
0

1

2

3

4

5

6

ERMIA Silo-OCC Ideal ERMIA Silo-OCC
A

gg
re

ga
te

 c
o

m
m

it
 r

at
io

NewOrder

Payment

OrderStatus

Delivery

StockLevel

Read-mostly

2nd
OIDs: 1 2 3 …

2nd
OIDs: 1 2 3 …

T3

 Private footprint until commit

 Carve out space via atomic-fetch-add

 Fill in log space asynchronously

 Abort log discarded

 LSN offset = global order

ERMIA: Fast Memory-Optimized Database
System for Heterogeneous Workloads

Kangnyeon Kim Tianzheng Wang Ryan Johnson Ippokratis Pandis
University of Toronto LogicBlox Amazon Web Services

What? Heterogeneous workloads are coming, but existing MMDBMS isn’t good at them
Why? “Wrong” concurrency control in use: aborts too many read-mostly transactions
How? Fair and robust CC (snapshot isolation + certifier) + scalable physical layer

Read-mostly analytical components

Traditional OLTP Heterogeneous OLTP

W RR

R W

Short write-intensive

Short read-only

Short write-intensive

Longer read-mostly

W RR

R W RRR

RRR
RR

R

W

OCC: not always the best

ERMIA = Snapshot Isolation + Serial Safety Net + Scalable Physical Layer

Fair and robust logical layer

Read-friendly snapshot isolation
 Abort on write-write conflicts, preserves reads

Serializability with Serial Safety Net *
 Cheap certifier on top of any CC >= RC (e.g. SI)
 Maintains fairness and robustness

* T. Wang, R. Johnson, A. Fekete, I. Pandis. “Serial Safety Net: Efficient
Concurrency Control on Modern Hardware”, DaMoN ’15

Scalable physical layer

Minimal global communication
 One atomic-fetch-add per tx for global ordering
 Eases implementation of snapshot isolation
 Simplifies logging/recovery

Easy maintenance via indirection
 Fast recovery, single-hop index update, etc.

Serial Safety Net Indirection array

Scalable centralized redo logging

Robust to “convenient” & real workloads

Not only… But also:

Robust CC needed for heterogeneous OLTP

Central log (buffer):

Free space

Commit LSN (cLSN) =
XADD(current LSN, log size)

T1 cLSN T2 cLSN =
T3 begin LSN

Log recordsT1

T2

T3

In-progress

 def: c(T) = T’s commit time, π(T) = earliest successor

 Forbid any pred P with π(T) ≤ c(P) ≤ c(T)

https://
github.com/

ermia-db/ermia

HW: 4-socket 6-core Intel E7-4807, 64GB RAMT3

T4

T1

T2

π(T2)

Excl. window satisfied

T4T1

π(T4)T2

T3

Dependency order

π(T2)
T5

T1T4

T2

(T1)

T2

T1 ??

π(T2)
Exclusion window violated

 Object IDs (instead of pointers) at leaf level

 Updates: no index update needed

 Recovery: load header information only

Primary OID Address

1

2

3 …

… …

OIDs: 1 2 3 …

Versions in durable log

V1 V0

“Exclusion
window” of T

C
o

m
m

it
 o

rd
er Install new version:

CAS V1 V2
CAS failure WW conflict

Indirection array

TPC-C TPC-E

TPC-C
TPC-C +

long read-mostly tx Starved

Norm. throughput of TPC-C + R* Abort ratio of TPC-C + R*

Size of R* Size of R*

