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What? Heterogeneous workloads are coming, but existing MMDBMS isn’t good at them
Why? “Wrong” concurrency control in use: aborts too many read-mostly transactions
How? Fair and robust CC (snapshot isolation + certifier) + scalable physical layer
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OCC: not always the best

ERMIA = Snapshot Isolation + Serial Safety Net + Scalable Physical Layer 

Fair and robust logical layer

Read-friendly snapshot isolation
 Abort on write-write conflicts, preserves reads

Serializability with Serial Safety Net *
 Cheap certifier on top of any CC >= RC (e.g. SI)
 Maintains fairness and robustness

* T. Wang, R. Johnson, A. Fekete, I. Pandis. “Serial Safety Net: Efficient 
Concurrency Control on Modern Hardware”, DaMoN ’15

Scalable physical layer

Minimal global communication
 One atomic-fetch-add per tx for global ordering
 Eases implementation of snapshot isolation
 Simplifies logging/recovery

Easy maintenance via indirection
 Fast recovery, single-hop index update, etc.

Serial Safety Net Indirection array

Scalable centralized redo logging

Robust to “convenient” & real workloads

Not only… But also:

Robust CC needed for heterogeneous OLTP

Central log (buffer):

Free space

Commit LSN (cLSN) = 
XADD(current LSN, log size)

T1 cLSN T2 cLSN = 
T3 begin LSN

Log recordsT1
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In-progress

 def: c(T) = T’s commit time, π(T) = earliest successor

 Forbid any pred P with π(T) ≤ c(P) ≤ c(T) 

https://
github.com/

ermia-db/ermia

HW: 4-socket 6-core Intel  E7-4807, 64GB RAMT3
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 Object IDs (instead of pointers) at leaf level

 Updates: no index update needed

 Recovery: load header information only
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Versions in durable log
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