
Tianzheng Wang Ryan Johnson

Transaction Logging Unleashed
with NVRAM

No, I’m not talking about the syslog

1

 Used by most transactional systems
 Databases, file systems…

 Reliability
 Everything goes to the log first, then the real place

 Replay winners, rollback losers

 Performance
 Buffer log records in DRAM

 Disk/storage friendly long, sequential writes

Write-ahead logging

2

Update
Bal=500

Data

1. Log it 2. Really change it

Update
Bal=500

Data

1. Log it 2. Really change it

 Used by most transactional systems
 Databases, file systems…

 Reliability
 Everything goes to the log first, then the real place

 Replay winners, rollback losers

 Performance
 Buffer log records in DRAM

 Disk/storage friendly long, sequential writes

Write-ahead logging

3

Update
Bal=500

Data

1. Log it 2. Really change it

Update
Bal=500

Data

1. Log it 2. Really change it

All was good until we had

massively parallel hardware

Centralized log: a serious bottleneck

4

Transaction
threads

DRAM
Log buffer

on commit

Flush
Storage

Why not distribute the log?

Reality

Ideal

Log
work

CPU
cycles

46% - Log
contention

Other

5

Sure!

But need the help of

byte-addressable, non-volatile memory (NVRAM).

The (impractical) distributed log
 Log space partitioning
 by page or xct?

 Impacts locality and recovery

 Dependency tracking
 Direct xct deps: T4 T2

 Direct page deps: T4 T3

 Transitive deps: T4 {T3, T2}
 T1

 Easily end up flushing all logs

 Storage is slow
 System becomes I/O bound

6

a d c
Log 1 Log 2

e f
Log 3

g
Log 4

a e g
Log 1 Log 2

d f
Log 3

c
Log 4

T1 T2 T3 T4

a b c d e f g h

T1 T2 T3 T4

The (impractical) distributed log

7
* R. Johnson etc., “Aether: a scalable approach to logging”, PVLDB 2010

The (impractical) distributed log

8

Heavy dep. tracking + slow I/O

=

showstoppers

* R. Johnson etc., “Aether: a scalable approach to logging”, PVLDB 2010

NVRAM to the rescue

 NVRAM as log buffers for distributed logging

 Log records durable once written

 No dep tracking or flush-before-commit

9

Heavy dep. tracking + slow I/O = (SOLVED)

System architecture

10

Before:

Log buffer (DRAM)

After:

Log buffers (NVRAM)

 Contend on a single
log buffer

 Flush on commit or
timeout

 Less or no contention

 Flush when buffers are
full or timeout

 NUMA effects

 Durability – processor cache is volatile

 Database system implications

 Ordering

 Uniqueness of log records

 Recovery

 Checkpointing

 …

Challenges

11

NUMA
node 2

NUMA
node 1

Problem #1: NUMA effects

 Partition-by-page => easier/simpler recovery

 Threads prefer to access local NVM node

12

P1
P2
P2

NUMA
node 2

NUMA
node 1

Transaction level: Page level:

Prefer to partition by xct

 NUMA-friendly Cross NUMA boundary

Problem #2: LSN gives partial order

 Log sequence numbers only good in any one log

 Recovery needs total order in any log/xct/page

13

Transaction
threads:

Log buffers: …1 2 1 2

The same page
being modified:

…

Same LSNs,
whom first?

Recovery
manager:

smaller ≠ earlier!

By-xct d-log needs global ordering of log records

Solution #2: global sequence number

14

Tx GSN:

Log bufs: …2 3 8 9

Page:

…

0
2
3

1 – 2 – 3Pg GSN:

7
8
9

3 – 8 – 9

GSN: Page Transaction Log

EX-latch max(pg’s, tx’s) + 1 /

SH-latch / max(pg’s, tx’s) /

Log ins. max (pg’s, tx’s, log’s) + 1

How? Bump GSNs when the
transaction latches pages
and inserts log records

 Based on Lamport’s clock, no extra contention

GSN gives a partial, global order in each page, tx and log

 Log records must leave CPU cache before commit,
preferably without dependency-tracking

 The ultimate solution: durable processor cache
 Candidates: FeRAM, SRAM + Supercapacitor…

 Kiln [MICRO-46]

 Whole system persistence [ASPLOS ’12]

 Rohm nonvolatile CPU

Problem #3: Volatile CPU caches

15

But not available

on the market

dGSN dGSN dGSN

 Log records must leave CPU cache before commit,
preferably without dependency-tracking

 Stop-gap solution: passive group commit

Problem #3: Volatile CPU caches

16

Commit queue

Get min dGSN: 8

Passive group commit daemon

Dequeue xct with
dGSN <= 8

on commit:
1. Flush local caches
2. Update local dGSN
3. Enqueue transaction

TXN dGSN

Xct 1 5

Xct 2 10

Evaluation

 Setup

 4-socket, 6-core Xeon E7- 4807 @ 1.8GHz

 24 physical cores, 48 “CPUs” with hyper threading

 64GB DRAM

 NVM: flash/super-capacitor backed DRAM

 Workloads

 Shore-MT, with Aether*

 TPC-C: online transaction processing

 TATP: telecom database applications

17
* R. Johnson etc., “Aether: a scalable approach to logging”, PVLDB 2010

TATP – write intensive

 Distributed vs. centralized logging

18

TATP – write intensive

 Passive group commit

19

TPC-C – full transaction mix

 Distributed vs. centralized logging

20

TPC-C – full transaction mix

 Passive group commit

21

Conclusion

 Centralized logging is a serious bottleneck

 NVRAM resurrects d-log to scale databases

 Practical distributed log today

 Passive group commit

 Flash/super-capacitor backed DRAM (NVDIMM)

22

Find out more in our VLDB paper:

Scalable Logging through Emerging Non-Volatile Memory

http://www.vldb.org/pvldb/vol7/p865-wang.pdf

Thank you!

http://www.vldb.org/pvldb/vol7/p865-wang.pdf

