ERMIA: Fast Memory-Optimized Database System for
Heterogeneous Workloads

Kangnyeon Kim?

fUniversity of Toronto

ABSTRACT

Large main memories and massively parallel processors have trig-
gered not only a resurgence of high-performance transaction pro-
cessing systems optimized for large main-memory and massively
parallel processors, but also an increasing demand for processing het-
erogeneous workloads that include read-mostly transactions. Many
modern transaction processing systems adopt a lightweight opti-
mistic concurrency control (OCC) scheme to leverage its low over-
head in low contention workloads. However, we observe that the
lightweight OCC is not suitable for heterogeneous workloads, caus-
ing significant starvation of read-mostly transactions and overall
performance degradation.

In this paper, we present ERMIA, a memory-optimized database
system built from scratch to cater the need of handling heteroge-
neous workloads. ERMIA adopts snapshot isolation concurrency
control to coordinate heterogeneous transactions and provides seri-
alizability when desired. Its physical layer supports the concurrency
control schemes in a scalable way. Experimental results show that
ERMIA delivers comparable or superior performance and near-
linear scalability in a variety of workloads, compared to a recent
lightweight OCC-based system. At the same time, ERMIA main-
tains high throughput on read-mostly transactions when the perfor-
mance of the OCC-based system drops by orders of magnitude.

1. INTRODUCTION

Modern systems with massively parallel processors and large
main memories have inspired a new breed of high-performance
in-memory transaction processing systems [23, 24, 28, 31, 36, 46].
These systems leverage spacious main memory to fit the whole
working set or even the whole database in DRAM with streamlined
memory-friendly data structures. Multicore and multi-socket hard-
ware optimizations further allow a much higher level of parallelism
compared to conventional systems. With disk overheads and delays
removed, transaction latencies drop precipitously and threads can
usually execute transactions to completion without interruption. The
result is a welcome reduction in contention at the logical level and
less pressure on whatever the concurrency control (CC) scheme
might be in place. A less welcome result is an increasing pressure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. .. $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882905

Tianzheng Wang'

LogicBlox
knkim,tzwang@cs.utoronto.ca ryan.johnson@logicblox.com

Ryan Johnson? Ippokratis Pandis*

*Amazon Web Services
ippo@amazon.com

for scalable data structures and algorithms to cope with the growing
number of threads that concurrently execute transactions and need
to communicate with each other [19].

Interactions at the logical level. Many designs exploit the re-
duction in the pressure on CC, by employing lightweight optimistic
concurrency control (OCC) schemes, boosting even further the per-
formance of these systems on suitable workloads [11, 25, 46]. But,
as is usually the case, it appears that database workloads stand ready
to absorb any and all concurrency gains the memory-optimized sys-
tems have to offer. In particular, there is high demand for database
systems that can readily serve heterogeneous workloads, blending
the gap between transaction and analytical processing [14, 27, 41].
These workloads often combine long read-mostly transactions for
operational analytic with short and write-intensive transactions.

Lightweight OCC can be problematic in such workloads. First,
its unfair (albeit lightweight) contention resolution, where a writer
wins over a reader, leads to starvation of read-intensive transactions,
as transactions have to abort if any portion of their read footprint
is overwritten before they commit [49]. We believe that fairness
among different types of transactions should be treated as a first-
class citizen when serving heterogeneous workloads. Moreover, the
lightweight OCC usually aborts loser transactions at commit time,
wasting precious CPU cycles on long transactions that are destined
to abort [1]. Consequently, heavyweight read-mostly transactions
often lead to significant overall performance degradation as well.
Therefore, going forward and as the industry shifts to heterogeneous
workloads served by memory-optimized engines, it is vital for them
to employ more effective CC schemes.

Interactions at the physical level. But it is not only the inter-
action at the logical level that should be central to the design of a
memory-optimized database system. As commodity servers become
increasingly parallel, many low-level issues (such as latching and
thread scheduling) and design decisions—at the system architecture
level—need to be revisited. The form of logging/recovery used,
the storage management architecture, and scheduling policies for
worker threads can impose drastic constraints on which forms of
CC can be implemented at all, let alone efficiently. It can be difficult
or impossible to adopt a different CC scheme without significant
changes to the rest of the system. Thus, a physical layer should be
designed with full awareness of consequences for CC and recovery,
in addition to scalability efforts.

Desired properties. Considering the challenges, we argue that
transaction processing systems should be designed with the follow-
ing basic requirements:

e To provide robust and balanced concurrency control for the logical
interactions over heterogeneous transactions.

e To address the physical interactions between threads in a scalable
way and have a lightweight recovery methodology.

http://dx.doi.org/10.1145/2882903.2882905

1k reads(24 threads) 10k reads(24 threads)
100 : 10 :
3 8o 8
'_
53
= 60f 6
>
g 40 4
= | a—a ERMIA-SI I
2 20| ¢—¢ ERMIASSN ol
= o—e Silo-OCC
0 . 0 .
10° 107 10" 107 107 10"
Ratio of Writes/Reads Ratio of Writes/Reads

Figure 1: Performance of lightweight optimistic concurrency
control and multi-version concurrency control at different
transaction read-set sizes, as the ratio of writes increases. 1K
reads (left); 10K reads (right).

1.1 ERMIA

In this paper, we present a novel memory- and multicore-optimized
OLTP database, called ERMIA ', to support the aforementioned
desired properties. It employs a snapshot-isolation (SI) CC scheme
that provides the following valuable features for heterogeneous
workloads: (1) robustness against contention; (2) harmonious co-
existence between readers and writers; and (3) early detection of
doomed transactions to minimize the amount of wasted work. On
top of the vanilla SI, ERMIA also provides serializability by adopt-
ing a recent proposal, called Serial Safety Net (SSN) [48].

We also present the design of a physical layer that interacts with
the CC schemes efficiently and achieves multicore scalability in a
memory-optimized design. The key components are (1) a scalable
centralized log manager that provides global ordering; (2) latch-free
indirection arrays which provide low overhead multi-versioning and
efficient infrastructure for recovery; and (3) epoch managers that
handle resource allocation and recycling.

As the detailed evaluation in Section 4 shows, ERMIA addresses
inefficiencies of systems with lightweight OCC. In particular, Figure 1
demonstrates how the performance of Silo [46], a representative of
the camp of memory-optimized systems with lightweight OCC, de-
grades as transactions have larger read footprint or when contention
increases (experimental setup details in Section 4). As a compar-
ison, Figure 1 shows the performance of ERMIA with snapshot
isolation (ERMIA-SI) and serializable SIIEERMIA-SSN). Figure 1
shows that it just takes 0.1% or 1% of the touched records to be
updates for the transaction throughput to drastically drop in Silo.
The sharply decreasing curves of Silo in the figure indicate OCC’s
sensitivity to contention.

Further, Figure 2 demonstrates the unfairness of lightweight
OCC schemes. The left graph shows the commit rate of each in-
dividual transaction of TPC-C under Silo as well as the ERMIA
flavors. We can see that the commit rates are comparable under
TPC-C. On the other hand, on the right side we add a read-mostly
transaction in the mix, labeled at Q2*. We see that the commit rate
of that read-intensive transaction starves in Silo, while for ERMIA it
is quite high (the Q2* transaction is presented in Section 4.2). Also,
given the drastic drop in overall TPS after we added Q2* transaction
which takes more than 90% out of total cycles, Figure 2 also im-
plies that Silo just wasted a huge number of cycles on aborted Q2*
transactions while ERMIA spent most of its time on useful work.

! Stemmed from the two major components our system is built

upon: Epoch-based Resource Management and Indirection Array.

TPC-C TPC-C + Q2* (10% size)

e
i e

600
500 oo
400 0w
300
200
100

0

Throughput (kTps)
O L N WA UL

Silo-OCC ERMIA-SI ERMIA-SSN Silo-OCC ERMIA-SI ERMIA-SSN

NewOrder Payment 11 OrderStatus NewOrder Payment 1l OrderStatus

Delivery StockLevel Delivery StockLevel w2 Q2*

Figure 2: Breakdown of the commit rate of the TPC-C transac-
tions (left) as well as when we add a read-intensive transaction
(Q2%*) to the mix (right). Silo achieves a very low commit rate,

almost no progress, of the Q2* transaction.

1.2 Contributions and paper organization
In summary, this paper makes the following contributions:

e Highlights the mismatch between existing OCC mechanisms and
heterogeneous workloads, and revisits snapshot isolation with
cheap serializability guarantee as a solution.

e Presents a system architecture to efficiently support CC schemes
in a scalable way with latch-free indirection arrays, scalable cen-
tralized logging, and epoch-based resource managers.

e Presents a comprehensive performance evaluation that studies the
impact of CC and physical layer in various workloads, from the
traditional OLTP benchmarks to heterogeneous workloads.

The rest of this paper is organized as follows. In Section 2 we lay
out the design principles for memory-optimized engines to handle
heterogeneous workloads on modern hardware. Section 3 discusses
the detailed design of ERMIA. Section 4 compares the performance
of ERMIA against an OCC-based memory-optimized system in a
variety of transactional workloads. We discuss related work in
Section 5 and conclude in Section 6.

2. DESIGN DIRECTIONS

In this section we discuss the design directions of database en-
gines optimized for main-memory and multicores. We focus on
three areas: the CC scheme that determines the interaction between
concurrent transactions at the logical level; the mechanism that
controls the interaction and communication among threads at the
physical level; and recovery.

Shared-everything database. Some systems sidestep the issues
of logical and physical contention entirely—along with the accom-
panying implementation complexity—by adopting physical parti-
tioning and a single-threaded transaction execution model [23, 24].
This execution model introduces a different set of problems for
mixed workloads and for workloads that are inherently difficult to
partition. Given the developments in scaling-out the performance
of distributed OLTP systems, especially for easy-to-partition work-
loads, e.g. [2,8,42], as well as for high availability and cost-
effectiveness reasons, we predict that the successful architectures
will combine scale-out solutions built on top of non-partitioning-
based scale-up engines within each node. Therefore, we focus on the
performance of non-partitioning-based memory-optimized engines
within a single node.

Snapshot isolation and serializability. Broadly speaking, there
are two camps of CC methods: the pessimistic, e.g. two-phase
locking (2PL), and the optimistic (OCC). Past theory work [1] has
shown that pessimistic methods are superior to optimistic ones un-
der high contention. In practice, this result requires that pessimistic

methods can be implemented with sufficiently low overhead relative
to their optimistic counterparts, which is not easy to achieve in prac-
tice. For example, a study of the SHORE storage manager reports
roughly 25% overhead for locking-based pessimistic methods [16].
Having said that, typical memory-optimized engines that employ
lightweight OCC and running on modern commodity servers, leave
some room for exploration. There are different flavors of optimistic,
or opportunistic, CC. Many recent systems adopt a lightweight read
validation step at the end of the transaction, during pre-commit.

However, read validation is very opportunistic, and somewhat
brittle, leaving the system vulnerable to workloads where writers are
likely to overwrite readers (causing them to abort). The vulnerability
against contention does not appear in the TPC-C benchmark where
tiny transaction footprints and precipitous reduction in transaction
latency offered by main-memory systems collectively minimize
CC pressure (transaction contentions). Also, the unfair contention
resolution of the lightweight OCC, a writer always wins over a
reader, can be problematic in heterogeneous workloads. It is quite
common that read-intensive analytic transactions are mixed with
short, update-intensive transactions. The extreme favor for writ-
ers can cause massive aborts or even starvation of read-intensive
transactions, consequently. Another problem is lazy transaction
coordination policy that affects overall performance drastically. Dur-
ing forward processing, transactions keep all footprints locally and
validate them only at the pre-commit time. Committed changes to
a transaction’s read set are not visible until the reader starts to vali-
date its reads, wasting CPU cycles on long readers that are destined
to abort. Regardless optimistic or pessimistic, the CC mechanism
should not only have a low false positive rate detecting conflicts, but
it should allow the system to detect doomed transactions as early as
possible to minimize the amount of wasted work.

To recap, the following features are desirable for CC to orchestrate
heterogeneous transactions: 1) robustness against contention, 2)
balanced contention resolution over reader and writer and 3) early
detection of abort conditions to minimize the amount of wasted
work. Based on that, we believe that snapshot isolation based CC
schemes satisfy all those requirements. Under snapshot isolation,
reader-writer contention never happen by distributing transactions to
multiple versions, bringing significantly higher throughput of read-
intensive transactions. Also, it can recognize write-write conflicts
as early as possible, possibly reducing the amount of wasted work
on aborts.

Nevertheless, snapshot isolation still has remaining concerns.
First of all, in presence of cyclic transaction dependency, SI can
generate “write-skew”” phenomenon which can violate serializable
schedule. Generally SSI proposals in literature ensure serializability
by tracking the “dangerous structure” that must exist in every serial
dependency cycle under snapshot isolation. But their expensive
tracking methods are usually prohibitively expensive for memory-
optimized systems and tendency of aborting the “pivot” update
transaction can starve writers [48], violating the fairness require-
ment. We argue that a cheap, fair certifier that can be overlaid on
top of Sl is the desired approach to serializability. We adopt such
a certified, the Serial Safety Net [48] and describe it in Section 3.
Also, efficient infrastructures in underlying physical layer are es-
sential to make the SI-based CC schemes efficiently. We introduce
physical layer supports in the following paragraphs.

Scalable centralized logging. Log managers are a well-known
source of complexity and bottlenecks in a database system. The
in-memory log buffer is a central point of communication that sim-
plifies a variety of other tasks in the system, but which tends to
kill scalability. Past work has attempted to optimize [21] or dis-
tribute [47] the log, with partial success and significant additional

complexity. Systems such as H-Store [23] (and its commercial
version, VoltDB) largely dispense with logging and rely instead on
replication. These systems replace the logging bottleneck with a
transaction dispatch bottleneck. Silo avoids the logging bottleneck
by giving up the traditional total order in transactions. Avoiding
total ordering is efficient but prevents the system from using any but
the simplest of CC schemes—there is no practical way to implement
repeatable read or snapshot isolation, for example.

We advocate a sweet spot between the extremes of fully coordi-
nated logging (multiple synchronization points per transaction) and
fully uncoordinated logging (no synchronization at all): latch-free
logging with single synchronization point per transaction. A trans-
action with a reasonably small write footprint can acquire a totally
ordered commit timestamp, and reserve all needed space in the log,
using a single global atomic memory operation. While technically a
potential bottleneck, our experimental results will prove that such a
system can scale to hundreds of thousands of commits per second,
while still preserving global ordering information that enables SI-
based concurrency control schemes. We present this log manager in
Section 3.

Latch-free indirection arrays. Transaction processing systems
typically depend on their low-level storage manager component to
mediate thread interactions at the physical level. The implementa-
tion of the storage manager is extremely tightly coupled to the CC
scheme, making it difficult to modify or extend the CC schemes of
legacy systems. Internal infrastructure matters terribly. It decides
whether it is even possible to implement a particular CC scheme,
and also which implementable schemes can be made practical. For
example, the effort to enhance Postgres with serializable snapshot
isolation (SSI) required a very large implementation effort, since
the team had to integrate what it is essentially a lock manager with a
purely multi-versioned system. Even then, the achieved performance
borders on unusable, due to severe bottlenecks in multiple parts of
the system (including a globally serialized pre-commit phase, latch
contention in the new lock manager, and existing scalability prob-
lems in the log manager).

One promising technique that provides desirable properties for
both SI-based CC schemes and physical contention is the notion
of an indirection array [11, 40] for mapping logical object IDs
to physical locations of records. Most of all, it is suitable for the
physical implementation of CC for multi-versioned systems, as a
single compare-and-swap (CAS) operation suffices to install a new
version of an object without the use of heavyweight locking methods.
Similarly, presence of an uncommitted version makes write-write
conflicts easy to detect and manage.

Also, indirection can reduce the amount of logging required for
an update in append-only systems. Update only requires installing
a new physical pointer at the appropriate indirection array entry.
Without the indirection, creating a new version requires updating
every reference to that record, amplifying the amount of log records.

Moreover, it can reduce update pressure in (especially secondary)
indexes; by storing a logical address (OID) of a tuple, indexes are
isolated from update, as an OID of an updated tuple remains the
same. Even though modern indexes leverage latch-free thread co-
ordination for higher parallelism [30] [33], concurrent update still
comes at an additional cost. Therefore, it is beneficial to offload
the concurrent update pressure from the indexes to indirection ar-
rays which have cheaper thread coordination. When it comes to
secondary index maintenance, some systems maintain secondary
indexes by mapping primary keys and secondary keys to avoid the
update-propagation, however, it shifts burden to readers; secondary
index access has to entail additional primary index probe.

Initialization Forward Processing

TXN Begin End State Tree Indexes

™ 1 2 committed
) L 3 - active TXN
Footpnntl:l 2 - aborted
TID [2]
TxnLog l:l 1 3 committed
Footprintl:l
Epoch I:l
Enter l I Epoch No. rentes

TID Indirection

arrays

Epoch

———
Mgr LOG

G ———F+—

—

Epoch Period

H]

Update with CAS

Version
chains

Pre-commit Post-commit
TXN
TXN TXN Begin End State
mo []||mo D A
Footprintl:l Footprintl:l FootprintD L 3 6 committed
TxnlLog I:l TxnlLog Q Txnlog 2 - aborted
[:l 1 3 committed

Epoch
B

Version chains

Central
Log buffer

S—
On-disk
Log files

T

D —
E
P e
Mgr

Figure 3: Architecture of ERMIA and transaction lifecycle.

Append-only storage. Append-only storage allows drastic sim-
plifications of both I/O patterns and corner cases in the code. Com-
bining a carefully designed log manager and indirection arrays
produces a single-copy system where the log is a significant frac-
tion of the database. Records graduate from the log to secondary
storage only if they go a long time with no updates. The resulting
system is also easier to recover, as both undo and redo are largely
unnecessary—the log can be truncated at the first hole without losing
any committed work.

Epoch-based resource management. Resource management is
a key concern in any storage manager, and one of the most chal-
lenging aspects of it is ensuring that all threads in the system have a
consistent view of the available resources, without imposing heavy
per-access burdens. The infamous “ABA problem” [17] from the
lock-free literature is one example of what can go wrong if the
system does not maintain invariants about the presence and status of
in-flight accesses. Epoch-based resource management schemes such
as RCU [34] achieve this tracking at low cost by requiring only that
readers inform the system whether they are active (possibly holding
references to resources) or quiescent (definitely not holding any
references to resources). These announcements can be made fairly
infrequently, for example when a transaction commits or a thread
goes idle. Resource reclamation then follows two phases: the sys-
tem first makes the resource unreachable to new arrivals, but delays
reclaiming it until all threads have quiesced at least once (thus guar-
anteeing that all thread-private references have died). Epoch-based
resource management is especially powerful when combined with
multi-versioning, as writers can coexist relatively peacefully with
readers. Although epochs are traditionally fairly coarse-grained (e.g.
hundreds of ms in Silo), we have implemented an epoch manager
that is lightweight enough to use even at very fine time scales. As
discussed in Section 3.4, ERMIA instantiates several epoch man-
agers, all running at different time scales, to simplify all types of
resource management in the system.

3. ERMIA

In this section, we start with an overview of ERMIA, and then
describe its key pieces, with a focus on why we choose the design
trade-offs we do.

3.1 Overview

ERMIA is designed around latch-free indirection arrays, epoch-
based resource management and extremely efficient centralized
logging. For indexing, it uses Masstree which is a concurrent and
cache-efficient index structure, as Silo does [33]. We next briefly

describe how ERMIA processes transactions using the components
shown in Figure 3.

Initialization. When a transaction enters the system, it first joins
three epoch-based resource managers: (1) the log manager, (2)
transaction ID (TID) manager, and (3) the garbage collector. These
resource managers then start to track the transaction to make sure
that their resources (log buffers, TIDs and versions, respectively) are
allocated/reclaimed correctly. Upon start, each transaction acquires
a private log buffer, a TID and a begin timestamp—the current log
sequence number (LSN). The transaction then calls in to the TID
manager for initializing its transaction context and stores the begin
timestamp in the context for CC interactions. The transaction is then
ready to begin forward processing.

Forward processing. In ERMIA, transactions access the database
through tree indexes. We associate each index/table with an indirec-
tion array. Different from traditional designs which give access to
data in the leaf nodes, we store object IDs (OIDs) in the leaf level.
Indexed by object IDs (OIDs), each array entry points to a chain of
historic versions of the object (i.e., database record). Dictated by
the underlying CC scheme, the transaction performs read/insert/up-
date/delete operations on these structures (detailed in Section 3.2
and Section 3.6). To install a new version, the transaction stores
its TID into the version’s creation timestamp field. Other transac-
tions who encounter the TID-stamped version have to follow the
owner transaction’s context with the TID to check if the version is
visible. Each transaction accumulates the descriptors of its inserts
and updates in the private log buffer to avoid log buffer contention.
The garbage collector periodically goes over all indirection arrays
to remove versions that are not needed by any transaction.

Pre-commit. We divide the commit process into two parts: pre-
commit and post-commit. During pre-commit, the transaction first
obtains a commit LSN from the log manager to fix its global order
among all transactions and to reserve the space for storing its logs in
the centralized log buffer. This is achieved by using a single atomic
fetch-and-add instruction, which advances the current LSN by
the size of the transaction’s write footprint. Note that in most cases,
this is the only global synchronization point in the log during a trans-
action life cycle. The transaction then goes through the underlying
CC’s commit protocol (detailed in Section 3.6), and follows the de-
scriptors in its private log buffer to populate log records in its space
reserved in the centralized log buffer. After this, the transaction
switches its state to “committed”; all updates are visible to other
transactions atomically after this point.

Post-commit. If a transaction survives pre-commit, it iterates
versions in write-set, replacing its TID in the versions’ creation
timestamp field with its commit LSN, so that other transactions

can directly check visibility on the LSN-stamped versions without
accessing the owner transaction’s context. Finally, the transaction
concludes by returning all resources and de-registering from epoch
managers. If the transaction needs to abort, it changes its state to
“aborted” and removes write-set versions from the version chains.

3.2 Indirection arrays

The indirection arrays used in ERMIA are linear arrays and simi-
lar to the ones proposed in the literature [11, 40]. All logical objects
(database records) are identified by an OID that maps to a slot in an
indirection array. The slot contains a physical pointer to data. The
pointer may reference a chain of versions stored in memory, or stable
storage (e.g., the durable log on disk). ERMIA leverages a latch-
free singly linked list structure to provide cheap multi-versioning
support. We next illustrate how insert, update, and read operations
are handled with the structures.

Insert. The transaction first obtains a new OID from the OID
manager and generates a new version. It then will store the new
version’s address to the corresponding slot in the table’s indirection
array. Note that this process is completely contention-free: it simply
means writing to an element in an array of OIDs because no two
threads will be allocated with the same new OID. After setting up
the OID entry, the insert finishes by inserting to indexes using a key
provided by the application.

Update/delete. To update a record, the transaction needs to create
a new version out-of-place, and then follow the index and indirec-
tion array to reach the version chain. The new version is installed by
an atomic compare-and-swap instruction against the correspond-
ing OID slot in the indirection array, because the entry stores the
address of the head version. An uncommitted head version acts as a
write lock, so that write-write conflicts can be detected. Delete is
treated as an update with tombstone marking. The garbage collector
periodically scans the indirection arrays and removes any versions
that are not needed (including deleted ones). Note that whether a
transaction can update a record is dictated by the underlying CC
scheme.

Read/scan. Once a transaction found an OID with a given key
through index probe, it accesses the corresponding OID slot to fetch
the first version in the version chain. While traversing the chain,
the underlying CC scheme dictates read operations. It returns the
appropriate version that should be read by a transaction based on
the begin timestamp of the transaction and the version’s creation
timestamp. Scans are handled similarly, except that the transaction
will first conduct a range query (instead of a point query) in the
index to figure out which records (i.e., indirection array entries) to
access.

Admittedly the use of another level of indirection will impose
extra cache misses. But it is still promising in that database changes
are largely absorbed by the indirection array; the updates are not
propagated to other parts of database including indexes, as OIDs in
the indexes remain same as before. Consequently, it can reduce the
amount of log data and thread contentions in the indexes (usually
concurrent trees).

3.3 Logging

The log manager is a pivotal component in most databases. It
provides a centralized point of coordination that other pieces of
the system build off of and depend on. Although its central nature
can simplify recovery and provide transaction ordering for SI-based
CC schemes, the log is also a notorious source of contention in
many systems. ERMIA’s log manager retains the benefits of a serial
“history of the world” while largely avoiding the contention issues

(a) Seg. LSN offset File name LSN: 0x013570 (invalid, too old)
0x0 0x121A0 log-10-121A0-131A0
0x1 0x02053 log-01-02053-03053

0x2 0x039A1 log-02-039A1-049A1

LSN: 0x020951 (seg. 1, offset OX8FE

LSN: 0x033331 (invalid, dead zone)

LSN: 0x040002 (seg. 2, offset OX65F)
OxF O0x10E3C log-OF-10E3C-11E3C

(b) segment i segment i+1
o] 12 R |]---
skip record dead zone

Figure 4: LSN space management.

that normally accompany it. In particular, ERMIA’s log manager

features the following four useful features:

1. Communication in the log manager is extremely sparse. Most
update transactions will issue just one global atomic fetch-and-
add before committing, even in the presence of high contention
and corner cases such as full log buffer or log file rotations.

2. Transactions maintain log records privately while in flight, and
aggregate them into large blocks before inserting them into the
centralized log.

3. Transactions can acquire their commit LSN before entering pre-
commit, thus simplifying the latter significantly (as all commit-
ting transactions agree on their relative commit order).

4. Large object writes can be diverted to secondary storage, requir-
ing only an indirect pointer in the actual log.

The central feature of the log—a single global atomic operation
per insert—rests on a key observation: while the LSN space must be
monotonic, it need not be contiguous as long as sequence numbers
can be translated efficiently to physical locations on disk. Therefore,
each LSN consists of two parts: the higher-order bits identify an
offset in a logical LSN space, while the lowest-order bits identify the
physical log segment file the offset maps to. There are a fixed num-
ber of log segments in existence at any time (16 in our prototype),
but segments may be arbitrarily large and are sized independently of
each other.” Placing the segment number in low-order bits preserves
the total of log offsets.

Figure 4 (a) illustrates how the system converts between LSN
and physical file offsets. Each modulo segment number is assigned
a physical log segment, which consists of a start and end offset, and
the name of the file that holds the segment’s log records. The file
name is chosen so the segment table can be reconstructed easily at
start up/recovery time, even if the current system’s log segment size
is different than that of the existing segments. Given the mapping
table, LSN can be validated and converted to file offsets using a
constant-time look up into the table.

Because we allow holes in the LSN space, acquiring space in
the log is a two-step process. First, the thread claims a section of
the LSN space by incrementing a globally shared log offset by the
size of the requested allocation. Then, having acquired this block of
logical LSN space, the transaction must validate it against various
corner cases:

o Log segment full. If the block straddles the end of the current
segment file, it cannot be used and a skip record is written in its
place to “close” the segment. The thread competes to open the
next segment file (see below) before requesting a new LSN.

2 A system can thus scale log segment sizes upward to handle
higher loads, and downward to conserve disk space.

e Between segments. Threads that acquire a log block that starts
after the current segment file must compete to open the next
segment. Blocks preceding the winner’s block must be discarded
as they do not correspond to a valid location on disk; losers retry.

e Log buffer full. The transaction retains its LSN but must wait for
the corresponding buffer space to drain before using it.

Once a thread validates its LSN offset, it combines the segment
and offset to form a valid LSN. A transaction can request log space
at any time, for example to enter pre-commit with a valid commit
LSN or to spill an oversized write footprint to disk; should it later
abort, it simply writes a skip record.

Figure 4 (b) illustrates the various types of log blocks that might
exist near a log segment boundary. Skip records in the middle of
the segment come from aborted transactions (or are overflow blocks
disguised as skip records). The skip record at the end of the segment
“closes” the segment and points to the first valid block of the next
segment. The “dead zone” between segments ¢ and ¢ + 1 contains
blocks that lost the race to open segment ¢ + 1; these do not map to
any location on disk and should never be referenced.

Decoupling LSN offsets from log buffer and log file management
simplifies the log protocol to the point that a single atomic operation
suffices in the common case. There are only two times a transaction
might require additional atomic operations: (a) Occasionally, a
segment file will close and several unlucky transactions will race
to open the next one. This case is very rare, as segment files can
be hundreds of GB in size if desired. (b) A large write transaction
may not be able to fit all of its log records in a single block, and so
would be forced to write some number of overflow log blocks in
a backward-linked list before committing. We expect this case to
reduce contention, because a thread servicing large transactions—
even with overflow blocks—will not visit the log nearly as often as
a thread servicing short requests.

Because the log allocation scheme is fully non-blocking, there
is no reliable way to know whether a thread has left. A thread
with a reference to a segment that is about to be recycled could
end up accessing invalid data (e.g. from segment ¢ + 16 rather
than segment 7). Therefore, we use an epoch manager to ensure
that stragglers do not suffer the ABA problem when the system
recycles modulo segment numbers, and that background cleaning
has migrated live records to secondary storage before a segment
is reclaimed (reassigning its modulo segment number effectively

5. ¢

removes it from the log’s “address space”).

3.4 Epoch-based resource management

Epoch-based memory management—exemplified by RCU [34]—
allows a system to track readers efficiently, without requiring readers
to enter a critical section at every access. Updates and resource recla-
mation occur in the background once the system can prove no reader
can hold a reference to the resource in question. Readers inform
the system when they become active (intend to access managed
resources soon) and quiescent (no longer hold any references to
managed resources). These announcements are decoupled from ac-
tual resource accesses in order to amortize their cost, as long as they
are made reasonably often. Ideal points in a database engine would
include transaction commit or a worker thread going idle. Resource
reclamation then follows two phases: the system first makes the
resource unreachable to new arrivals, but delays reclaiming it until
all threads have quiesced at least once (thus guaranteeing that all
thread-private references have died). Once a resource is proven safe
to reclaim, reclamation proceeds very flexibly: worker threads are
assigned to reclaim the resources they freed and a daemon thread
performs cleanup in the background.

We have developed a lightweight epoch management system
that can track multiple time lines of differing granularities in paral-
lel. A multi-transaction-scale epoch manager implements garbage
collection of dead versions and deleted records, a medium-scale
epoch manager implements read-copy-update (RCU) that manages
physical memory and data structure usages [34], and a very short
timescale epoch manager tracks transaction IDs , which we recycle
aggressively (see details in Section 3.5).

The widespread and fine-grained use of epoch managers is en-
abled by a very lightweight design we developed for ERMIA. It
has three especially useful characteristic. First, the protocol for
a thread to report activation and quiescent points is lock-free and
threads interact with the epoch manager through thread-private state
they grant it access to. Thus, activating and quiescing a thread is
inexpensive. Second, threads can announce conditional quiescent
points: if the current epoch is not trying to close, a read to a sin-
gle shared variable suffices. This allows highly active threads to
announce quiescent points frequently (allowing for tighter resource
management) with minimal overhead in the common case where
the announcement is uninteresting. Third, and most importantly,
ERMIA tracks three epochs at once, rather than the usual two.

In a traditional epoch management scheme, the “open” epoch
accepts new arrivals, while a “closed” epoch will end as soon as
the last straggler leaves. Unfortunately, this arrangement cannot
differentiate between a straggler (a thread that has not yet quiesced in
a long time) and a busy thread (one which quiesces often but is likely
to be active at any given moment). Thus, when an epoch closes,
most busy threads in the system will be flagged as stragglers—in
addition to any true stragglers—and will be forced to participate in
an expensive straggler protocol designed to deal with non-responsive
threads. The ERMIA epoch manager, in contrast tracks a third epoch,
situated between the other two, which we call “closing.” When a
new epoch begins, all currently active threads become part of the
“closing” epoch but are otherwise ignored. Only when a third epoch
begins does the “closing” epoch transition to “closed” and check
for stragglers. Active threads will have quiesced and migrated to
the current (open) epoch, leaving only true stragglers—if any—to
participate in the straggler protocol.

Although the three-phase approach tracks more epochs, the worst-
case duration of any epoch remains the same: it cannot be reclaimed
until the last straggler leaves. In the common case where stragglers
are rare, epochs simply run twice as often (to reflect the fact that
threads have two epoch-durations to quiesce).

3.5 Transaction management

At its lowest level, the transaction manager is responsible to pro-
vide information about transactions that are currently running, or
which recently ended, and this is partly achieved by allocating TIDs
to all transactions and mapping those TIDs to the corresponding
transaction’s state. In our system, this is especially important be-
cause the CC scheme (see below) makes heavy use of TIDs to avoid
corner cases.

Similar to the LSN allocation scheme the log manager uses, ER-
MIA’s transaction manager assigns a TID to each transaction that
combines an offset into a fixed-size table (where transaction state

9, ¢ £t

is held) with an epoch that identifies the transaction’s “generation
(distinguishing it from other transactions that happened to use the
same slot of the TID table).

Each entry in the TID table records the transaction’s full TID
(to identify the current owner), begin timestamp (an LSN), end
timestamp (if one exists), and current status. The latter two fields
are the most heavily used by the CC scheme, as transactions stamp
records they create with their TID and only change that stamp

to a commit timestamp during post-commit. During the cleanup
period, other transactions will encounter TID-stamped versions and
must call into the transaction manager to learn the true commit
status/stamp. Such inquiries about a transaction’s state can have
three possible outcomes: (a) the transaction could still be in flight,
(b) the transaction has ended and the end stamp is returned, or (c)
the supplied TID is invalid (from a previous generation). In the
latter case, the caller should re-read the location that produced the
TID—the transaction in question has finished post-commit and so
the location is guaranteed to contain a proper commit stamp.

The TID table has limited capacity (currently 64k entries), and so
the generation number will change frequently in a high-throughput
environment. The TID manager thus tracks which TIDs are currently
in use—allowing them to span any number of generations—and
recycles a given slot only once it has been released. Because the
system only handles a limited number of in-flight transactions at a
time (far fewer than 64k), at most a small fraction of the TID table
is occupied by slow transactions.

To serve TID inquiries and handle allocation/deallocation of TIDs
across multiple generations (all of which are quite frequent), we use
only lock-free protocols. An epoch manager running at the time
scale of a typical TID allocation detects and deals with stragglers
who are delayed while trying to allocate a TID. This is only possible
because the epoch manager is so lightweight. Without an epoch
manager, a mutex would be required to prevent bad cases such as
double allocations and thread inquiries returning inaccurate results.

3.6 Concurrency control

ERMIA’s physical layer allows efficient implementations of a va-
riety of CC schemes, including read-set validation and multi-version
CC. In this paper, we focus on handling read-mostly workloads
gracefully with SI-based CC schemes. Different components in the
physical layer work together to support them efficiently; indirection
arrays allow cheap (almost free) multi-versioning at an extremely
low overhead; the log gives total ordering which is the key to imple-
ment snapshot-based CC mechanisms. To guarantee serializability,
we adopt the Serial Safety Net (SSN) [48], a recent serializabil-
ity certifier that can be overlaid on top of SI. We first give a brief
overview of SI, and then explain in detail how SSN works and how
we prevent phantoms.

3.6.1 Snapshot Isolation

Although not serializable [4], snapshot isolation (SI) is an ideal
choice to start from: long, read-mostly transactions will have much
higher chance to survive compared to lightweight OCC schemes.

Under SI, reads and writes never block each other. Reads are
done by traversing the version chains: the reader transaction needs
to perform visibility check directly on LSN-stamped versions by
comparing its begin timestamp and the version’s creation timestamp.
If the version’s creation timestamp predates the visitor’s begin times-
tamp, the transaction will read it. Otherwise it moves on to the
next version. In case the version’s creation timestamp is a TID, the
visitor has to access the owner transaction’s context for visibility
check. If the owner transaction is committed (but have not finished
post-commit, i.e., it is still filling in the creation timestamp for new
versions), and its commit timestamp predates the visitor’s begin
timestamp, the version is also visible. Otherwise the visitor has
to move on to check the next version (which must be a committed
version). Each update is done by installing a new version at the head
of the chain. We forbid a transaction to update a record that has a
committed head version later than its begin timestamp. We follow
the “first-updater-wins” rule, so write-write conflicts are detected if
the head version is uncommitted. The doomed updater will abort

Algorithm 1 SSN commit protocol [48]

def ssn_commit (T) :
t.cstamp = next_timestamp () # begin pre-commit

for v in t.writes: # finalize 7 (T)
t.pstamp = max(t.pstamp, v.pstamp)

finalize m(T)
t.sstamp = min(t.sstamp, t.cstamp)
for v in t.reads:

t.sstamp = min(t.sstamp, v.sstamp)

if t.sstamp <= t.pstamp:
t.abort ()

t.status = COMMITTED

update n (V)
for v in t.reads:
v.pstamp = max(v.pstamp, t.cstamp)

for v in t.writes:
v.prev.sstamp = t.sstamp # update 7 (V)
initialize new version

v.cstamp = v.pstamp = t.cstamp

immediately to avoid dirty write, minimizing the amount of wasted
work on aborts.

Since our SI scheme makes sure that dirty reads never happen
and write-write conflicts have already been avoided on every up-
date, if a transaction can successfully finish all of its updates, it
enters pre-commit, following the process we have mentioned in
earlier paragraphs to obtain a commit LSN, changes its status to
“committed”, and finishes its post-commit phase.

3.6.2 Serializability

Compared to OCC, SI can achieve better performance when han-
dling heterogeneous workloads. However, it is not serializable. The
existing state-of-the-art to make SI serializable is Serializable SI
(SSI) [6], which tracks the “dangerous structure” that will cause
possible non-serializable executions under SI. Despite its effective-
ness, SSI could starve writers because it tends to abort the “pivot”
(writer) transaction when there are concurrent readers in the dan-
gerous structure. Instead, ERMIA adopts a recent proposal, the
Serial Safety Net (SSN) [48], which provides both serializability
and balanced reader/writer performance to guarantee serializability.

The Serial Safety Net. SSN is a cheap certifier that can be
overlaid on top of any CC mechanism that prevents lost updates
and dirty reads. The underlying CC scheme (e.g., SI) still dictates
transaction access patterns; SSN only adds additional checks during
transaction execution and at commit time to avoid non-serializable
executions, which indicate a cycle in the corresponding dependency
graph, where conflicting transactions represented by vertices are
connected by dependency edges. Transactions are added to the
graph once committed. To detect cycles, for each transaction 7" SSN
maintains an easily-computed priority stamp 7 (T") that summarizes
all dependent transactions that committed before, but must be seri-
alized after T'. During transaction execution (i.e., when handling
reads and writes) and at commit time, 7" will apply an exclusion
window test against 7”’s most-recent committed transaction U that
conflicts with and committed before 7. If U’s commit timestamp
(cstamp) is later than 7(7T"), then committing 7" might form a cycle
in the dependency graph. Intuitively, SSN ensures that a “predeces-
sor” (U) will not at the same time be a “successor” of T', which if
committed might close a cycle in the dependency graph.

As noted in [48], the exclusion window test can be simplified
as comparing a pair of timestamps: 7(7") and n(1T") which records
T’s most-recent predecessor: 7(T) < n(T) is forbidden. This
observation leads to the commit protocol depicted in Algorithm 1.
After getting a commit timestamp, the transaction will go over its
write set to finalize its 77(7"). Note that record versions also maintain
their 7 (sstamp) and 7 (pstamp) values, which are recorded by
the corresponding transaction which overwrote or read the versions.
Similarly, the transaction then examines its read set to finalize its
sstamp. If the transaction survives the exclusion window test, it
will proceed to update all read versions’ pstamp with its cstamp.
The commit protocol then finishes by updating overwritten versions’
sstamp and initializing new versions with the cstamp.

Compared to SSI, SSN provides balanced performance for both
readers and writers, and does not exaggerate the starvation of writers.
Specifics about SSN vs. SSI are out of the scope of this paper;
interested readers may refer to [48] for details.

Phantom protection. Although SSN prevents serialization de-
pendency cycles, non-serializable executions can still arise due to
phantoms, or insertion of new records into a range previously read
by an in-flight transaction. ERMIA is amenable to various phantom
protection strategies, such as hierarchical and key-range locking
[26, 32]. We inherit Silo’s tree-version validation strategy [46].
The basic idea is to track and verify tree node versions, taking ad-
vantage of the fact that any insertion into an index will change the
version number of affected leaf nodes. As Silo does, ERMIA also
maintains a node set, which maps from leaf nodes that fall into
the range query to node versions. The node set is examined after
pre-commit. If any node’s version has changed, the transaction must
abort to avoid a potential phantom. Interested readers may refer to
[46] for details.

3.7 Recovery

Recovery in ERMIA is straightforward because the log contains
only committed work; OID arrays are the only real source of com-
plexity. The OID array objects are updated in place to avoid over-
loading the log, and are thus effectively volatile in-memory data
structures. However, they are needed to find all other objects in the
system (including themselves), so ERMIA employs a combination
of fuzzy checkpointing and logical logging to maintain OID arrays
properly across crashes and restarts. All OID arrays are periodically
copied (non-atomically) and the disk address of each valid OID entry
is dumped to secondary storage after recording a checkpoint-begin
record in the log. A checkpoint-end record records the location of
the fuzzy snapshot once the latter is durable. The location of the
most recent checkpoint record is also recorded in the name of an
empty checkpoint marker file in the file system. During recovery, the
system decodes the checkpoint marker, restores the OID snapshots
from the checkpoint, then rolls them forward by scanning the log
after the checkpoint and replaying the allocator operations implied
by insert and delete records. The replay process examines only
log block headers which take less than 10% out of total space and
does not replay the insertions or deletions themselves (which are
safely stored in the log already). A similar process could potentially
be applied to other internal data structures in the system, such as
indexes, but we leave that exploration to future work. It is impor-
tant to note that the process of restoring OID arrays is exactly the
same when coming up from either a clean shutdown or a crash—the
only difference is that a clean shutdown might have a more recent
checkpoint available.

In summary, because the log is the database [3, 5], recovery only
needs to rebuild the OID arrays in memory using sequential 1/O;
anti-caching [10] can take care of loading the actual data, though

background pre-loading is highly recommended to minimize cold
start effects.

4. EVALUATION

In this section, we evaluate the performance of ERMIA using
various benchmarks including both traditional, update-heavy and
emerging heterogeneous workloads. We compare the performance
of ERMIA and Silo [46], a representative lightweight OCC im-
plementation optimized for main-memory and multicore hardware.
Through the experiments, we are interested in revealing and con-
firming the mismatch between lightweight OCC and heterogeneous
workloads, and showing that ERMIA achieves its design goals of
providing robustness and fairness, while maintaining high perfor-
mance. Therefore, our experiments focus on two perspectives: (1)
the capability to serve heterogeneous workloads (in particular, avoid-
ing starvation of read-mostly transactions) and (2) scalability of the
physical layer on massively parallel hardware.

4.1 Experimental setup

We run our experiments on a quad-socket server with four Intel
Xeon E7-4807 processors (24 physical threads in total) and 64GB
of RAM. All worker threads are pinned to a dedicated core to
minimize context switch penalties and inter-socket communication
costs. Log records are written to fmpfs asynchronously. We measure
the performance of three systems with different CC schemes: Silo
(Silo-OCC), ERMIA with SI (ERMIA-SI), and ERMIA with SSN
(ERMIA-SSN). For Silo, read-only snapshots are enabled to handle
read-only transactions. We also improved Silo’s transaction abort
handling and string manipulation mechanisms, which improves the
throughput in TPC-C by ~15% (in workloads where abort count
is high, the impact of the optimization is higher than 15%). To
achieve fair comparison, ERMIA uses the same benchmark code
and phantom prevention mechanism as Silo’s.

4.2 Benchmarks

We run a microbenchmark, TPC-C and TPC-E benchmarks on
all system variants. For TPC benchmarks, we run both the original
version described by the specifications [43, 44] and modified ver-
sions that contain synthesized read-mostly transactions. For each
run, we load data from scratch on a pre-faulted memory pool and
run the benchmark for 30 seconds. All runs are repeated for three
times and we report the average numbers.

Microbenchmark. We use the the Stock table in TPC-C bench-
mark to build a synthesized workload. The microbenchmark consists
of a single transaction that randomly picks a subset of the Stock
table to read and a smaller fraction of it to update. The purpose is to
create read-write conflicts. We have discussed the results from this
benchmark in Section 1.

TPC-C. It is well-known that TPC-C is update-heavy with small
transaction footprints. TPC-C is also a partitionable workload:
conflicts can be reduced by partitioning and single-threading on local
partitions. In such a environment, the only source of contention is
cross-partition transactions. However, its impact is dampened by the
small footprints, avoiding the majority of read-write conflicts. In this
benchmark, we partition the database by warehouse ID and assign
each worker thread a local warehouse, but 1% of the NewOrder
transactions and 15% of Payment transactions are cross-partition.

TPC-C-hybrid. To simulate heterogeneous workloads, we adopt
a modified version of the Query2 transaction (TPC-CH-Q2*) in
TPC-CH [13] benchmark. The original version of Q2 lists suppliers
in a certain region and their items having the lowest stock-level.
We modify the query by enforcing it to pick a random region and
update items in the stock table having lower quantity than a certain

Norm. overall throughput Norm. throughput of TPC-CH-Q2* Abort ratio of TPC-CH-Q2* (%)

1.0 KAA—& A A 3 1.0 AL & A A 100 ']

0.8 1 o8Pt —0— o —H 80 i
06 - . ERMIASI y 06 I 7] €0 4
0.4 | ¢—¢ ERMIA-SSN 7] 04 7] 40 - n
0.2 -e—e silo-0CC 4 02 n 20 |- -
00 LLL 1 I I I 0.0l A A A 0 I I

1% 20% 40% 60% 80% 100% 1% 20% 40% 60% 80% 100% 1% 20% 40% 60% 80% 100%

Size of TPC-CH-Q2* transaction Size of TPC-CH-Q2* transaction Size of TPC-CH-Q2* transaction

Figure 5: TPC-C-hybrid performance. Overall performance (left); TPC-CH-Q2* xct performance (middle), Abort ratio of TPC-

CH-Q2* xct (right), varying size of TPC-CH-Q2* transaction. Performances are normalized to ERMIA-SI (see Table 1 for absolute

numbers of overall TPS for ERMIA-SI).
Norm. overall throughput

Norm. throughput of AssetEval Abort ratio of AssetEval (%)

1.0 AA—A—k k A 1.0 Rk & &)\ 100 17T T I I
0.8 - 0.8 — 80
06 - ERwiASI 0.6 7] €0
0.4 " ¢—¢ ERMIA-SSN 7] 04 7] 40
0.2 -o—e silo-0CC 4 02 T 20 |- n
00 L1 1 I I I 0.0 L1l 1 Ad b
1% 20% 40% 60% 80% 100% 1% 20% 40% 60% 80% 100% 1% 20% 40% 60% 80% 100%

Size of AssetEval transaction Size of AssetEval transaction Size of AssetEval transaction

Figure 6: TPC-E-hybrid performance. Overall performance (left); AssetEval xct performance (middle), Abort ratio of AssetEval
xct (right), varying size of AssetEval transaction. Performances are normalized to ERMIA-SI. (see Table 1 for absolute numbers of

overall TPS for ERMIA-SI).

threshold. We vary the fraction of the Supplier table to be scanned
by TPC-CH-Q2* to adjust transaction footprint size. The new trans-
action mix consists of 40% of NewOrder, 38% of Payment, 10%
of TPC-CH-Q2%*, and 4% of OrderStatus, StockLevel and Delivery
each. The access pattern of TPC-CH-Q2* is determined by sup-
plier ID, not by partitioning field (warehouse ID), thus, it is often
cross-partition, interfering with local worker threads. Because of the
majority of TPC-CH-Q2*’s access is in the Item and Stock tables, a
TPC-CH-Q2* transaction will conflict frequently with NewOrder
and other TPC-CH-Q2* transactions.

TPC-E. Although TPC-C has been dominantly used to evaluate
OLTP systems, TPC-E is designed to be a more realistic OLTP
benchmark with modern features. It models brokerage firm activi-
ties and has more sophisticated schema and transaction execution
control [44]. It is also known for higher read-to-write ratio than
TPC-C (~10:1 vs. ~2:1 [7]). The parameters we set for TPC-E
experiments are 5000 customers, 500 scale factor and 10 initial
trading days (the initial trading day parameter was limited by our
machine’s memory capacity).

TPC-E-hybrid. Similar to the changes we made to TPC-C, we
also augment TPC-E with a new read-mostly transaction (AssetE-
val). AssetEval evaluates the aggregate assets for random customer
accounts and inserts the results into a newly added AssetHistory
table. The total asset of an account is computed by joining the Hold-
ingSummary and LastTrade tables. The vast majority of contentions
will occur between AssetEval and TradeResult transactions. To vary
the degree of contention and the footprint size of AssetEval, we
adjust the size of a customer account group in the CustomerAccount
table to be scanned by AssetEval. The revised workload mix is as fol-
lows: BrokerVolume (4.9%), CustomerPosition (8%), MarketFeed
(1%), MarketWatch (13%), SecurityDetail (14%), TradeLookup

1% 5% 10% 20% 40% 60% 80% 100%
70,319 12,938 5,698 2435 1,173 868 750 647
37,151 7,675 4298 2,142 1,000 705 524 429

TPC-C-hybrid
TPC-E-hybrid

Table 1: Overall TPS of ERMIA-SI in TPC-C-hybrid and TPC-
E-hybrid over varying sizes of read-mostly transactions.

(8%), TradeOrder (10.1%), TradeResult (10%), TradeStatus (9%),
TradeUpdate (2%) and AssetEval (20%).

4.3 Impact of CC schemes

We explore how ERMIA and Silo react to heterogeneous work-
loads with the different CC schemes they employ. We first ex-
amine the throughput of read-mostly transactions in all the three
CC schemes. We extract performance numbers of TPC-CH-Q2*
and AssetEval transactions from TPC-C-hybrid and TPC-E-hybrid
benchmarks, respectively, and normalize them to the numbers of
ERMIA-SI. As shown in Figure 5 (middle), Silo-OCC only pro-
duces half TPC-CH-Q2* commits in ERMIA, even at the smallest
footprint size. As we increase the size of TPC-CH-Q2* transaction,
Silo-OCC quickly collapses, converging to nearly zero through-
put for this transaction. Starting from 40%, Silo-OCC produces
two orders of magnitudes lower commits than ERMIA. Figure 6
(middle) shows a relatively modest curve for Silo-OCC because
TPC-E-hybrid has less contention than TPC-C-hybrid. Nevertheless,
Silo-OCC becomes quickly vulnerable in high contention scenarios
and the throughput of AssetEval quickly drops to unacceptable level,
the same as in TPC-C-hybrid.

Figure 5 (right) and Figure 6 (right) show the percentage of
aborted TPC-CH-Q2* and AssetEval transactions out of their num-
ber of total executions. We find strong correlation between abort
ratio and the throughput of read-mostly transactions. In TPC-E-
hybrid, 40% of AssetEval transactions are aborted by Silo-OCC

100+
0

20+

o—e Silo-OCC s=—a ERMIA-S| ¢—¢ ERMIA-SSN
§ 500 100
~ 400} 80+
3 300t 60}
5, 200} 40}
3
[e]
c
}_

16 12 18 22 1 6 12
of threads

18 24
of threads

Figure 7: Throughput when running TPC-C (left); TPC-E
(right). ERMIA achieves near-linear scalability over 24 cores
and comparable peak performance to Silo.

o—e Sijlo-OCC a—a ERMIA-SI 4 ERMIA-SSN

§ 500 ‘ ‘ 1 500

x 400} 400 +

‘(Sl 300+ 300+

'§) 200} 200}

o 100} 100 +

e

~ 0 ! : : : 0 : : : :

1 6 12 18 24 1 6 12 18 24
of threads # of threads

Figure 8: Throughput when running TPC-C with uniformly
random access (left); TPC-C with 80-20 access skew (right).
Due to robust CC schemes, ERMIA is less sensitive to con-
tention.

at the smallest footprint size and it keeps increasing as the size of
AssetEval grows. TPC-C-hybrid shows a much sharper increase of
abort ratio under Silo-OCC due to frequent conflicts with NewOrder.
ERMIA generally commits most read-intensive transactions. Note
that ERMIA’s abort ratio also increases when TPC-CH-Q2*’s foot-
print size passes the 40% mark. Since read-write conflicts never
happen under SI, the majority of the aborts in ERMIA-SI came from
write-write conflicts between TPC-CH-Q2* transactions, which
are inevitable under any CC scheme that prevents dirty reads and
lost updates. SSN adds slightly more aborts on top of it, but the
number of the additional aborts due to serializability violation is
marginal. This verifies that contention imposed heavy pressure on
the CC and lightweight OCC is not a good match for heterogeneous
workloads because of unacceptable performance penalty for read-
mostly transactions due to unfair contention resolution. Read-mostly
transactions are unlikely to commit as a result of extreme favor for
short, update-intensive transactions. Meanwhile, ERMIA effectively
protects read-intensive transactions from updaters with SI.

Figure 5 (left) and Figure 6 (left) show the normalized overall
throughput when varying the size of TPC-CH-Q2* and AssetE-
val transactions. ERMIA-SI performs the best at all transaction
sizes and ERMIA-SSN pays an additional cost for serializability
guarantee; this comes from the trade-off between strong consis-
tency and performance. ERMIA maintains superior overall per-
formance while committing most heavyweight, read-mostly trans-
actions, while Silo-OCC rarely commits them. Note that higher
commits for read-mostly transactions do not significantly contribute
to overall throughput due to their limited fractions out of workload
mix. The figure also highlights OCC’s reader starvation and lazy
communication problems. As shown in Figure 6 (left), the perfor-
mance gap between ERMIA and Silo-OCC closes when we hit the

e—o Silo-OCC a—a ERMIA-SI ¢— ERMIA-SSN

@ 5[0.7F

ey 0.6]

< 4r 05}

3 3t 0.4}

£ 5l 0.3}

2 1 0.2}

£ ol ool]
' 18 24

16 12 18 24 1 6 12

of threads # of threads

Figure 9: Throughput when running TPC-E-hybrid with 10%
AssetEval transaction (left); with 60% AssetEval transaction
(right). CC pressure deteriorates scalability of Silo in heteroge-
neous workloads.

5% mark for AssetEval footprint size. After this point, Silo-OCC
becomes worse than ERMIA’s. A similar trend is found in Figure 5
(left), with an earlier break-even point at 1% to 5%. These trends
show that Silo-OCC’s growing loss on read-mostly transactions
affects overall performance.

Another interesting finding is that Silo-OCC is still slower than
ERMIA despite its negligible commits from read-mostly transac-
tions. If the underlying CC had detected read-mostly transactions
that are destined to abort in a timely manner, it should have skipped
the uncomfortable transactions and switched to other (much shorter)
transactions as early as possible, reaping more commits from other
transactions. Unlike SI and SSN, the lightweight OCC schemes
cannot detect conflicts until commit time. Hence, heavyweight read-
mostly transactions often lead to unnecessary domination of CPUs,
instead of giving more CPU cycles to other transactions that are
more likely to commit. On the other hand, ERMIA can detect write-
write conflicts on every update, giving some transactions early-out
and avoids most read-write conflicts. This is evidenced by Figure 5
(left and right): starting from the 20% mark on the x-axis, the
increasing performance gap between ERMIA and Silo does not in-
dicate Silo-OCC'’s sudden slowdown, but rather shows that ERMIA
minimized the amount of wasted work on aborted TPC-CH-Q2*
transactions, by capturing write-write conflicts early and switching
to other transactions. This result proves that OCC’s validate-at-
commit scheme can have a huge impact on overall performance,
wasting a tremendous amount of CPU cycles.

4.4 Scalability

In this section, we measure scalability of all systems in diverse
workloads, from original TPC benchmarks to mixed workloads
we introduced. We start from original TPC benchmarks where
lightweight OCC shines, as those workloads impose little pressure
on the OCC scheme.

We measure overall throughput in TPC-C and TPC-E, varying the
number of worker threads. Figure 7 shows that ERMIA achieves
comparable peak performance and scalability trends to Silo-OCC in
both TPC-C and TPC-E. Silo-OCC shows the best performance by
taking advantages of its low-overhead CC and physical layer when
little CC pressure exists. On ERMIA, indirection arrays brought
more cache-misses and SSN paid additional serializability guarantee
cost. In TPC-E, Silo-OCC avoided most of read-write conflicts by
forwarding read-only transactions to read-only snapshots although
TPC-E is more contentious than TPC-C (when read-only snapshots
are turned off, Silo-OCC delivers similar performance to ERMIA-
SSN).

§' 500 |, IPer-TXI ‘ :
< 400 - s Per-oP

‘g_ 300 -

5, 200+

3 100

= 0 ? ¢ ¢ ¢
= 1 6 12 18 24

of threads

Figure 10: Throughput of ERMIA-SI with per-transaction log-
ging and per-operation logging when running TPC-C.

100
% %0 i Other
§_ °0 (i Log mgr
8 " = § % % \\\ = Indir. arrays
5 2 \ \ \ \ X Masstree
1 6 12 18 24

of threads

Figure 11: Cycle breakdown of the various components of
ERMIA-SI when running an increasing number of threads run
TPC-C.

To investigate the impact of skew-induced contentions on scala-
bility, we enforce workers to pick up target partition randomly in
TPC-C, following uniform and 80-20 random distribution, each time
transactions start. In Figure 8, we can find that growing access skew
suppresses Silo-OCC'’s scalability more than ERMIA; Silo-OCC is
dragged down to performance of ERMIA-SI with uniform random
access and to performance of ERMIA-SSN performance with highly
skewed access.

We also study the impact of heavy read-mostly transaction on
scalability in heterogeneous workloads. Figure 9 shows scalability
at different sizes, 10% and 60%, of AssetEval transaction in TPC-E-
hybrid, increasing the number of concurrent workers. Overwhelmed
by CC-pressure, Silo-OCC does not achieve linear scalability and it
becomes worse as we run larger read-mostly transactions. ERMIA
benefits from its robust CC scheme and scalable storage manager.
This figure shows that not only the scalability of underlying physical
layer, but also CC scheme performance dictates overall performance.

Figure 10 shows efficiency of ERMIA’s log manager. Unlike
the WAL protocol, ERMIA log manager has only single round-trip
to centralized log buffer at pre-commit to reduce contention. As
comparison, we emulate the traditional way of logging by enforcing
log buffer round-trip for every single update operation. As shown in
the figure, the impact of per-transaction logging is drastic in memory-
optimized systems. The per-operation logging did not scale at all,
even without log buffer latching (single atomic instruction was used
to reserve log buffer space).

Figure 11 illustrates CPU cycle breakdown per transaction of
ERMIA-SI in TPC-C. With growing parallelism, the critical compo-
nents maintain quite steady overhead. It indicates that the building
blocks of ERMIA are generally scalable over 24 cores. As shown in
the figure, Masstree takes the biggest bottleneck (41%) out of total

[Ssilo-OCC

I ERMIA-SI 72 ERMIA-SSN

Latency of Q2* (ms)

1 6 12 18 24 1 6 12 18 24
of threads # of threads

Figure 12: Latency of TPC-CH-Q2* at 60% size (left); 80%
size (right), varying the number of threads. Under Silo-OCC,
latency fluctuates with larger transaction size and higher con-
currency.

cycles. At the expense of robust CC schemes, ERMIA pays 16%
overhead as indirection costs which mainly came from additional
last-level cache misses (32% of cache misses occurred in the indirec-
tion arrays). The overhead of log manager consistently takes 8 9%
at all points; it proves that fully-decentralized logging and giving up
total ordering are not necessarily required to achieve scalability over
24 cores. Although we ran the experiments on a 24-core machine,
we do not expect that log manager’s overhead will skyrocket over
32 cores. The cost of epoch-based resource managers are negligible
(less than 1%). Resource management does not suffer from thread
contentions at all.

4.5 Latency analysis

In this section, we perform latency analysis. Figure 12 shows
latency of TPC-CH-Q2* over varying number of threads with 60%
and 80% transaction size. We calculated average latency of the
transaction within a run and presented the median value out of
three runs in the figure. The maximum and minimum values are
represented with error bars. Note that latency of TPC-CH-Q2*
transaction is proportional to the number of threads in TPC-C-hybrid
workload because the Stock table which is heavily accessed by the
transaction grows proportionally to scale factor, and we give the
same number of scale factor with the number of threads.

Let us take a look on latency variance first. Both ERMIA-SI
and ERMIA-SSN have negligible variance in all cases. Under Silo-
OCC, the transaction latency is consistent in general, however, in the
cases where the transaction is large and the number of concurrent
threads are high, we can observe latency fluctuation (noticeable vari-
ance tends to appear when the transaction takes more than 200ms).
Also, latency increases more quickly than ERMIA with increasing
parallelism, as shown in Figure 12. Considering growing size of
the transaction, ERMIA delivers consistent latency regardless of
concurrent threads indeed.

One of the main reasons for the results is read-write contention.
During commit protocol, lightweight OCC grabs write locks on
their write set first, validates read set and releases the write locks
after installation of the write set. Meanwhile, readers facing the
locked tuples have to wait for them to be released. Since both
larger transaction size and higher concurrency possibly trigger more
read-write contention, they often lead to larger latency variance
and performance burden. In the worst case, heavy read-mostly
transactions can hold write locks for a long time until read validation
on their huge footprint is completed, blocking other transactions to
proceed upon read-write conflict. Fundamentally, it is a problem of
single-versioned database and might not be a serious problem when
serving short transactions only. However, in the presence of heavy

read-mostly transactions, it could bring huge latency variance and
slowdown, as confirmed by Figure 12.

Another factor that possibly affects latency in Silo is the use of
spinlock in coordinating read-write contention. Spinlock generally
does not consider fairness over waiters; some unlucky readers could
wait excessively due to the random nature of spinlock. We believe
MCS lock could be a promising alternative for its fairness and
multicore friendliness [35]. In addition, we also found that Masstree
relies on spinlock for concurrent access coordination, which partly
causes latency increases.

S. RELATED WORK

In terms of concurrency control, one of the most important studies
has been [1]. This modeling study shows that if the overhead of
pessimistic two-phase locking can be comparable to the overhead of
optimistic methods then the pessimistic one is superior. The same
study shows that it is beneficial to abort transactions that are going to
abort as soon as possible. For higher concurrency, snapshot isolation
has been widely used in practice, despite of its non-serializable
scheduling in presence of cyclic transaction dependency. There have
been some proposals that guarantee serializability with snapshot
isolation [6, 12, 15, 39].

Many of the memory-optimized systems adopt lightweight op-
timistic concurrency control schemes that are suitable only for a
small fraction of transactional workloads. Silo[46], Hekaton[11]
and Foedus [25] employ lightweight optimistic concurrency control
schemes that perform validations at pre-commit. As a comparison
with ERMIA, Silo performs in place updates: under normal cir-
cumstances the system maintains only a single committed version
of an object, in addition to some number of uncommitted private
copies (only one of which can be installed). In order to support
large read-only transactions, a heavyweight copy-on-write snapshot
mechanism must be invoked. These snapshots are too expensive to
use with small transactions, and unusable by transactions that per-
form any writes. Similarly, Microsoft Hekaton[11] employs similar
multi-versioning CC [28]. It is technically multi-versioned, but the
snapshot-plus-read-validation CC scheme it uses means that older
versions become unusable to update transactions as soon as any
overwrite commits. Foedus keeps logically-equivalent snapshots
in NVRAM for OLAP queries. For all practical purposes, these
systems are multi-versioned only for read-only transactions.

H-Store (and its commercial version, VoltDB) is a characteristic
partitioning-based system [23]. H-Store physically partitions each
database to as many instances as the number of available proces-
sors, and each processor executes each transaction in serial order
without interruption. Performance issues raise when the system
has to execute multi-site transactions that touch data from two or
more separate database instances. Lots of work has been put in the
area, including low overhead concurrency control mechanisms [22],
deterministic transaction execution to avoid two-phase commit over-
head [42], and partitioning advisors that help to co-locate data that
are frequently accessed in the same transactions, thereby reducing
the frequency of multi-site transactions, e.g. [9, 38, 45].

For scaling up, many proposals have focused on exploiting multi-
core parallelism. DORA [36] employs logical partitioning and PLP
[37] extends the data-oriented execution principle, by employing
physiological partitioning. Under PLP, the logical partitioning is re-
flected at the root level of the B+tree indexes that now are essentially
multi-rooted. Both DORA and PLP use Shore-MT’s codebase [20],
which is a scalable but disk-optimized storage manager. Hence,
their performance lacks in comparison with the memory-optimized
proposals. Additionally, even though only logical, there is a certain
overhead in the performance due to the partitioning mechanism

employed. Aether is an holistic approach for scalable logging, mini-
mizing centralized log buffer contention [18]. It combined several
techniques such as early lock release, log buffer pipelining and con-
solidation buffer. Wang et al. [47] proposed distributed logging
with non-volatile memory to improve logging performance even
further.

HANA[41] and Hyrise[14] are OLAP-OLTP hybrid engines with
more focus on analytic side. Commonly, they append delta records
to row-store partitions and gradually transform the delta to columnar
compressed main tables. Krueger et al. suggested an efficient merge
operation between the delta partitions and main tables, exploiting
multicore parallelism as well [27]. Hyper [24] follows H-Store’s
single-threaded execution principle. It exploits “copy-on-write”
functionality to generate snapshots for read-only queries. To scale
up to multi-cores, they employ the hardware transactional memory
capabilities of the latest generation of processors [29].

The indirection array, which is central to ERMIA’s design, is a
well-known technique, for example presented in [40]. It is worth
mentioning that Hekaton also uses a technique similar to the indirec-
tion map. ERMIA relies on Masstree for indexing. Masstree [33] is
a trie-based index structure, designed with lock-free technique for
concurrent thread coordination. In Hekaton, Bw-tree [30] exploits
indirection map and delta records to achieve lock-free design.

6. CONCLUSION

In this paper, we underlined the mismatch between the lightweight
OCC currently in vogue with memory-optimized systems and emerg-
ing heterogeneous workloads that include read-mostly transactions.
To address the challenge, we proposed ERMIA, a memory-optimized
transaction processing system built from scratch, to accommodate
heterogeneous workloads. It provides robust and balanced CC
schemes to orchestrate heterogeneous transactions. Also its physical
layer supports the CC schemes efficiently and achieves near-linear
scalability over parallel processors with scalable centralized log
manager, latch-free indirection arrays and epoch-based resource
managers. Experimental results confirm that ERMIA can maintain
high performance for long read-mostly transactions, while achiev-
ing comparable or superior overall performance and (near-linear)
scalability in various transactional workloads.

7. REFERENCES

[1] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control

performance modeling: alternatives and implications. ACM TODS,

12(4), 1987.

P. Bailis, A. Fekete, J. M. Hellerstein, A. Ghodsi, and I. Stoica.

Scalable atomic visibility with ramp transactions. In SIGMOD, 2014.

[3] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei, and
J. D. Davis. CORFU: A shared log design for flash clusters. In NSDI,
2012.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. In SIGMOD, 1995.

[5] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a transactional record

manager for shared flash. In CIDR, January 2011.

M. J. Cahill, U. Rohm, and A. D. Fekete. Serializable isolation for

snapshot databases. In SIGMOD, 2008.

S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson,

I. Pandis, and R. Stoica. TPC-E vs. TPC-C: Characterizing the new

TPC-E benchmark via an I/O comparison study. SIGMOD Record, 39,

2010.

[8] J. C. Corbett et al. Spanner: Google’s globally-distributed database. In

OSDI, 2012.

C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a

workload-driven approach to database replication and partitioning.

PVLDB, 3, 2010.

[2

—

[6

=

[7

—

[9

—

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]
[22]

[23]

[24]

[25]
[26]

[27]

[28]

J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik.
Anti-caching: A new approach to database management system
architecture. PLVDB, 2013.

C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,

R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL Server’s
memory-optimized OLTP engine. In SIGMOD, 2013.

J. M. Faleiro and D. J. Abadi. Rethinking serializable multiversion
concurrency control. PVLDB, 8(11), 2015.

F. Funke, A. Kemper, and T. Neumann. Benchmarking hybrid
OLTP&OLAP database systems. In BTW, 2011.

M. Grund, J. Kriiger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden. HYRISE—A main memory hybrid storage engine.
PVLDB, 4,2010.

H. Han, S. Park, H. Jung, A. Fekete, U. Rohm, and H. Yeom. Scalable
serializable snapshot isolation for multicore systems. pages 700-711,
March 2014.

S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP
through the looking glass, and what we found there. In SIGMOD,
2008.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.
R. Johnson et al. Aether: a scalable approach to logging. PVLDB, 3,
2010.

R. Johnson, I. Pandis, and A. Ailamaki. Eliminating unscalable
communication in transaction processing. The VLDB Journal, 2013.
R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-MT: a scalable storage manager for the multicore era. In EDBT,
2009.

R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki.
Aether: a scalable approach to logging. PVLDB, 3, 2010.

E. Jones, D. J. Abadi, and S. Madden. Low overhead concurrency
control for partitioned main memory databases. In SIGMOD, 2010.
R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi. H-Store: a high-performance, distributed main memory
transaction processing system. PVLDB, 2008.

A. Kemper and T. Neumann. HyPer — a hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In
ICDE, 2011.

H. Kimura. FOEDUS: OLTP engine for a thousand cores and
NVRAM. In SIGMOD, 2015.

H. Kimura, G. Graefe, and H. Kuno. Efficient locking techniques for
databases on modern hardware. In ADMS, 2012.

J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani,
H. Plattner, P. Dubey, and A. Zeier. Fast updates on read-optimized
databases using multi-core CPUs. PVLDB, 5(1), 2011.

P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and
M. Zwilling. High-performance concurrency control mechanisms for
main-memory databases. PVLDB, 5(4), 2011.

[29]
[30]
(311
(32]
[33]

[34]

[35]

[36]
(371

[38]

(391
[40]

[41]

[42]
[43]
[44]

[45]

[46]
[47]
[48]

[49]

V. Leis, A. Kemper, and T. Neumann. Exploiting hardware
transactional memory in main-memory databases. In ICDE, 2014.

J. Levandoski, D. Lomet, and S. Sengupta. The Bw-tree: A B-tree for
new hardware. In ICDE, 2013.

J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman, and R. Wang.
High performance transactions in deuteronomy. In CIDR, 2015.

D. B. Lomet. Key range locking strategies for improved concurrency.
In VLDB, 1993.

Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast
multicore key-value storage. In EuroSys, 2012.

P. E. McKenney and J. D. Slingwine. Read-copy update: Using
execution history to solve concurrency problems. Parallel and
Distributed Computing and Systems, 1998.

J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Trans.
Comput. Syst., 9(1), 1991.

1. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented
transaction execution. PVLDB, 3(1), 2010.

I. Pandis, P. Toziin, R. Johnson, and A. Ailamaki. PLP: page latch-free
shared-everything OLTP. PVLDB, 4(10), 2011.

A. Pavlo, E. P. C. Jones, and S. Zdonik. On predictive modeling for
optimizing transaction execution in parallel OLTP systems. PVLDB,
5(2), 2011.

D. R. K. Ports and K. Grittner. Serializable snapshot isolation in
postgresql. PLVDB, 5(12), 2012.

M. Sadoghi, K. A. Ross, M. Canim, and B. Bhattacharjee. Making
updates disk-1/O friendly using SSDs. PVLDB, 6, 2013.

V. Sikka, F. Férber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhovd.
Efficient transaction processing in SAP HANA database: the end of a
column store myth. In SIGMOD, 2012.

A. Thomson and D. J. Abadi. The case for determinism in database
systems. PVLDB, 3, 2010.

TPC. TPC benchmark C (OLTP) standard specification, revision 5.11,
2010. Available at http://www.tpc.org/tpcc.

TPC. TPC benchmark E standard specification, revision 1.12.0, 2010.
Available at http://www.tpc.org/tpce.

K. Q. Tran, J. F. Naughton, B. Sundarmurthy, and D. Tsirogiannis.
JECB: A join-extension, code-based approach to OLTP data
partitioning. In SIGMOD, 2014.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In SOSP, 2013.

T. Wang and R. Johnson. Scalable logging through emerging
non-volatile memory. PVLDB, 2014.

T. Wang, R. Johnson, A. Fekete, and I. Pandis. The Serial Safety Net:
Efficient concurrency control on modern hardware. In DaMoN, 2015.
X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring
into the abyss: An evaluation of concurrency control with one

thousand cores. PVLDB., 8(3), 2014.

	1 Introduction
	1.1 ERMIA
	1.2 Contributions and paper organization

	2 Design directions
	3 ERMIA
	3.1 Overview
	3.2 Indirection arrays
	3.3 Logging
	3.4 Epoch-based resource management
	3.5 Transaction management
	3.6 Concurrency control
	3.6.1 Snapshot Isolation
	3.6.2 Serializability

	3.7 Recovery

	4 Evaluation
	4.1 Experimental setup
	4.2 Benchmarks
	4.3 Impact of CC schemes
	4.4 Scalability
	4.5 Latency analysis

	5 Related work
	6 Conclusion
	7 References

