acquired

— 4
HewlettPackard 5 rem i s,
E N/

nterprise 2 TORONTO

ttttt 3]



Reducing guest starvation

granted waiting \\é
next —— | GW <i--ooo-
R1 R2 SpIn G
@
r = XCHG(nr)

r.next = Guest Waiting
spin until r.next == Guest Granted
r.next = Guest Acquired

Hewlett Packard IIIIIIIIIIII
Enterprise & TORONTO



Reducing guest starvation

granted waiting \\é
next = | GG «i--—oo-
R1 R2 SpIn G
gy
r = XCHG(nr)

r.next = Guest Waiting
spin until r.next == Guest Granted
r.next = Guest Acquired

HewlettPackard  ©X5 1 ( nT e
Enterprise & TORONTO 18



Reducing guest starvation

granted waiting \\é
next —— | GA  et--eo__
R1 R2  ack G
&
r = XCHG(nr)

r.next = Guest Waiting
spin until r.next == Guest Granted
r.next = Guest Acquired

HewlettPackard 5 rem i s,
Enterprise L TORONTO 19



Evaluation

— HP DragonHawk
— 15-core Xeon E7-4890 v2 @ 2.80GHz

— 16 sockets =2 240 physical cores
— L2 256KB/core, L3 38MB/socket, 12TB DRAM

— Microbenchmarks
— MCSg, MCSg++, CLH, K42-MCS, TATAS
— Critical section: 2 cache line accesses, high contention

— TPC-C with MCSg in FOEDUS, an OSS database

— @
HewlettPackard @ A1 s
Enterprise ¥ TORONTO 20



Maintaining MCS’s scalability

— TPC-C Payment

— 192 workers
— Highly contented — one warehouse

Lock  MTPS STDEV
TATAS [0.33 0.095
MCS  [0.46 0.011
MCSg  |0.45 0.004

— &
@ | UNIVERSITY OF

Hewlett Packard
Enterprise & TORONTO



One guest + 223 regular users

224 regular
users

lll

TATAS K42 CLH MCS MCSg++MCSg

N
o

—_
— &) N

o
o

Throughput (1 0° acquires/s)

—

Hewlett Packard
Enterprise

Hor

IIIIIIIIIIII

TORONTO 22




One guest + 223 regular users

8669.66

- 4.359
0.226 0.259

109 |
§ 0.126
107 |
1072 | l 0.005
10° |

TATAS K42 CLH MCS MCSg++MCSg

Guest average latency (ms)
=

Hewlett Packard 3 . UNIVERSITY OF
Enterprise ¥ TORONTO 53




Varying number of guests
Total throughput

TATAS —+— MCSg++ —e—
K42 —e— MCSg+ —e—

MCSg ‘ﬁticketinb

N
o W

1.5

Throughput (1 0° acquires/s)

1 2 4 1015 30 60 120
Number of guests

—

Hewlett Packard
Enterprise

24




Varying number of guests

Guest throughput
0% TATAS ——
2 05 | K42 —w—
S MCSg —=—
§ 0.4 } MCSg++ —9—
© MCSQ+ - N
= 03
a 02F¢
L
(@)
s 0.1}
£
|_

.t
—
1 2 4 1015 30 60 120
Number of guests

o

—

Hewlett Packard
Enterprise

% TORONTO 25



Conclusions

— Not all lock users are created equal
— Pervasive guests prevent easy adoption of MCS lock

— MCSg: dual-interface
— Regular users: acquire/release(lock, gnode)
— Infrequent guests: acquire/release(lLocR)

— Easy-to-implement: ~20 additional LoC

— As scalable as MCS (guests being minority at runtime)

Find out more in our paper!

HewlettPackard @ 1y rxns e
Pewtent P © TORONTO 26



