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Abstract
By their very design, many robot control programs are non-terminating. This paper
describes a situation calculus approach to expressing and proving properties of non-
terminating programs expressed in GOLOG, a high level logic programming language for
modeling and implementing dynamical systems. Because in this approach actions and pro-
grams are represented in classical (second-order) logic, it is natural to express and prove
properties of GOLOG programs, including non-terminating ones, in the very same logic.
This approach to program proofs has the advantage of logical uniformity and the availability
of classical proof theory.

Keywords Knowledge representation · Reasoning about actions · Situation calculus ·
Inductive definitions · Formal verification of GOLOG and CONGOLOG programs
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1 Introduction

By their very design, many robot control programs are non-terminating. To give a simple
example – one we shall use in this paper – an office coffee-delivery robot might be imple-
mented as an infinite loop in which the robot responds to exogenous requests for coffee that
are maintained on a queue. Since a future coffee request is always possible, the program
never terminates.

As is the case for more conventional programs, we want some reliability assurances for
robot controllers. This paper describes an approach for expressing and proving properties of
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non-terminating programs expressed in GOLOG, a high level logic programming language
for modeling and implementing dynamic systems. The kinds of properties we have in mind
are traditional in computer science: liveness, fairness, etc. We differ from typical approaches
in Formal Methods [5, 11, 38, 39] for reasons dictated by the following characteristics of
GOLOG:

1. To write a GOLOG program, the programmer first axiomatizes the primitive actions
of the application domain, using first-order logic. These actions may also include
exogenous events.

2. Next, she describes, in GOLOG, the complex behaviors her robot is to exhibit in this
domain. This GOLOG program is interpreted by means of a formula, this time in second-
order logic.

3. Finally, a suitable theorem prover executes the program.

Because these features are all represented in classical (second-order) logic, it is natural to
express and prove properties of GOLOG programs, including non-terminating ones, in the
very same logic. This approach to program proofs has the advantage of logical uniformity
and the availability of techniques from classical proof theory. It also provides a very rich
language with which to express program properties, as we shall see in this paper. Moreover,
it provides for proofs of programs with incomplete initial state, the normal situation in
robotics where the agent does not have complete information about the world it inhabits.
Finally, this approach gracefully accommodates exogenous event occurrences, and proofs
of program properties in their presence.

This paper is a revised version of a manuscript originally presented at the AAAI 1997
Workshop on Robots, Softbots, Immobots: Theories of Action, Planning and Control [24].
The workshop did not have formal proceedings, so the work has remained unpublished until
now. However, as an unpublished manuscript, the paper has been cited often, especially
lately as effective techniques to actually perform verification of situation calculus-based
programs have become available, as we discuss in the final section of the paper.

2 Formal preliminaries

We briefly summarize the main notions of the Situation Calculus and Golog below. We refer
to Reiter’s Book [44] for a thorough introduction to these.

2.1 The situation calculus

The situation calculus is a second-order language specifically designed for representing
dynamically changing worlds. All changes to the world are the result of named actions. A
possible world history, which is simply a sequence of actions, is represented by a first-order
term called a situation. The constant S0 is used to denote the initial situation, namely the
empty history. There is a distinguished binary function symbol do; do(α, s) denotes the suc-
cessor situation to s resulting from performing the action α. Actions may be parameterized.
For example, put(x, y) might stand for the action of putting object x on object y, in which
case do(put (A,B), s) denotes that situation resulting from placing A on B when the his-
tory is s. Notice that in the situation calculus, actions are denoted by first-order terms, and
situations (world histories) are also first-order terms. For example,

do(putdown(A), do(walk(L), do(pickup(A), S0)))
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is a situation denoting the world history consisting of the sequence of actions [pickup(A),
walk(L), putdown(A)]. Notice that the sequence of actions in a history, in the order in which
they occur, is obtained from a situation term by reading off the actions from right to left.
The situation calculus has a distinguished predicate symbol Poss; the intended meaning of
Poss(a, s) is that it is possible to perform the action a in situation s.

Relations (functions) whose truth values (function values) vary from situation to situation
are called relational (functional) fluents. They are denoted by predicate (function) symbols
taking a situation term as their last argument. For example, hasCoffee(p, s) is a relational
fluent whose intended meaning is that person p has coffee in situation s; robotLocation(s)

is a functional fluent denoting the robot’s location in situation s.
When formalizing an application domain, one must specify certain axioms:

– Action precondition axioms, one for each primitive action. These characterize the rela-
tion Poss, and give the preconditions for the performance of an action in a situation. In
a robot coffee delivery setting, such an axiom might be:

Poss(giveCoffee(person), s) ≡
holdingCoffee(s) ∧
robotLocation(s) = office(person)

This says that the preconditions for the robot to give coffee to person p are that the
robot is carrying coffee, and the robot’s location is p’s office.

– Successor state axioms, one for each fluent. These capture the causal laws of the
domain, together with a solution to the frame problem [43]. For our coffee delivery
robot, the following is an example:

Poss(a, s) ⊃ [holdingCoffee(do(a, s)) ≡
a = pickupCoffee ∨
holdingCoffee(s) ∧
¬(∃ person)a = giveCoffee(person)].

In other words, provided the action a is possible, the robot will be holding a cup of
coffee after action a is performed iff a is the action of the robot picking up the coffee,
or the robot is already holding coffee and a is not the action of the robot giving that
coffee to someone.

– Unique names axioms for the primitive actions, stating that different names for actions
denote different actions.

– Axioms describing the initial situation – what is true initially, before any actions have
occurred. This is any finite set of sentences which mention no situation term, or only
the situation term S0. Examples of axioms for the initial situation for our coffee delivery
example are:

¬(∃p)hasCoffee(p, S0), robotLocation(S0) = CM .

These have the intended reading that initially, no one has coffee, and the robot is
located at the coffee machine (CM).

See [44] for a full description.

2.2 GOLOG

GOLOG [36, 44] is a situation calculus-based logic programming language that allows
for defining complex actions using a repertoire of user specified primitive actions.
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GOLOG provides the usual kinds of imperative programming language control structures as
well as various forms of nondeterminism. Briefly, GOLOG programs are formed by using
the following constructs:

1. Primitive actions: a. Do action a in the current situation. Actually a is a situation-
suppressed action obtained by suppressing the situation argument in each functional
fluent (if any) used in object terms instantiating action parameters. The notation
a[s] denotes the result of restoring the situation argument s in all functional fluents
mentioned in a (see [36, 44]).

2. Test actions: φ?. Test the truth value of expression φ in the current situation. As for
primitive actions, φ is a situation-suppressed formula consisting of a formula in the
language of the situation calculus, but with all situation arguments omitted. The nota-
tion φ[s] denotes the situation calculus formula obtained from φ by restoring situation
argument s into all fluent names (relational and functional) mentioned in φ (see, again,
[36, 44]).

3. Sequence: δ1; δ2. Execute program δ1, followed by program δ2.
4. Nondeterministic action choice: δ1 | δ2. Execute δ1 or δ2.
5. Nondeterministic choice of arguments: (πz)δ. Nondeterministically pick a value for z,

and for that value of z, execute program δ.
6. Nondeterministic repetition: δ∗. Execute δ a nondeterministic number of times.
7. While loops: whileφ do δ endWhile, which is expressed as (φ?; δ)∗; ¬φ?).
8. Conditionals: ifφ then δ1 else δ2, which is expressed as (φ?; δ1) | (¬φ?; δ2).
9. Procedures, including recursion: proc ProcName(v) δProcName endProc.

3 Single step semantics for GOLOG

In [36, 44], GOLOG programs are interpreted by means of a special relation Do(δ, s, s′) that,
given a (generally nondeterministic) program δ and a situation s, returns a possible situation
s′, resulting by executing δ starting from s. In [36, 44], the relation Do is not denoted by a
predicate, but instead it is defined implicitly by using macros expansion rules:

Do(a, s, s′)def=Poss(a[s], s) ∧ s′ = do(a[s], s)
Do(φ?, s, s′)def=φ[s] ∧ s′ = s

Do(δ1; δ2, s, s
′)def=(∃s′′)Do(δ1, s, s

′′) ∧ Do(δ2, s
′′, s′)

Do(δ1 | δ2, s, s
′)def=Do(δ1, s, s

′) ∨ Do(δ2, s, s
′)

Do((πz)δ, s, s′) = (∃z)Do(δ, s, s′)

Do(δ∗, s, s′)def=(∀P)[. . . ⊃ P(s, s′)]
where . . . stands for the conjunction of:

(∀s)P (s, s)

(∀s, s′′, s′)P (s, s′′) ∧ Do(δ, s′′, s′) ⊃ P(s, s′).
For simplicity, we skip the macro expansion rules for procedures, we refer the reader to
[36, 44] for details. By using such macro expansions rules, the relation Do(δ, s, s′) for
the particular program δ is defined by a (generally second-order) formula Φδ(s, s

′) not
mentioning δ at all. This is very convenient, since it completely avoids the introduction



Non-terminating processes in the situation calculus

of programs into the language (they are used only during the macro expansion process
to get the formulas Φδ(s, s

′) corresponding to Do(δ, s, s′). Observe however that, in this
way, programs cannot be quantified over, because they are not terms of the language of the
situation calculus.

The kind of semantics Do associates to programs, which is based on the complete eval-
uation of the program, is sometimes called evaluation semantics [29]. Such a semantics
is not well-suited to interpret non-terminating programs, like infinite loops, since for such
programs the evaluation can never be completed and a final situation can never be reached.

For non-terminating programs, one needs to rely on a semantics that allows for interpret-
ing segments of program executions. So we adopt a kind of semantics called computational
semantics [29], which is based on “single steps” of computation, or transitions.1 A step here
is either a primitive or a test action. We begin by introducing two special relations, Final
and Trans. Final(δ) is intended to say that program δ is in a final state, i.e., it may legally
terminate in the current situation.2 Trans(δ, s, δ′, s′) is intended to say that program δ in
situation s may legally execute one step, ending in situation s′ with program δ′ remaining.

To follow this approach, it is necessary to quantify over programs and so, unlike in [36,
44], we need to encode GOLOG programs as first-order terms, including introducing con-
stants denoting variables, and so on. This is laborious, but quite straightforward [33].3 We
omit all such details here and simply use programs within formulas as if they were already
first-order terms.

Final and Trans are denoted by predicates defined inductively on the structure of the first
argument. It is convenient to include a special “empty” program ε, denoting that nothing of
the program remains to be performed.

The definition of Final is as follows:

(∀δ)Final(δ) ≡ (∀F)[. . . ⊃ F(δ)]
where . . . stands for the conjunction of the universal closure of the following clauses:

F(ε)

F (δ1) ∧ F(δ2) ⊃ F(δ1; δ2)

F (δ1) ∨ F(δ2) ⊃ F(δ1 | δ2)

F (δ) ⊃ F((πz)δ))

F (δ∗)
F (δProcName) ⊃ F(ProcName(x))

Observe that being final is a syntactic property of programs: programs of a certain form
are considered to be in a final state. Moreover being final does not depend on the objects
the program deals with, indeed Final((πz)δ) and Final(ProcName(x)) depend only on δ

and δProcName and not on the particular values of z and x respectively. Observe that from
the above definition we get that primitive and test actions are never final: for all primitive
actions a Final(a) ≡ False and for all tests φ? Final(φ?) ≡ False.

The definition of Trans is as follows:

(∀δ, s, δ′, s′)Trans(δ, s, δ′, s′) ≡ (∀T )[. . . ⊃ T (δ, s, δ′, s′)]

1Both types of semantics belong to the family of structural operational semantics introduced in [42].
2Notice that, Final means that the program may be considered terminated, but not that all its possible
executions are necessarily terminated.
3We assume that the predicates introduced in this section, including Final and Trans, cannot occur in tests,
hence disallowing self-reference.
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where . . . stands for the conjunction of the universal closure of the following clauses:

Poss(a[s], s) ⊃ T (a, s, ε, do(a[s], s))

φ[s] ⊃ T (φ?, s, ε, s)

T (δ1, s, δ
′
1, s

′) ⊃ T (δ1; δ2, s, δ
′
1; δ2, s

′)
Final(δ1) ∧ T (δ2, s, δ

′
2, s

′) ⊃ T (δ1; δ2, s, δ
′
2, s

′)

T (δ1, s, δ
′
1, s

′) ⊃ T (δ1 | δ2, s, δ
′
1, s

′)
T (δ2, s, δ

′
2, s

′) ⊃ T (δ1 | δ2, s, δ
′
2, s

′)

(∃y)T (δz
y, s, δ

′, s′) ⊃ T ((πz)δ, s, δ′, s′)

T (δ, s, δ′, s′) ⊃ T (δ∗, s, δ′; δ∗, s′)

T ((δProcName)
v
x, s, δ

′, s′) ⊃ T (ProcName(x), s, δ′, s′)

Above, δz
y stands for the result of the syntactic substitution of z by y in δ; analogously,

(δProcName)
v
x stands for the result of the syntactic substitution of the parameters v by x. The

clauses defining Trans characterize when a configuration (δ, s) can evolve (in a single step)
to a configuration (δ′, s′). Intuitively they can be read as follows:

– (a, s) evolves to (ε, do(α[s], s)), provided a[s] is possible in s. Observe that after
having performed a, nothing remains to be performed.

– (φ?, s) evolves to (ε, s), provided that φ[s] holds. Otherwise, it cannot proceed.
Observe that the situation remains unchanged.

– (δ1; δ2, s) can evolve to (δ′
1; δ2, s

′), provided that (δ1, s) can evolve to (δ′
1, s

′). More-
over, it can evolve to (δ′

2, s
′), provided that δ1 is final and (δ2, s) can evolve to

(δ′
2, s

′).
– (δ1 | δ2, s) can evolve to (δ′, s′), provided that either (δ1, s) or (δ2, s) can do so.
– ((πz)δ, s) can evolve to (δ′, s′), provided that there exists a y such that (δz

y, s) can
evolve to (δ′, s′) – z is bound by π in (πz)δ and is typically free in δ.

– (δ∗, s) can evolve to (δ′; δ∗, s′) provided that (δ, s) can evolve to (δ′, s′). Observe that
(δ∗, s) can also not evolve at all, since δ∗ is final.

– (ProcName(x), s) can evolve to (δ′, s′), provided that the body δProcName of the proce-
dure ProcName, with the actual parameters x substituted for the formal parameters v,
can do so.

The possible configurations that can be reached by a program δ starting in a situation
s are those obtained by repeatly following the transition relation denoted by Trans starting
from (δ, s), i.e., those in the reflexive transitive closure of the transition relation. Such a
relation is denoted by the “reflexive-transitive closure” of Trans, Trans∗ defined as:

(∀δ, s, δ′, s′)Trans∗(δ, s, δ′, s′) ≡ ∀U [. . . ⊃ U(δ, s, δ′, s′)]
where . . . stands for the conjunction of the universal closure of the following clauses:

U(δ, s, δ, s)

U(δ, s, δ′, s′) ∧ Trans(δ′, s′, δ′′, s′′) ⊃ U(δ, s, δ′′, s′′)
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Using Trans∗ and Final, we may denote the relation Do as follows:

Do(δ, s, s′)def=(∃δ′)Trans∗(δ, s, δ′, s′) ∧ Final(δ′)

In other words, Do(δ, s, s′) holds if it is possible to repeatedly single-step the program δ,
obtaining a program δ′ and a situation s′ such that δ′ can legally terminate in s′. Note that
this formulation of Do is equivalent to the one in [36, 44] (c.f. [29]).

4 Exogenous actions

Exogenous action are primitive actions that are not under the control of the program [44].
They are executed by other agents in an asynchronous way with respect to the program.
Trans can be easily modified to take into account exogenous actions as well. It suffice to
add to the above definition a clause having, as a first approximation, the form:

Exo(exo) ∧ Poss(exo, s) ⊃ T (δ, s, δ, do(exo, s))

which says that any configuration (δ, s) can evolve, due to the occurrence of an exogenous
action exo, to (δ, do(exo, s)), where the situation has changed but the program hasn’t.

The above clause enables the occurrence of an exogenous action exo every time the action
preconditions for exo, and hence Poss(exo, s), are true. However it is of interest, to restrict
further the actual occurrence of exo along a sequence of transitions, establishing some sort
of dynamics for exogenous actions. Such a dynamics has a role similar to that of programs
for normal primitive actions although typically it is not strict enough to extract a program
that implements it. Rather the dynamics of exogenous actions has to be specified by means
of suitable axioms.

A possible way to follow such a strategy is to introduce a special fluent DynaPoss(exo, s)

and modify Trans by introducing the following refinement of the above clause:

Exo(exo) ∧ Poss(exo, s) ∧ DynaPoss(exo, s) ⊃
T (δ, s, δ, do(exo, s)).

Then one uses special axioms expressing the dynamics of exogenous actions by specifying
in which situations s, along a sequence of transitions, DynaPoss(exo, s) holds. Such axioms
may express sophisticated temporal/dynamic laws and typically they are going to be second-
order. Observe that exo can actually occur only if both Poss(exo, s) and DynaPoss(exo, s)

hold in s.

5 Logical representation of inductive definitions and fixpoints

The relations Trans and Final are defined inductively. Inductive definitions [1, 33, 40] are
broadly used in mathematical logic for defining sets and have became widely used in com-
puter science [12]. A rule-based inductive definition is a set R of rules of the form P

c
,

where P is the set of premises and c is the conclusion, together with a closure condition:
a set Z is R-closed if each rule in R whose premises are in Z also has its conclusion
in Z. A set H , inductively defined by R, is given by H = ⋂{Z | Z is R-closed} or by
H = ⋃{Z | Z is R-closed}. The former is called a positive inductive definition of H ,
the latter is called a negative inductive or coinductive definition of H . Let U be a set. An
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operator induced by an inductive definition is a total mapping Γ : Pow(U) 
→ Pow(U),

such that

Γ (Z) =
{

c ∈ U | ∃P ⊆ Z : P

c
∈ R

}

That is, Γ is a mapping taking sets to sets.
Inductive definitions are strongly related to fixpoint properties. i.e., properties defined

as solutions of recursive equations. Specifically, positive inductive definitions are related to
least fixpoints, i.e., minimal solution of the recursive equations, whereas negative inductive
definitions are related to greatest fixpoints, i.e., maximal solutions of the recursive equa-
tions. Dynamic properties are typically fixpoint properties, expressed as the least or greatest
solutions of certain recursive logical equations (e.g. see [49]).

Every property definable as an extreme fixpoint must have, by definition:

– its own construction principle, a recursive equation a fixpoint of which is our property;
– an appropriate induction or coinduction principle to guarantee the minimality or

maximality of the solution of the recursive equation.

5.1 Construction principle

To define a set Z, here denoted by a predicate Z(x), we need to say what its elements are.
The construction principle tells us how to obtain these elements recursively.

(∀x)Z(x) ≡ Φ(Z, x) (1)

In this case Φ is called a constructor for Z. Any solution of this recursive equation is called
a fixpoint of the operator Φ. The Knaster-Tarski Theorem [31, 50] guarantees that if the
operator Φ is monotone, the (1) has both a least and a greatest solution. A sufficient condi-
tion for monotonicity is that all occurrences of Z occur within a even number of negations.4

This condition is always satisfied in this paper.

5.2 Induction principle: least fixpoints

To guarantee that Z is the smallest solution, we apply the induction principle:5

(∀P, x){[(∀y)Φ(P, y) ⊃ P(y)] ⊃ [Z(x) ⊃ P(x)]} (2)

i.e., whatever solution P of the recursive specification we take, Z is included in it.
A set Z satisfying construction principle (1) and induction principle (2) is denoted

by μP,yΦ(P, y)(x), and it is called a least fixpoint of an operator Φ(P, y). Note that in
μP,yΦ(P, y)(x) the predicate variable P and the individual variables y are considered
bounded by μ, while the individual variables x are free. Another view of μP,yΦ(P, y)(x)

is that μP,yΦ(P, y) is the name of a defined predicate, and x are its arguments.
We can rewrite the induction principle (2) in the following way

(∀x){Z(x) ⊃ [(∀P)[(∀y)Φ(P, y) ⊃ P(y)] ⊃ P(x)]} (3)

4Interpreting Φ ⊃ 	 as an abbreviation for ¬Φ ∨ 	.
5The idea of defining a least fixpoint using two principles, construction and induction, is from [28].
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Notice that implication in the opposite direction follows from the construction principle (1).
We obtain

(∀x){μP,yΦ(P, y)(x) ≡ [(∀P)[(∀y)Φ(P, y) ⊃ P(y)] ⊃ P(x)]} (4)

The last sentence is often considered as a formal definition of a least fixpoint. Observe that
it has exactly the form we have used to define Trans and Final (as well as Do(δ∗, s, s′) in
[36]).

5.3 Coinduction principle: greatest fixpoints

To guarantee that Z is the biggest solution of (1), we apply the coinduction principle:

(∀P, x){[(∀y)P (y) ⊃ Φ(P, y)] ⊃ [P(x) ⊃ Z(x)]} (5)

i.e., whatever solution P of the recursive specification we take, Z includes it.
We can rewrite the coinduction principle (5) in the following way

(∀x){[(∃P)[(∀y)P (y) ⊃ Φ(P, y)] ∧ P(x)] ⊃ Z(x)} (6)

An explicit expression for a greatest fixpoint can be obtained in a similar way as was done
for a least fixpoint:

(∀x){νP,yΦ(P, y)(x) ≡ [(∃P)[(∀y)P (y) ⊃ Φ(P, y)] ∧ P(x)]} (7)

The last sentence can be taken as a definition of a greatest fixpoint.

6 Examples of expressible dynamic properties

With Trans and Final in place, a wide variety of dynamic properties can be expressed by
relying on second-order formulae expressing least and greatest fixpoint properties. In partic-
ular properties expressible by logics of programs, such as dynamic logics [32], mu-calculus
[41, 49], and temporal logics [25], can be rephrased in our setting. Let us present some
examples.

1. The formula:

Q1(δ0, s0)
def=

μP,δ,s[ψ(δ, s) ∨ (∃δ′, s′)Trans(δ, s, δ′, s′) ∧
P(δ′, s′)](δ0, s0)

(where δ0, s0 are individual variables) defines a predicate Q1(δ0, s0) that denotes the
smallest set of configurations C1 such that a configuration (δ, s) belongs to this set (the
predicate Q1 is true on (δ, s)) if and only if either ψ is true on (δ, s) or there exists a
configuration (δ′, s′), reachable in one step by the relation Trans, which also belongs to
the set C1.

In this way, the formula expresses that from each configuration (δ0, s0) on which
the specified predicate is true, there exists an execution path that eventually reaches a
configuration (δ, s) on which ψ is true.
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As a special case, by taking ψ(δ, s)
def=φ(s) ∧ Final(δ), one can express that there

exists a terminating execution of program δ0 starting from situation s0 such that φ is
true in the final situation.

2. The formula:

Q2(δ0, s0)
def=

μP,δ,s{ψ(δ, s) ∨ [(∃δ′, s′)Trans(δ, s, δ′, s′)] ∧
(∀δ′, s′)Trans(δ, s, δ′, s′) ⊃ P(δ′, s′)}(δ0, s0)

defines a predicate Q2(δ0, s0) that denotes the smallest set of configurations C2 such
that the predicate is true on configuration (δ, s) if and only if either ψ is true on (δ, s)

or there exists a configuration (δ′, s′) reachable in one step by the relation Trans, and
on all such configurations the predicate is still true.

In this way, the formula expresses that from each configuration (δ0, s0) on which the
specified predicate is true, all execution paths eventually reach a configuration (δ, s) on
which ψ is true.

3. The formula:

Q3(δ0, s0)
def=

νP,δ,s[ψ(δ, s) ∧
(∃δ′, s′)Trans(δ, s, δ′, s′) ∧ P(δ′, s′)](δ0, s0)

defines a predicate Q3(δ0, s0) that denotes the greatest set of configurations C3, such
that the predicate is true on configuration (δ, s) if and only if both ψ is true on (δ, s)

and the predicate is still true on at least one configuration (δ′, s′) reachable in one step
by the relation Trans.

In this way, the formula expresses that from each configuration (δ0, s0) on which the
specified predicate is true, there exists a non-terminating execution path along which ψ

is always true.

As a special case, by ψ(δ, s)
def=True, one can express that there exists a non-

terminating execution path.
4. The formula:

Q4(δ0, s0)
def=

νP,δ,s[ψ(δ, s) ∧
(∀δ′, s′)Trans(δ, s, δ′, s′) ⊃ P(δ′, s′)](δ0, s0)

defines a predicate that denotes the greatest set of configurations C4 such that the predi-
cate is true on configuration (δ, s) if and only if both ψ is true on (δ, s) and the predicate
is still true on each configuration (δ′, s′) reachable in one step by the relation Trans.

In this way, the formula expresses that from each configuration (δ0, s0) on which the
specified predicate is true, along all execution paths ψ is always true.

As a special case, by ψ(δ, s)
def=¬Final(δ) ∧ (∃δ′, s′)Trans(δ, s, δ′, s′), one can

express that all execution paths are non-terminating and no final state is ever reached.

7 Example: a coffee delivery robot

Here, we describe a robot whose task is to deliver coffee in an office environment. The robot
can carry just one cup of coffee at a time, and there is a central coffee machine from which it
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gets the coffee. The robot receives asynchronous requests for coffee from employees. These
requests are put in a queue. The robot continuously takes the first request from the queue
and serves coffee to the specified person. The use of the queue guarantees that all requests
will in fact be served (implementing a fair serving policy).

7.1 Representation of the queue

As usual, to define an abstract data type, we need to specify the domain of its values, and
its functions and predicates.

The domain of values for queues is constructed inductively from the constant nil and the
functor cons(·, ·) as follows:6

(∀q)IsQueue(q) ≡ (∀Q)[. . . ⊃ Q(q)]
where . . . stands for the conjunction of:

Q(nil)

(∀f, r)Q(r) ⊃ Q(cons(f, r))

The functions and predicates for queues are the usual first(·), dequeue(·), enqueue(·, ·)
and isEmpty(·). They are defined in our setting as follows:

(∀f, r)first(cons(f, r)) = f (unspecified for nil)

(∀f, r)dequeue(cons(f, r)) = r(unspecified for nil)

(∀p)enqueue(nil, p) = cons(p, nil)

(∀p, f, r)enqueue(cons(f, r), p) = cons(f, enqueue(r, p))

(∀q)isEmpty(q) ≡ (q = nil)

To these, we add the function length(·) that returns the length of the queue, and the predicate
isFull(·), since we are going to need queues of a bounded length.

length(nil) = 0

(∀f, r)length(cons(f, r)) = 1 + length(r)

(∀q)isFull(q) ≡ (length(q) = 100)

We enforce unique name assumption for terms built from nil and cons(·, ·), but obviously
not for those built with the functions dequeue(·), enqueue(·, ·) and length(·).

7.2 Formalization of the example

Primitive actions

– requestCoffee(person). A request for coffee is received from the employee person.
This action is an exogenous one, i.e., an action not under the control of the robot.
(∀p)Exo(requestCoffee(p)) holds.

6Equivalently, (∀q0)IsQueue(q0) ≡ μQ,q [q = nil ∨ (∃f, r)q = cons(f, r) ∧ Q(r)](q0).
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– selectRequest(person). The first request in the queue is selected, and the employee
person that made that request will be served.

– pickupCoffee. The robot picks up a cup of coffee from the coffee machine.
– giveCoffee(person). The robot gives a cup of coffee to person.
– startGo(loc1, loc2). The robot starts to go from location loc1 to loc2.
– endGo(loc1, loc2). The robot ends its process of going from location loc1 to loc2.

Fluents

– queue(s). A functional fluent denoting the queue of requests in situation s.
– robotLocation(s). A functional fluent denoting the robot’s location in situation s.
– hasCoffee(person, s). person has coffee in s.
– going(loc1, loc2, s). In situation s, the robot is going from loc1 to loc2.
– holdingCoffee(s). In situation s, the robot is holding a cup of coffee.

Situation independent predicates and functions

– office(person). Denotes the office of person.
– CM . Constant denoting coffee machine’s location.
– Sue, Mary, Bill, Joe. Constants denoting people.

Primitive action preconditions

Poss(requestCoffee(p), s) ≡
¬isFull(queue(s))

Poss(selectRequest(p), s) ≡
¬isEmpty(queue(s)) ∧ p = first(queue(s))

Poss(pickupCoffee, s) ≡
¬holdingCoffee(s) ∧

robotLocation(s) = CM

Poss(giveCoffee(person), s) ≡
holdingCoffee(s) ∧

robotLocation(s) = office(person)

Poss(startGo(loc1, loc2), s) ≡
¬(∃l, l′)going(l, l′, s) ∧ loc1 �= loc2 ∧

robotLocation(s) = loc1

Poss(endGo(loc1, loc2), s) ≡
going(loc1, loc2, s).
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Successor state axioms

Poss(a, s) ⊃
[queue(do(a, s)) = q ≡

(∃p)a = requestCoffee(p) ∧
q = enqueue(queue(s), p) ∨

(∃p)a = selectRequest(p) ∧
q = dequeue(queue(s), p) ∨

(∀p)a �= requestCoffee(p) ∧
a �= selectRequest(p) ∧ q = queue(s)]

Poss(a, s) ⊃
[hasCoffee(person, do(a, s)) ≡

a = giveCoffee(person) ∨ hasCoffee(person, s)]
Poss(a, s) ⊃

[robotLocation(do(a, s)) = loc ≡
(∃loc′)a = endGo(loc′, loc) ∨
robotLocation(s) = loc ∧

¬(∃loc′, loc′′)a = endGo(loc′, loc′′)]

Poss(a, s) ⊃
[going(l, l′, do(a, s)) ≡

a = startGo(l, l′) ∨
going(l, l′, s) ∧ a �= endGo(l, l′)]

Poss(a, s) ⊃
[holdingCoffee(do(a, s)) ≡

a = pickupCoffee ∨
holdingCoffee(s) ∧

¬(∃person)a = giveCoffee(person)].

Additional axioms

(The following axiom is not strictly necessary, we add it for clarity.)

(∀s)IsQueue(queue(s))
(the values of queue(·) are queues)

Unique names axioms stating that the following terms, together with those formed from nil
and cons(·, ·) (see above), are pairwise unequal:

Sue, Mary, Bill, Joe, CM, office(Sue),
office(Mary), office(Bill), office(Joe).

Initial situation

robotLocation(S0) = CM ∧ ¬holdingCoffee(S0) ∧
¬(∃l, l′)going(l, l′, S0) ∧ ¬(∃p)hasCoffee(p, S0) ∧
queue(S0) = nil
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Robot’s GOLOG program

The robot executes the program DeliverCoffee defined as follows (note the suppressed
situation argument in primitive and test actions):

proc DeliverCoffee
while True do

if ¬isEmpty(queue)
then (πp)selectRequest(p); ServeCoffee(p)

else True? (skip)

endWhile
endProc

proc ServeCoffee(p)

Goto(CM);
pickupCoffee;
Goto(office(p));
giveCoffee(p)

endProc

proc Goto(loc)

startGo(robotLocation, loc);
endGo(robotLocation, loc)

endProc

Dynamics of exogenous actions

Along all possible evolutions of any program δ0, starting from S0, into any configuration, in
a finite number of transitions, a situation s is reached where somebody may request coffee
(DynaPoss holds) (provided that it is possible to request coffee, i.e., that also Poss holds):

(∀δ0, δ, s)Trans∗(δ0, S0, δ, s) ⊃ ExoLaws(δ, s)

ExoLaws(δ1, s1)
def=

μE,δ,s{[(∃p)DynaPoss(requestCoffee(p), s)] ∨
[(∀δ′, s′)Trans(δ, s, δ′, s′) ⊃ E(δ′, s′)]}(δ1, s1)

7.3 Reasoning

Next, we show some dynamic properties of the overall system (the program plus the exoge-
nous actions). First, it is easy to see, from its structure, that the program DeliverCoffee will
never reach a final configuration:

(∀δ, s)Trans∗(DeliverCoffee, S0, δ, s) ⊃ ¬Final(δ).
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It is also possible to show the following more complex property: every request for cof-
fee sooner or later will be served. Formally, the fairness property Fair(DeliverCoffee, S0)

holds, where:

Fair(δ0, s0)
def=

(∀p, δ, s)Trans∗(δ0, s0, δ, do(requestCoffee(p), s)) ⊃
EventuallyServed(p, δ, do(requestCoffee(p), s))

and
EventuallyServed(p, δ1, s1)

def=
μP,δ,s{[(∃s′′)s = do(selectRequest(p), s′′)] ∨

[((∃δ′.s′)Trans(δ, s, δ′, s′)) ∧
(∀δ′, s′)Trans(δ, s, δ′, s′) ⊃ P(δ′, s′)]}(δ1, s1)

It is also possible to show that there exists an (infinite) execution path where no coffee is
ever served:

PossiblyAlwaysIdle(DeliverCoffee, S0)

where
PossiblyAlwaysIdle(δ0, s0)

def=
νA,δ,s{[(∀p, s′′)(s �= do(selectRequest(p), s′′)] ∧

[(∃δ′, s′)Trans(δ, s, δ′, s′) ∧ A(δ′, s′)]}(δ0, s0).
However, by the fairness property above, this means that no requests for coffee were made
along that execution path.

8 Discussion

The 1997 manuscript [24], which constitutes the core part of this paper, was the first
work addressing verification of possibly non-terminating programs in the situation calculus.
Notably, no effective techniques were available at the time, except for the easy case where
the object domain is assumed to be finite and known a priori (i.e., essentially the proposi-
tional situation calculus). Since then, there has been growing interest in reasoning about and
verifying agent programs in the situation calculus and outside of it. Here, we review some
of the work that was directly influenced by the original 1997 manuscript.

Several phenomena in reasoning about complex actions have been studied by leveraging
on the transition semantics. The semantics itself was originally introduced to deal with con-
currency in CONGOLOG [13, 14]. Later it was exploited for capturing: execution monitoring
in [23], the distinction between online and offline execution in INDIGOLOG [22, 46], the
notions of ability and epistemic feasibility [34, 35], compilation of search over nondetermin-
istic programs into planning problems [6], connections with web service composition [48],
etc.. The situation calculus causal laws, the transition semantics and the temporal properties
were captured in the unifying framework of inductive/conductive definitions in [51]. Apart
from the literature on the situation calculus, the work in this paper has influenced other
areas of Artificial Intelligence, in particular research on merging reasoning about actions
with description logics [2, 4, 53].

Focusing on the propositional situation calculus (where fluents have only situation as an
argument) decidable verification techniques were devised in [52]. Later these were extended
to a one-argument fluents fragment of the situation calculus [27]. Techniques for veri-
fication resorting to second-order theorem proving with no decidability guarantees have
been studied in [47] where the CASL verification environment for multi-agent CONGOLOG
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programs is described. In [9], characteristic graphs of programs were introduced to define
a form of regression over programs, to be used as a pre-image computation step in (sound)
procedures for verifying GOLOG and CONGOLOG programs inspired by model checking.
Verification of programs over a two-variable fragment of the situation calculus was shown to
be decidable in [10, 54, 55]. The work in [30] established conditions to verify loop invariants
and persistence properties. Finally, the work in [21, 45] can be seen as a direct follow-up to
the present work in that the authors propose techniques (with model-checking ingredients)
to reason about infinite executions of GOLOG and CONGOLOG programs directly based on
second-order logic exploiting fixpoint approximates. More recently, [15–17, 19, 20] have
shown that one obtains robust decidability results for temporal verification of “bounded situ-
ation calculus action theories”, i.e., situation calculus action theories such that, in every situ-
ation, the number of object tuples forming the extension of each fluent is bounded by a fixed
number. Such a research is related to decidable verification for bounded data-aware dyna-
mic systems [3, 7]. These decidability results for bounded situation calculus action theories
have been extended to GOLOG and CONGOLOG programs (without recursive procedures),
where atomic actions are specified by a bounded situation calculus action theory [18].

Finally, the general results in [8], combined with the result in [18], allow for devising
decidability for exactly the fixpoint language over programs presented here, in the case of
bounded action theories and programs with tail-recursion only. Indeed, the language studied
in this paper corresponds to the mu-calculus with full-fledged quantification across con-
figurations, over infinite transitions systems generated by Trans and Final. The paper [8]
shows that verifying properties expressed in such a logic against any bounded-state generic
transition system is reducible to propositional mu-calculus model checking over a finite
transition system which is a faithful abstraction of the original one. At the same time, using
the construction in [18], one can show that Trans and Final over bounded action theories
and programs with tail-recursion only induce bounded-state generic transition systems.

One of the drawbacks of the transition semantics used in this paper is the need for intro-
ducing a special sort for programs which, similarly to situations, needs to be axiomatized
in second-order logic. There has been a constant interest by the research community to find
ways of compiling away such a program sort as can be done for GOLOG under the Do-
semantics [36]. In particular, [26], showed how to compile arbitrary programs into Petri
nets plus (unbounded) stacks for recursion, and then encode these into a basic action the-
ory. More recently, [37] has demonstrated how to drop the second-order axioms required
for representing CONGOLOG programs as terms, by storing all information about programs
into a new distinguished situation term and exploiting the standard foundational second-
order induction axiom for situations. Both proposals focus on correctness results for the
Do-semantics, which is concerned with finite traces, hence those results cannot be used
for doing temporal verification of non-terminating programs. In the same spirit, [18] also
compiles away the program sort, and in fact this is one of the key elements for achieving
decidability for temporal verification of non-terminating programs over bounded theories.

Much of the above research explicitly recognizes the unpublished 1997 manuscript, con-
stituting this paper, as one of its main foundations. It is quite amazing, though certainly not
an isolated case, to see how an unpublished manuscript could have such a strong impact on
the succeeding research.
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