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ABSTRACT  

Falls in the elderly and people with biomechanical abnormalities are a major public health issue due to associated 
mortality rates and social cost. The negative impact of falling has stimulated many researchers to study various tools to 
assess the risk and prevent falls. Maximum Foot Clearance (MaxFC) is the maximal foot height during the swing phase 
relative to the ground, and is a gait variable highly associated with tripping and falling. Analysis of gait to ensure 
appropriate interventions is now possible outside a laboratory through recent advances in sensor technology. We 
designed a smartphone application to estimate the MaxFC using the smartphone’s built-in accelerometer and gyroscope 
to collect and analyze data when the phone is attached to the shank of the leg. Our method is based on double integration 
and drift cancellation of foot acceleration signals. An optical motion capture system was used as gold standard for 
validation, and the results show the mean error over all strides is less than 6%. These findings illustrate the feasibility of 
using a smartphone to estimate MaxFC. A small user study was conducted with seniors, showing that this application 
can be suitable for self-monitoring gait over time, and making users aware of increased risk of falls. 

Keywords: Fall Prevention; Mobile Health application; Smartphone Foot Clearance; Accelerometer; Gyroscope.  
 

1. INTRODUCTION  
The risk of falling is an important factor that adversely affects seniors’ quality of life 1, with as many one-third of seniors 
tripping while walking each year 2. In addition to seniors, children and adults with biomechanical abnormalities are also 
at high risk of falling. This public health issue attracts many researchers to focus on designing and implementing fall 
prevention tools. One of the recent and promising approaches in fall prevention research and assessing associated risks is 
the wearable sensor-based method 3–5. This approach facilitates early detection of risk of falls through gait analysis 6 to 
ensure appropriate interventions. Gait analysis is the study of human locomotion in terms of gait parameters such as 
walking cadence, velocity, step/stride length, step duration and foot clearance (FC) 5,7,8.  

For years, the quantitative analysis of gait patterns has been studied in gait laboratories equipped with many complicated 
measurement and analysis devices. However, the use of such facilities requires specialized personnel, expensive 
equipment and set-up, and cumbersome data acquisition procedures 7,9. Recently, inertial measurement unit (IMU) 
sensors have become convenient alternative devices and are being used widely for gait analysis 5,10. Many researchers 
have explored external IMU sensors 2,5,10,11 to estimate gait parameters quantitatively that require offline processing of 
data. This is a significant disadvantage for using IMUs, as these analyses cannot be done without the help of trained 
experts or clinicians. 

Smartphones have offered yet another alternative to IMU’s and other commercial devices for studying gait patterns (e.g., 
4,12,13). Although smartphones collect data at lower frequencies than IMUs, smartphones allow for more immediate 
computational analysis and data processing using the sensor readings on the device 13. A smartphone app can display and 
store gait parameters collected over time, which is useful for monitoring. Also, smartphones can be easily worn using 
sport armbands directly on the user’s shank or above the ankle thus minimizing interference with normal gait conditions. 

                                                 
∗ myousefi@sfu.ca  ; Phone 1 778 223-9207 

mailto:myousefi@sfu.ca


 
 

 
 

Therefore, smartphones offer a unique opportunity for individuals to self-monitor their gait, independent of clinical 
practices and expensive laboratory equipment.  

Despite the emerging research on gait analysis using smartphones, existing applications 4,12,13 have only explored a few 
gait parameters and have not focused on estimating and analyzing important foot clearance parameters, such as the 
MaxFC. In addition, existing applications either process motion data offline using an external server or only classify the 
gait rather than estimate the specific gait parameters quantitatively.  

To address these drawbacks, we designed FCEstimator, a self-monitoring smartphone application that estimates the 
maximum foot clearance (MaxFC), an important gait parameter in assessing the ability to negotiate obstacles and risk of 
falls 14, such as to avoid tripping over the edge of a carpet. Furthermore, measurement of MaxFC over time is more 
useful than just a one-time evaluation, as it is the change in spatial gait parameters over time which is linked to the risk 
of falling 15,16. The MaxFC is also used to recognize gait variations and can be especially useful for rehabilitation 
purposes 2,5.  

Our FCEstimator application uses the smartphone’s built-in sensors to collect, analyze and display the gait data. It 
provides an immediate calculation of MaxFC for the user over just a few steps, and by storing the results, the app allows 
convenient monitoring of the MaxFC over time. The main purpose of FCEstimator is to monitor the change in mean 
MaxFC over time, in addition to the variability of the MaxFC within a recording. These measures assess the magnitude 
of the deviations of the MaxFC with respect to each subject’s MaxFC mean value. This app merely requires the user to 
wear the device for a few steps each day or week which takes only a few minutes; thus, we believe that it does not 
jeopardize the phone’s usefulness.  

We conducted a small feasibility experiment as a proof-of-concept and learned that our approach can be reliable 
compared to laboratory-based gait analysis. We also conducted a user study to design the graphical user interface (GUI) 
of FCEstimator based on feedback from seniors.  

To the best of our knowledge, we are the first to use the built-in sensors of the smartphone to process the estimation of 
MaxFC and generate immediate data analysis to the user. Compared to commercial IMU devices, our approach to track 
MaxFC has no additional cost for users if they already own a smartphone, and they can carry out this analysis in the 
comfort of their own home. In addition, users do not need a clinician’s help for obtaining and analyzing the data and do 
not need a server connection because the application generates, saves, and displays the mean MaxFC and variation for 
each test on the smartphone device. Hence, the FCEstimator app provides immediate feedback for the risk of falling 
based on the latest measure and the variability in the mean MaxFC.  

Our key contribution is in designing and implementing a novel smartphone application to estimate and track the mean 
MaxFC and its variation for early detection of risk of falls independently, without the clinician’s help, in the user’s 
natural environment, and with immediate data analysis for use in long-term monitoring. While our FCEstimator 
application cannot replace the clinical laboratory measurements for MaxFC, it can be used as an effective screener to 
determine whether further analysis is necessary.  

2. RELATED WORK 
A person’s walking pattern can be assessed by gait analysis to underline abnormalities as well as any significant 
variation in gait parameters and potential consequences of those abnormal patterns 17. It has been reported that variability 
of gait parameters such as stride length, walking speed and FC are correlated with the risk of falls during walking 15,16. 
FC is defined as the foot’s height during the swing phase (i.e., when the foot is above the ground). Minimum foot 
clearance (MinFC) is the minimum vertical distance between the lowest point of the foot of the swing leg and the 
walking surface during mid-swing in the gait cycle 1. Maximum foot clearance (MaxFC) is the maximal foot height 
during swing phase relative to the height at foot-flat 10. During walking, insufficiency or fluctuations of FC could lead 
directly to tripping 2. Researchers have shown that FC variability is the most discriminative parameter between young 
and elderly subjects and is an important gait parameter to estimate risk of fall in the elderly 1,10. Gait deviations due to 
the MinFC increase the risk of trips and subsequent falls because of foot-ground contact 1,7 and deviations due to the 
MaxFC cause trips and subsequent falls over obstacles (any small uneven surface, such as edge of carpet) 14.  

Benoussaad et al. 10 introduced a method for the robust estimation of foot clearance during walking, using external IMU 
placed on the subject’s foot; however, all the data processing are offline and the method does not generate immediate 
feedback to the user. Majumder et al. 4 designed and implemented an application called iPrevention that uses the built-in 



 
 

 
 

accelerometer and gyroscope of the smartphone when it is in the user’s pocket to identify abnormal walking patterns in 
users to prevent falls. They classified user’s gaits rather than quantitative estimation. Pierleoni et al. 18 used a smartphone 
as a fall detection tool. They collected data from the accelerometer and magnetometer, and then classified events either 
as fall events or non-fall events by a machine learning method. This system is beneficial for patients who have fallen and 
been left immobilized for a period of time, but it cannot help prevent falls. Raknim et al. 19 used a smartphone to monitor 
and record patients’ gait characteristics and identify those who are in their early stage of neurological disease, as these 
groups are high potential fallers. They focused on step length and cadence variations but not on FC. Capela et al. 12 
proposed an algorithm to examine the 6MWT (six-minute walking test, a simple physical capacity test) on a smartphone 
application that uses the device accelerometer and gyroscope data to report the step length, step timing, gait symmetry, 
and walking changes over time. Qin et al. 6 measured gait parameters such as velocity, step length, and cadence by 
designing a smart-phone based gait monitor system, which worked by detecting current rate of acceleration using multi-
axes accelerometer and rotational attributes using multi-axis gyroscope. In their system the smartphone is just used to 
collect data and processing is implemented offline on another system. 

Despite the availability of these mobile applications, not all gait analysis parameters, such as FC, have been explored in 
smartphones. Our main motivation was to provide users with a tool that analyzes the MaxFC data independent of 
clinicians and immediately processes the data to display feedback after each test recording (unlike other tools with 
offline processing of data).  

3. DESIGN OF FCESTIMATOR 
In this research, we present a new approach for estimating the MaxFC when the phone is attached to the shank. In 
addition, we present the user interface we designed to make it convenient for users to utilize the application. 

3.1 Foot Clearance Algorithm on smartphone  

A previous study suggested the foot dorsum as a proper location on the body to estimate MinFC 2, because the MinFC is 
estimated by tracking the movement of the toe of the swing leg. However, considering the size of smartphone, the best 
location to mount the smartphone is on the user’s shank which is suitable for detecting the movement of the heel and 
estimating the MaxFC. Therefore, we focused on estimating the MaxFC rather than the MinFC.  

The algorithm presented in this paper, uses the iPhone7Plus’s built-in 3D-accelerometer and 3D-gyroscope to estimate 
the MaxFC. This algorithm is based on filtering the signals, detection of temporal cycles and foot flat phase, and 
computation of foot orientation from accelerometer and gyroscope sensor’s signal data fusion at each timestamp. Next, 
the gravity-compensated translational acceleration is double integrated over time during the swing phase in each stride. 
The ankle joint clearance is first estimated and then one bias is added in terms of the distance between the ankle joint 
and the heel 10.  

Data acquisition frequency of 51HZ was chosen to avoid data missing and make sure the application keeps up with the 
updates. To remove noise from the sensor’s signals, the 3D acceleration data was low-pass filtered with 8-Hz cut-off 
frequency, and the 3D gyroscope data was band-pass filtered between 0.08 Hz and 6 Hz to remove constant and high 
frequency components. 

3.1.1 Sensor Tilting 

The initial angle of the smartphone to the foot must be considered when the phone is mounted to the shank, shown in 
Figure 1. The orientation of the smartphone can be defined by its pitch (θ), roll (φ) and yaw (ψ) rotations from an initial 
position about the x, y and z axes respectively. As suggested by 10,12, the misalignment angles can be estimated by 
projection of the gravity vector ( ) on three axes measured by accelerometers during the stationary period, prior to the 

start of movement. ( ) is the initial transformational matrix. 
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3.1.2 Rotation 

The measured raw acceleration ( ) corresponds to the acceleration in the device sensor frame, and contains user 
acceleration as well as gravity. During the movement, the orientation angles must be calculated by integrating the 
relative angular velocity ( ) plus initial estimated angles 8,20.  

  (4) 

  (5) 

In order to remove the gravity, we need to estimate the transformational matrix ( ) at each time stamp and apply it to 
the raw acceleration at the device reference frame. Gravitational acceleration can then be removed to obtain the gravity-

free acceleration in the global frame . 

             ;          (6) 

 
Figure 1. Acceleration and Gyroscope readings in directions of x, y and z- axes when iPhone is attached to the shank.  

 

3.1.3 Stride Phase Detection 

The continuous walking motion must be segmented into a series of stride cycles to compute the vertical movement in 
each stride and perform drift cancellation. The gyroscope signal is used to determine the shank vertical event and thereby 
bounds each cycle 11,20 as shown in Figure 2.  

According to Laudansky et al. 11 and Li et al. 20, when the IMU is attached to the shank, the start point of each gait cycle 
is from mid-stance where the shank is parallel to the direction of gravity; thus, this point is considered as the start point 



 
 

 
 

of any new stride cycle. The mid-stance time corresponds to the period of time between heel-strike and heel-off in which 

the angular rate about the Z-axis ( ) is close to zero, as the foot is almost motionless. 

 
Figure 2. Angular velocity (rad/s) of the shank during four strides. 

 

3.1.4 Trapezoidal Integration 

The sensor bias directly affects the estimating velocities when duration of integration is long. Gait segmentation can be 
used to avoid the accumulation of drift error between different strides. Moreover, at the start of each cycle the 
orientations are reset to the initial orientations in order to compensate the orientation bias. To calculate the vertical 
displacement, the transformed gravity-free acceleration around the y-axis should be double integrated in each gait cycle.  

  (7) 

Where ( ) is the vertical velocity and ( ) is the initial vertical velocity computed from shank angular velocity 
based on assumption that the shank is approximately rotating about the ankle joint in the stance phase and L is the 
distance between the iPhone location on the shank and ankle joint. 

  (8) 

The same method is used to calculate the end vertical velocity ( ). Using the initial and end shank velocities, the 
shank velocity drifts bias were compensated 10,20: 

  (9) 

To estimate the vertical foot displacement, we first integrated the corrected vertical velocity ( ) and then 
applied the same drift cancellation on this vertical foot displacement, assuming zero displacement at the end of the stride 
10. 

  (10) 



 
 

 
 

Where  is the vertical foot displacement obtained by trapezoidal integration of the corrected velocity and 

 is the calculated displacement at the end of the stride phase. The maximum of the  in each stride 
plus the distance between the ankle joint and the heel is our considerable MaxFC. 

3.2 Feasibility Study 

For validation of our foot clearance estimation method, we performed a feasibility study with eight healthy participants. 
Each participant was asked to stand upright, remain still for two seconds and then walk a distance of approximately 7 m 
(this short walk was due to space limitation in the laboratory). The smartphone was mounted to the shank above the 
ankle joint by sport armbands as shown in Figure 1. Each participant covered this distance five times with the 
smartphone attached on the left foot. Simultaneously, the participants were observed by a Qualisys motions capture 
system, using reflective markers located on the heel, ankle joint and smartphone. This system was considered highly 
accurate and would serve as a gold standard for calculation of the FC. We set up 8 cameras to capture the 7m walkway 
(based on start and end markers). Data for each participant were collected from the smartphone’s accelerometer and 
gyroscope using the Apple CoreMotion framework. The MaxFC was estimated by our algorithm inside the mobile 
phone. The collected data were automatically segmented into stride cycles, and the peak of each cycle was compared one 
by one to the MaxFC provided by the motion capture system’s heel reflective marker. The L was set to 15cm for all 
participants. After each test, the app generated immediate feedback to the user about their estimated MaxFC. In addition, 
the collected data could be saved as a CSV file in the app to be analyzed offline. This file could easily be transferred via 
email from the app to any clinician for deep gait analysis purposes, if there was any concern with the user’s walking 
pattern. The results of each test were saved in the application using Apple CoreData framework to provide the 
opportunity for the user to track any significant changes in MaxFC.  

     Table 1 . Information on video and audio files that can accompany a manuscript submission. 

Participant (ID) Motion Capture System  
MaxFC±SD (cm) 

Mean Error Estimation Using iPhone on the Left Shank  
MaxFC±SD (cm)         RMSE (cm)                NRMSE (%) 

1 30.6±0.3 30.3 ±1.8 1.3±1.0 4.2% 

2 24.9±0.6 24.3 ±0.9 1.0±0.6 4.0% 

3 25.1±0.7 27.7±1.5 2.6±1.3 10.3% 

4 25.8±0.5 26.2±1.0 1.0±0.9 3.9% 

5 23.4±0.3 22.5±1.7 1.1±1.3 4.7% 

6 23.1±0.6 24.1 ±1.2 1.2±0.7 5.2% 

7 24.3±0.5 24.5±1.0 0.6±0.4 2.5% 

8 22.7±0.7 25.5±1.6 2.8±1.4 12.3% 

Average 25.0±0.5 25.7±1.3 1.4±0.9 5.8% 

 
In total 217 strides from participants were computed and compared one by one to the ground truth system. The RMS 
value of MaxFC errors (RMSE) was quantified for the evaluation of MaxFC estimation performance, using the 
following criterion: 

 RMSE =  (11) 

 NRMSE =  (12) 

Where  and  are respectively the measured MaxFC for each stride by motion capture system’s marker on the 
heel of participants and the estimated MaxFC for each stride by our smartphone application. Table 1 shows results for 
MaxFC estimation and the RMSE obtained from both systems for all eight participants on their left foot. In 75% of all 



 
 

 
 

cases on the left foot, the RMS errors remained less than 1.3 cm with an average of RMS errors around 1cm with the 
mean error over all strides less than 6%. 

 
3.3 Iterative UI Design 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3. Screen Shot of (a) Current test (b) Weekly result (days) (c) Monthly result (d) Yearly result 

 

To investigate user preferences in estimating the MaxFC on their own, we followed a user-centered iterative approach 
process to design the user interface (UI) of the FCEstimator application. We carried out a pilot user study to understand 
how our target users perceived the application, what their expectations were and how we could improve the initial 



 
 

 
 

design. We recruited five seniors between the ages of 55-66 (one female and four male) and allow them to explore our 
first prototype. We solicited their feedback through questionnaires and brief interviews. 

Based on this user feedback, we carried out another design iteration and simplified the presentation of the MaxFC 
estimation and improved our UI design (samples shown in Figure 3) to inform people if their walking pattern is 
degrading. Figure 3 shows screen shots from the FCEstimator app to monitor the gait parameter over time. The tabs in 
the app correspond to the tabs in the pre-loaded iHealth app on iPhones. Fig 3a shows a typical test result, Fig 3b shows 
the weekly result, Fig 3c shows a monthly result and Fig 3d shows a year result, where the user is alerted to improve 
their gait to prevent falling. The feedback may suggest referring to a doctor, thus enabling appropriate intervention in 
time to avoid possible falls. We also provided a link to useful exercises to improve stability and balance, as gait 
variability is associated with strength and balance 15. 

4. CONCLUSION AND DISCUSSION 
In this paper, we introduced FCEstimator, a new approach to estimate the MaxFC and provide feedback to users by 
using smartphone sensors. We validated the proposed MaxFC calculation algorithm using a motion capture system and 
found satisfying correspondence between MaxFC values estimated with our method and those measured with the ground 
truth system as a reference. This work is a proof of concept and consistent with recent studies 2,10,14 that showed error 
estimation by IMU to be between 4%-10%, giving us confidence that our measurement is good enough to detect MaxFC 
variation. 

Our experiments showed that iPhone distance to the ankle (L) has an acceptable range between 13-15 cm, confirming 
other studies such as 11 that the MaxFC calculation is not sensitive to the exact positioning of the iPhone on the shank, 
provided the center of the phone is positioned to sit flat against the shank, approximately two-thirds of the distance to the 
knee from the ankle. 

Our main contribution is in introducing a new approach that allows people to self-monitor variations in foot clearance 
and assess risk of falls using just a smartphone. The availability of smartphones makes FCEstimator a convenient tool 
for at-home monitoring of walking patterns with immediate data analysis which can play a key role in helping prevent 
falls or facilitate rehabilitation, especially among seniors and others with biomechanical abnormalities.  

 
4.1 Limitations and Future work 

Despite the overall positive results, our study has limitations which could be addressed in future work. For example, we 
observed performance degradation in some of the trials mainly due to how tightly the smartphone was fastened to the 
shank. The lack of an available armband which fits to any shank size caused unnecessary movements in trials where the 
participant’s shank was very thin. This limitation could have affected mid-stance detection in gait cycle algorithm. The 
small walking area in the kinesiology lab limited the number of strides we could gather from our participants, to analyze 
the steady walking.  

While the smartphone presents a significant advantage over IMUs or other devices, there is still potential for future work 
to explore simplifying the communication between the user and the application for starting and stopping the test, 
possibly by defining a body gesture such as double tapping of the heel or toe to the ground as a notification to activate or 
deactivate the sensors to collect the data and do the immediate processing.  

Finally, although we carried out an iterative user interface design with seniors to develop our application, we strongly 
believe that future work has to focus more on user needs, especially of seniors, in designing new applications for self-
monitoring gait analysis. Clearly, the needs of seniors in self-monitoring differs from clinicians or other analysts and 
more investigations are needed to determine how the same data can be presented to different audiences at appropriate 
levels of granularity.  
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