
Transaction Logging Unleashed with NVRAM ∗

Tianzheng Wang Ryan Johnson
University of Toronto

{tzwang, ryan.johnson}@cs.toronto.edu

Most single node database systems such as PostgreSQL use
centralized write-ahead logging [4]: log records are first buffered
in DRAM and then flushed to stable storage upon commit to ensure
durability and consistency. On today’s massively parallel hardware,
however, this single log buffer design has become a bottleneck:
as shown in Figure 1, on a 4-socket, 24-core server with hyper-
threading (the OS sees 48 “CPUs”) logging gradually became the
worst bottleneck with increasing parallelism: ∼45% of the CPU
cycles are spent on contending for the log buffer (in green color).

In this paper, we advocate using byte-addressable, non-volatile
memory (NVRAM) as log buffers. The non-volatility and byte-
addressability of NVRAM resurrect distributed logging—a once
prohibitive technique for single node systems—to scale databases
on modern hardware. We discuss the challenges and solutions
brought by NVRAM and distributed logging. All of our techniques
have been implemented based on the Shore-MT [1] storage man-
ager. Since NVRAMs built with new materials (e.g., PCM) are not
yet widely available, we consider flash-backed DRAM1 in our eval-
uation. We run a write-intensive telecommunications transaction
(TATP Update Location) and the TPC-C benchmark. Evaluation
results show that our approach can significantly ease the logging
bottleneck and achieve ∼3x speedup over Aether [2], a state-of-
the-art centralized logging scheme.

1. Resurrecting distributed logging with NVRAM
Under centralized logging, transaction threads contend on and ac-
quire the lock (mutex) that protects the log buffer, insert to it, and
then release the mutex. A natural way to ease this contention is via
distributed logging: use multiple log buffers, instead of one (note
that group commit does not help ease the contention: it only makes
log flushing faster). However, distributed logging was not practical
due to the needs for (1) dependency tracking, and (2) flushing log
buffers upon transaction commit, i.e., flush-before-commit.

Consider two transactions T1 and T2 with their own log buffers
L1 and L2, respectively. T1 updates a record R1 in page P, logs it in
L1, and continues to do other operations. After this, T2 updates R2
which also resides in P, and logs it in L2. When T2 commits, not
only L2 has to be flushed to storage, but also L1, as T1 modified the
same page earlier than T2 did. For consistency and correct recov-
ery, both log buffers have to be flushed, even though only T2 wants
to commit. With more threads and log buffers—the usual case on
modern hardware—the overhead of such dependency tracking be-
comes much higher. The slow storage (compared to DRAM) fur-
ther worsens this situation due to the flush-before-commit require-
ment. Therefore, although distributed logging can significantly re-
duce contention, it is deliberated avoided in most systems [2].

∗ This work was originally published in VLDB 2014 [5].
1 Flash-backed DRAM works the same as normal DRAM when the system
is running. Upon failures, data are flushed to flash memory with the energy
provided by a supercapacitor. Data are loaded back to DRAM upon restart.

 0

 25

 50

 75

 100

4 8 16 24 32 40 44

T
im

e
 b

re
a

k
d

o
w

n
 (

%
)

Transaction threads

Log work
Log contention
Lock manager

Other contention
Other work

Figure 1. Time breakdown of running a write-intensive workload
on a modern database system. Log contention is a major bottleneck.

Using NVRAM as log buffers solves these problems of dis-
tributed logging: NVRAM’s non-volatility invalidates flush-before-
commit, as log records are durable once they are written in NVRAM.
However, it is not straightforward to adopt either NVRAM or dis-
tribtued logging. Safely and correctly adopting NVRAM requires
all relevant log records hit NVRAM upon commit, instead of being
buffered in the CPU cache; choosing the way of distributing log
records also has performance implications, especially with NUMA
hardware. We next highlight these challenges and solutions.

2. Database design and performance implications
Distributing the log poses two major challenges: how to assign
log records to multiple logs (log space partitioning) and recover
the system from multiple logs. Log records could be distributed
by database page or transaction: storing all log records for a page
or transaction in the same log. Redo can be parallelized by pages,
while undo favors partitioning by transactions, which can be rolled
back in parallel. We next discuss the major impacts on database
design and performance implications brought by these challenges.

Uniqueness of log records. In a centralized log, the log se-
quence number (LSN) uniquely identifies each log record. But
LSNs are not unique in a distributed log, as they only indicate a
record’s position within the log that holds it. Such lack of ordering
among records from different logs can cause errors such as apply-
ing older records on top of newer ones that have smaller LSNs.

Our solution is to maintain a global sequence number (GSN)
based on logical clock [3] in each page, transaction and log. Pin-
ning a page sets the page and transaction GSNs to max(tx GSN,
page GSN) + 1 if the transaction intends to modify the page; other-
wise we omit the “+1”. Inserting a log record sets the tx, page, and
log GSNs to max(tx GSN, page GSN, log GSN) + 1. GSNs are par-
tially ordered, but they uniquely identify and provide a total order
for log records belonging to any one page, log, or transaction.

NUMA effects. The shift to multi-socket systems brings non-
uniform memory access (NUMA), where memory is either “lo-
cal” or “remote”, and accessing the latter is much more expensive.
Threads could run on arbitrary CPUs and spread insertions over any

 0

 150

 300

 450

 600

 750

 4 8 16 24 32 40 44

T
h
ro

u
g
h
p
u
t
(k

T
P

S
)

Transaction threads

Xct level
Page level
Xct + PGC

Page + PGC
Centralized

Figure 2. Throughput for a write-intensive telecommunications
transaction. Transaction-level partitioning outperforms page-level
because of local memory access.

log buffer, which could be allocated in any NUMA node (or striped
over all of them). If the log buffer and the thread are not within the
same node, log insertion will involve remote accesses, which are
almost inevitable in if we partition the log by page. Partitioning by
transaction fits directly with NUMA as each transaction’s writes go
to one log: a log could be allocated in each node, with transactions
assigned to logs based on the CPU they run on. This approach elim-
inates the NUMA effects during log insertion, improving logging
performance and freeing up interconnect bandwidth.

We have evaluated the impact of NUMA effects with a write-
intensive telecommunications transaction (TATP Update Loca-
tion) which consists of frequent and small updates, giving enough
stress on logging. As shown in Figure 2, both ways of partitioning
scale and outperform Aether (“Centralized”), and transaction-level
achieves higher throughput than page-level partitioning. As hard-
ware become increasingly NUMA, the gap is likely to grow.

Recovery. When restarting from a failure, the database will redo
log records and undo transactions that did not successfully commit.
A page-partitioned log can redo in parallel easily: each thread can
work with pages from a single log. Undo will require building up
per-transaction logs, which might be expensive because usually
most transactions have committed with only a few losers left to
undo. Parallel undo is straightforward for a transaction-partitioned
log as all the records to undo a transaction reside in one log. Redo
is more complex because dependencies among pages can reside in
any log. A naı̈ve parallel replay of all logs could apply log records
for the same page in arbitrary order, potentially skipping certain
records. A two-step redo pipeline can solve this problem efficiently:
the first stage uses N threads to scan the logs and partition log
records into M buckets by page ID. M threads then sort each bucket
and apply the changes in parallel, without risk of skipped records.
Full parallelism can be achieved with well-tuned N and M values.

3. NVRAM based logging: now and the future
Modern CPUs rely on caching for good performance. When using
NVRAM as log buffers, log records are first cached by the CPU and
then written to NVRAM upon cache flush. Records that are not yet
persistent in NVRAM could be lost upon failures. Therefore, we
need to ensure that all the log records belonging to a transaction,
in all logs, written on any CPU, are persistent upon commit. Naı̈ve
solutions might disable the CPU cache or flush it after each write.
Neither is efficient, given that most NVRAMs have slower writes.

We propose passive group commit, a lightweight group com-
mit protocol to solve this problem efficiently. It ensures that all
log records written by the committing transactions are persistent
in NVRAM before notifying the client that commit succeeded. We
maintain a thread-local variable dgsn to record the GSN of the log
record the thread can guarantee to be persistent: upon commit, the

 0

 5

 10

 15

 20

 25

 30

 4 8 16 24 32 40 44

T
h
ro

u
g
h
p
u
t
(k

T
P

S
)

Transaction threads

Xct level
Page level
Xct + PGC

Page + PGC
Centralized

Figure 3. Throughput for TPC-C. Distributed logging scales well
until 24 threads, as the server has 24 physical cores and it is well-
known that hyper-threading is not effective for database workloads.

transaction flushes the CPU cache (or empties WC buffers by is-
suing a memory fence if write-combining is used) and stores the
last log record’s GSN as dgsn. The transaction is then added to a
commit queue. The group commit daemon periodically examines
the dgsn of each thread and records the smallest dgsn as mgsn.
Log records written on any CPU with a GSN ≤ mgsn are guaran-
teed to be persistent. The daemon dequeues transactions once their
commit records precedes mgsn and notifies the client. If any thread
takes too long to update its dgsn, the daemon will send a signal to
the straggler, which then persists log records and updates dgsn.

Figures 2 and 3 show the throughput numbers of running Up-
date Location and TPC-C, respectively. In these experiments, we
set the caching mode for log buffers to write-combining for eas-
ier straggler handling (sending a signal implicitly drains the WC
buffers). For both workloads, passive group commit (“PGC”) in-
curs only a small amount of overhead. For comparison, the “Page +
PGC” variant allocates NVRAM from a single socket, thus seeing
dropping performance after 32 threads due to the NUMA effect.

Durable processor cache. Although it solves the durability
problem, passive group commit is still a stop-gap solution and
we argue that the ultimate solution is durable CPU cache built by
NVRAMs such as FeRAM or even capacitor-backed SRAM which
will drain the cached data to NVRAM upon failures. NVRAM can
then be treated like normal memory and software need only issue
memory fences to force ordering when necessary. For a distributed
log, passive group commit will no longer be necessary as all writes
are immediately durable.

Hardware/OS Support. To use NVRAM in existing systems,
the memory controller should distinguish NVRAM and DRAM for
the OS to manage them. Transaction-level log space partitioning re-
quires allocating NVRAM from specified NUMA nodes. It is there-
fore desirable to have some NVRAM on each NUMA node and a
software interface similar to numa alloc onnode for NVRAM.

References
[1] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.

Shore-MT: a scalable storage manager for the multicore era. EDBT,
pages 24–35, 2009.

[2] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki.
Aether: a scalable approach to logging. PVLDB, pages 681–692, 2010.

[3] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. CACM, pages 558–565, 1978.

[4] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: a transaction recovery method supporting fine-granularity lock-
ing and partial roll backs using write-ahead logging. TODS, 17(1):94–
162, 1992.

[5] T. Wang and R. Johnson. Scalable logging through emerging non-
volatile memory. PVLDB, 7(10):865–876, 2014.

	Resurrecting distributed logging with NVRAM
	Database design and performance implications
	NVRAM based logging: now and the future

