
A CBIR SYSTEM FOR LOCATING AND RETRIEVING PIGMENT NETWORK IN 
DERMOSCOPY IMAGES USING DERMOSCOPY INTEREST POINT DETECTION  

Ardalan Benam1, Mark S. Drew1, M. Stella Atkins1 
 

1School of Computing Science, Simon Fraser University, Burnaby, Canada 
 

ABSTRACT 
 
We designed a content based image retrieval (CBIR) system 
for dermoscopic images focusing on images with pigment 
networks. The system locates and matches a query image that 
has a pigment network with the most similar images 
containing pigment networks in a database of dermoscopic 
images. Dermoscopy interest points in the query image are 
detected and a vector of 128 features is extracted as the 
descriptor from each keypoint. Then, the descriptors are 
matched according to our matching algorithm to similar 
features arising in the database images. This leads to a 
meaningful matching as we are matching similar dermoscopy 
structures with each other. The performance of the system has 
been tested on more than 1000 images. Results show that our 
system will locate and retrieve similar images with pigment 
networks, with accuracy > 80.7%. This system can help 
physicians in diagnosis as they are shown similar looking 
dermoscopy images with known pathology. 
 

Index Terms— CBIR, Interest point detection, 
dermoscopic image, pigment network, pigmented skin lesion 
 

1. INTRODUCTION 
 

Skin cancer is one of the most common of all cancers and 
its worldwide mortality rate is increasing [1]. Malignant 
melanoma can be deadly; however, if it is caught in an early 
stage, it can be often cured. Dermoscopy is a non-invasive 
diagnostic imaging technique for in vivo inspection of 
epidermis to the papillary dermis. Dermoscopy imaging with 
a polarizer or a skin surface gel removes the reflection of light 
and helps the penetration of light into epidermis. Studies have 
shown that dermoscopy improves diagnosis accuracy in 
comparison with clinical diagnosis with the naked eye; 
however, the success is directly dependent on the experience 
of the observer. Consequently, several dermoscopy 
diagnostic algorithms have been introduced in order to 
increase the accuracy of inexperienced doctors. The ABCD 
rule, 7-point checklist and 3-point checklist are examples of 
these methods [2]. Recent developments in computer vision 
have motivated research on detection and implementation of 
algorithms that mimic these clinical algorithms, as reviewed 
by Celebi et al. in [3]. Moreover, a review by Rosado et al. 
[4] on computer aided diagnosis (CAD) systems of 

dermoscopic images shows that the results achieved by the 
computer are statistically the same as human diagnosis.  
However, another study [5] shows that the second diagnosis 
is not always welcomed by physicians when it does not match 
their own initial diagnosis. In fact, the study showed that only 
24% of physicians changed their decision when they 
encounter a second different diagnosis proposed by the CAD 
system. 

Another approach using CAD systems is to assist the 
physicians to a precise diagnosis instead of giving a crisp 
second decision. Doi [6] believed that providing physicians 
with similar looking lesions with a confirmed pathology 
diagnosis would efficiently assist the physician to a more 
confident diagnostic decision. This concept is known as 
Content-Based Image Retrieval (CBIR) in computer vision. 
Retrieving similar looking cases can provide a diagnostic 
support environment rather than a single second diagnosis. 

Chung et al. developed one of the very early basic 
concepts of image retrieval in dermoscopy. They designed a 
system allowing the user to query the database using feature 
attribute values — but the user had to input the feature values 
and then a web-based data browser retrieved all of the images 
with those feature values [7]. Rahman et al. introduced an 
image retrieval system based on the contents on the query. In 
this algorithm the lesion was segmented and dermoscopic 
features were extracted. Then the similarity between different 
images was found by comparing their feature vectors using 
the Euclidean and Bhattacharyya metrics [8]. Dorileo et al. 
introduced CBIR to dermatological lesions by using color 
histogram and texture features for similar-image retrieval [9]. 
A modern approach is using deep learning to classify images 
according to their features [10], but many thousands of 
labelled images would be required to train the system. 

However, a closer inspection of the published 
literature in dermoscopy CBIR shows that they all suffer from 
the downside of the so-called semantic gap. In all of the 
proposed systems the traditional approach is taken, i.e. a 
feature vector is extracted from the query image and the most 
similar images according to distance metrics are retrieved. 
This approach is different from what humans do in order to 
determine similarity. Instead, a more meaningful approach 
can be taken, which is to match the low level characteristics 
such as blobs, dots, streaks etc. Locating and matching the 
similar looking dermoscopic interest points (DIP) will lead to 
a more meaningful image retrieval. The concept of DIP was 



first introduced by Zhou et al. in [12]. They proposed using 
blob detectors and a curvilinear structure detector for finding 
the meaningful points with important dermoscopic 
information.  

Pigment networks (PNs) are one of the most 
common and important structures in dermoscopy images. 
Pigment networks can be defined as a set of pale blobs with 
dark borders attached to each other in a rectilinear pattern. An 
alternative method to retrieve images with pigment networks 
could be to perform image processing on the images to detect 
PN, such as described by Sadeghi et al. [11]. However, this 
system would only detect the presence or absence of the PNs, 
and would not be capable of retrieving similarly colored 
lesions. We designed a CBIR system which is focused on 
locating and retrieving images with PNs using luminance and 
color components for each keypoint detected. 

 
2. METHOD 

We begin by detecting blob structures which occur at the 
center of PNs. We based our blob detection on SIFT [13] and 
SURF [14], which are the most popular interest point 
detectors that focus on blob and corner detection.  
Before analyzing the image, histogram equalization was 
performed as a preprocessing step; this gave PNs a better 
contrast so that they could be detected easily by the blob 
detector. 
 
2.1. Blob detection 
We took the same approach as SURF for blob detection. Here 
we adapt that seminal method to dermoscopy images in 
particular. Our implementation, along with keying the 
method to dermoscopy images, goes on to also add color 
information in a novel approach. The blue channel of the 
RGB image was used as it contains the most contrast in 
dermoscopic images. Then, the determinant of Hessian 
matrix is calculated to locate the interest point location and 
scale. The Hessian matrix ݔ)Ԧ, Ԧݔ when given a point (ߪ ,ݔ)=  is defined as bellow ߪ and scale (ݕ
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In the equation above ܮ௫௫(ݔԦ,  refers to the convolution of (ߪ
the image I with the second order Gaussian 
derivative ఋమ

ఋ௫మ  ௬௬. SURFܮ ௫௬ andܮ and similarly for ,(ߪ)݃
detector approximates the Laplacian of Gaussian with box 
filters (Fig.1), which are efficiently calculated using the 
concept of integral image. These approximations are referred 
to ܦ௫௫ ௬௬ܦ ௫௬, andܦ , . The filter response is then calculated 
by the approximate determinant of the Hessian matrix as 
det൫௫൯ = ௬௬ܦ௫௫ܦ െ  ଶ. Here, 0.9 is to(௫௬ܦ0.9)
balance the approximation of the filter. Moreover, the 
computation of the scale space has been done using the 
integral images and box filters. Given an image I, the integral 
image ݔ)∑ܫ,  :is defined as follows (ݕ
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Now in order to build the scale-space we need to convolve 
Gaussian kernels of increasing size with the original image. 
Since we are using integral images the processing time is 
invariant to the size of the kernel. Therefore, we can build 
each image layer by filtering the original image with 
increasing masks (e.g. 9x9, 15x15, 21x21). This leads to 
calculating multiple layers of scale space simultaneously. 
 
 Then, non-maximal suppression is applied in order 
to find the candidate points. Therefore, all of the pixels in 
scale-space are compared with their 26 neighbors, that is 9 in 
each scale above or below and 8 at the same scale. 
 

  
Fig. 1. First row: Gaussian partial derivative in x-, y- , and 
xy- direction. Second Row: approximated filters using box 
filters. 
 
As the next step the Hessian determinant is interpolated in 
both scale and space. The final step is thresholding the 
responses for a precise blob detector. 

Using this blob detector on an image with PNs, most 
of the network centers can be detected. Fig. 2 shows an 
example of this keypoint detection.  
 

 Fig. 2. Left image: a sample pigment network. Right image: 
the results of blob detection on the pigment network 
(highlighted in yellow). Most of the pigment network’s holes 
have been detected 
2.2. Descriptor 
Once the location of a DIP is determined, we have to find an 
orientation for the interest point in order to make our result 
rotation invariant. SURF calculates the orientation by 
computing the Haar-wavelet responses with the help of 
integral images andc we have taken the same approach. 
After the orientation of the keypoint is determined, a square 
with the size of 20s is formed along the direction of the 



calculated dominant orientation. This square is divided 
uniformly into to 4 × 4 sub-regions. Then 4 features are 
calculated in each region. In each sub-region the Haar-
wavelet is calculated. Moreover, in each sub-region, Haar-
wavelets of size 2s are calculated that provides 25 wavelet 
responses for each subregion. We annotate the wavelet 
responses in the horizontal and vertical direction by ݀௫ and 
݀௬ respectively. Also, we assume that  |݀௫| and ห݀௬ห are the 
absolute value of the Haar-wavelets calculated in each 
horizontal and vertical direction, respectively. Therefore, the 
feature vector for each sub-region is ݒ =
(∑݀௫, ∑ ݀௬ , ∑|݀௫|, ∑ห݀௬ห). This provides a vector of size 64 
for each keypoint. 
 
2.3 Color Color plays an important role in dermoscopy image analysis. 
For instance, the profile of a dark globule or dot might be the 
same as the profile of the holes of pigment network and color 
is one of the important components in differentiating them. 
Also, color helps to retrieve more similar looking pigments 
and helps disambiguate visual similarity. Therefore, we have 
included color in our descriptor. The size of the dermoscopic 
structure that is detected by our detector is proportional to the 
scale of the keypoint. Therefore, as the extraction of color 
information from all of the structure’s region is desired, we 
calculate the color histogram of a circle with radius 7s 
centered at the keypoint. We calculate the three dimensional 
color histogram in the interest region in channels R, G, and B 
(4 bins in each dimension). This results in a vector of length 
64 which records the color distribution of the region. As the 
last step we normalize the color component and concatenate 
it to the intensity component. This results in a descriptor of 
length 128. 
 
2.4. Matching 
Traditionally, in most CBIR systems, in order to find a match 
for a keypoint, the descriptor of that keypoint is compared to 
other descriptors by using a distance metric (e.g. Euclidean 
distance). Then the keypoint with the least distance is 
declared a match. 
However, we propose that this approach does not work for 
matching pigment networks. As most of the pigment 
networks’ holes are the same we would not be able to find 
correct matches by deploying the traditional method. For if 
we do so, we encounter cases where many keypoints in one 
image are matched to a single keypoint in the other image 
(see Fig.3.) 

 Fig. 3. Error in matching the keypoints when using the 
traditional approach. Most of the keypoints in the right 
image are matched to a single keypoint in the left image. 
 
To solve this problem, we calculate the distance of a keypoint 
in one image to all of the keypoints in the second image, using 
the Euclidean distance metric and store these distances in a 
matrix. Once we have done this for all of the keypoints we 
search for the minimum distance amongst all of the distances 
in the matrix, which forms the most promising match 
amongst all of the possible matches. We then remove those 
points from our matrix so that they can’t be matched to any 
other point. We continue until all of the keypoints are 
matched, as shown in Fig. 4. 
 

 Fig. 4. Matching with new algorithm. We observe that many 
of the holes are matched to other holes. 
 
After matching all of the keypoints of one image to the other, 
we calculate the similarity of two images by taking the 
average distance of all the matches. 
 

 
 
 
 

3. EVALUATION, RESULTS AND DISCUSSION 
 This CBIR system was evaluated by using 1011 labelled 
images from the IAD Atlas [15] (380 with typical PN). To 
evaluate the system, all of the images in the database were 
fed in turn into the system as a query image. When the query 
image contains a PN, the precision is defined as the average 
number of images with a PN in the first 9 retrieved images, 
averaged over every query image The same definition for 



precision holds for when the query image does not contain a 
PN. The table below shows the precision for each case: 

 Precision 
Query contains PN 75.4% 
Query does not contain PN 81.2% 

 
An example of a query image with PN and the first eight 
retrieved images is given in Fig. 5. Only the eighth image 
(shown with a red border) does not contain a PN. The 
precision of this individual case is 88.9%. This example 
shows that despite the very different background color of the 
skin, only PNs of similar color are retrieved. This is one of 
the advantages of this system over other CBIR systems with 
global features. Also, all of the images retrieved except the 
eighth one (with red border) contain a PN. If we investigate 
this case further, we find that the presence of artifacts and sun 
damage pigmentation causes this image to show up as a false 
positive. Artifacts like hair, air bubbles, skin damage etc. are 
also detected by this algorithm and sometimes interfere with 
our results. 
Our method for retrieving PNs is visually acceptable; 
unfortunately, no other CBIR systems have been evaluated, 
so no comparison with other methods is possible. 

4. CONCLUSION 
 

We implemented a CBIR approach toward dermoscopic 
CAD systems focusing on PNs. The main goal of this system 
is to locate and retrieve images with similar PNs. This is a 
consequential CBIR system as it matches meaningful interest 
points. Since most of the keypoints are always on the inside 
of the lesion, the color of the skin does not play a significant 
role in the CBIR result, unlike in traditional CBIR methods. 
To the best of our knowledge there are no other published 
results in CBIR dermoscopy to be compared to our methods. 

Future work includes expanding this approach to 
other clinical dermoscopic structures and asking 
dermatologists to evaluate the CBIR system for usefulness. 
Providing doctors with a set of known-diagnosis images that 
are visually similar to the unknown case will help them make 
more confident diagnoses.  
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Fig. 5. Top shows the query image with pigment network highly visible on the right side. Second row are the retrieved 
images sorted L to R based on their similarity – all the images contain pigment network except the 8th one with red borders.  


