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Cutaneous malignant melanoma is one of the most frequent types of cancer in the
world; but if the malignancy is detected and treated early, it can be cured. Many
dermatologists promote dermoscopy as an early detection tool; however, dermoscopy
requires formal training with a steep learning curve. In this chapter, we introduce a
novel tree-based framework to automate the melanoma detection from dermoscopic
images. Inspired by the radial and vertical growth pattern of skin lesions, we designed
a flexible and powerful framework by decomposing dermoscopic images recursively.
Pixels are repeatedly clustered into sub-images according to the color information and
spatial constraints. This framework allows us to extract features by examining the tree
from a graphical aspect, or from a textural/geometrical aspect on the nodes. In order
to demonstrate the effectiveness of the proposed framework, we applied the technique,
in completely different manners, to two common tasks of a computer-aided diagnostic
system: segmentation and classification. The former task achieved a per-pixel sensitivity
and specificity of 0.89 and 0.90 respectively on a challenging data set of 116 pigmented
skin lesions. The latter task was tested on a public data set of 112 malignant and 298
benign lesions. We obtained 0.86 and 0.85 for precision and recall, respectively, along
with an F-measure of 0.83 using a 3-layer perceptron. These experiments testified the
versatility and the power of the tree-structure framework for dermoscopic analyses.
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1. Introduction

Malignant melanoma of the skin, a life-threatening disease, has been increasing
rapidly and steadily among fair-skinned populations over last few decades. In
British Columbia, Canada, a low sun country of the world, the incidence rate
has been tripled since 1970’s.1 South of Canada, the USA recorded a 3.1%
average annual increase.2 In Australia, melanoma has surpassed lung cancer as
the third most common cancer for both men and women and the most common
cancer for men between the age of 15 and 44.3 Overall, the disease has become
a major health problem for the countries with a large white population.

Malignant melanoma is very treatable if it is detected early. The five-year
survival rate is greater than 90%. However, the prognosis is poor for many
patients with advanced or late staged disease. For these patients, the 5-year
survival rate can reduce dramatically to only 15% after their initial diagnosis.4

Thus, early detection is essential for a successful treatment of the disease.
Early melanoma detection is, however, challenging because the malignancy

often resembles benign lesions such as melanocytic nevi and seborrheic
keratoses.5,6 Diagnosis with naked eyes often results in false negatives or false
positives.5,7,8 In order to improve the diagnostic accuracy, many experts have
been advocating the use of a non-invasive hand-held device, dermoscopy, which
provides a magnified view of the skin internal structure.9 Applying either polar-
ized light or oil immersion to render the outermost layer of the skin, epidermis
to be translucent, physicians who have specially trained for the technique can
examine the morphology of the skin lesion at the dermal-epidermal junction
and render a diagnosis. (Figure 1 shows two examples of dermoscopic images.)
Studies showed that this non-invasive technique improved the diagnostic accu-
racy only for the trained physicians. Untrained doctors, even dermatologists,
are often confused by the complex and unfamiliar visual patterns, thereby
reducing their diagnostic capability.9 Recently, many research groups have been
developing automated computer algorithms to assist physicians in analyzing the
complex dermoscopic patterns in the hope to neutralize the steep learning
curve of the technique. The common approach is to detect and analyze
various dermoscopic structures such as pigment networks, streaks and blood
vessels.10–14 This approach achieves various degrees of success.

In this chapter, we introduce a new framework for automatic analysis of
dermoscopic images. It is a novel approach inspired by the analysis of the
growth pattern of skin lesions. In this approach, a dermoscopic image is
decomposed using a simple growth model estimated using a single image; then
a tree-structure is constructed to represent the growth model.
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Fig. 1. Samples of dermoscopic images. The top lesion has an irregular shape, while the bottom
figure has a regular oval shape.

The remaining of the paper is organized as follows: the next section
reviews the lesion growing model and previous works on decomposition.
Section 3 describes the construction of the tree-based framework, a very flexible
structure allowing it to adopt for various scenarios and needs. Sections 4 and 5
demonstrate the flexibility of the technique by applying it to two common tasks
of a computer-aided diagnostic system: lesion segmentation and classification.
Finally, a short conclusion is presented in Section 6.

2. Background and Previous Work

2.1. Lesion Growth Model

Cuteneous malignant melanomas are often identified with two growth phases:
radial and vertical.15 Both malignant and benign pigmented skin lesions usually
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Fig. 2. Schematic of the epidermis and dermis strcutures.

begin with a radial growth. In this phase, a pigmented lesion is formed by nests
of melanocytes, which synthesize a brown pigmentation called melanin. This
phase commences at the dermal-epidermal junction and the entire horizontal
growth phase is confined in epidermis, the outer layer of the skin. The vertical
growth phase is marked by the penetration of the basement membrane of the
outer skin into the dermis. (Figure 2 depicts the structure of the epidermis
and dermis.) During the growth of a lesion, the width and depth of the lesion
extend out from the initial melanocytic nest of the lesion. Due to the natural
history of normal and abnormal cells, benign skin lesions tend to grow evenly,
often in a regular oval shape, while abnormal lesions often result in an irregular
shape. (Figure 1 illustrates two lesions, one with an irregular shape and another
one with a regular oval shape.)

Using a single dermoscopic image, the growth pattern of a pigmented
lesion can be postulated because the center the lesion is often the initial
melanocytic nest. Zhou et al. utilized this hypothesis16 and observed that most
dermatologists placed the center of the lesion in the middle of a dermoscopic
image frame, and constrained a segmentation algorithm spatially by assuming
the middle of the image frame as the initial growing point of the lesion. We
further observed that the periphery of a skin lesion often has a lighter brown
color than the interior of the lesion. This phenomenon could be explained
by the fact that the center of the lesion is usually thicker with more layers of
melanocytes than the newly grown areas near the periphery. Because melanin
absorbs light, the central area tends to have less reflected light and, hence,
darker than the periphery. Thus, we modified Zhou et al.’s growth model in
the following way: the center of a skin lesion is determined by the dark-color
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portion of the skin lesion. Based on this extended growth model, we decompose
the skin image into a tree structure.

2.2. Decomposition

Shape and image decomposition can be categorized into boundary-based
or area-based approaches. The former method has been successfully used
to analyze border irregularity of a lesion by decomposing a lesion border
into a series of indentation and protrusion segments.17 However, in order
to analyze the growth pattern of a lesion, an area-based method is required
to analyze the image texture. There are many successful ways to perform
area-based decomposition, such as morphological shape decomposition and
skeleton decomposition.18 Unfortunately, a pigmented skin lesion may manifest
one or more of the following patterns: reticular, globular, cobblestone,
starburst, parallel and homogeneous. In addition, the spatial relationship
between any texture patterns is unknown. Hence, it is a nontrivial task to
design an optimal structural element for the morphological operations. On the
other hand, skeleton decomposition is the complement problem of boundary
decomposition; both depend strongly on the border shape and may not reflect
the internal texture patterns. In this chapter, a new decomposition method by
clustering is proposed. The method represents the growth pattern of the lesion.

3. Decomposing Skin Images into Tree Structures

Unlike Zhou et al.’s approach,16 our goal is to represent the growth pattern of
a skin lesion by creating a tree structure. this chapter assumes that the center of
the lesion (or part of a lesion in the middle of the recursion) is defined by the
center of the dark pixels of the lesion. The central point is used to constraint
the clustering the image pixels into dark and light regions. The identification of
the central point and clustering are performed recursively in order to decom-
pose a skin region into two sub-regions, which are also marked as the node of
a tree. Thus the tree-building process can be divided into three subtasks: iden-
tifying the central point, clustering the image pixels and constructing the tree.

3.1. Extraction of the Central Point

Let us denote a pixel p of a color skin lesion image by its image coordinate
(x , y). A set of connected pixels CP can be divided into dark and light pixels
according to their luminance intensities I (x , y), normalized by the maximum
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luminance intensity Im. Thus, the coordinates of the dark pixels, denoted by
the set {(DX, DY)}, is defined as:

{(DX , DY )} =
{
(x , y)

∣∣∣∣I (x , y)
Im

≤ Id

}
, (1)

for all p ∈ CP . Id is the pre-defined cut-off threshold for the dark pixels.
The central point (xc , yc) of CP is defined by the centroid of the dark pixels

only. For n connected dark pixels as determined by Eq. (1), the centroid of CP
is defined as:

(xc , yc) =
(

1/n
n∑

i=1

xi , 1/n
n∑

i=1

yi

)
, xi ∈ DX , yi ∈ DY . (2)

Note that the detection of dark pixels in Eq. (1) is only for the determi-
nation of the central point. We hypothesize that a lesion expands from the
central point (xc , yc), the centroid of the dark pixels, as it grows. Thus, an
ideal normal skin lesion will have concentric circles or ellipses for the dark and
light pixels as shown in Fig. 3. However, real lesions often show a complex
shape, especially, for melanomas which consist of unstable malignant cells and
produces irregular growth rate in different directions. Sometimes, the dark or
light pixels may not form a connected component. Nevertheless, the scheme in
the following section decomposes a skin lesion into a tree structure according
to the distance from the central point (xc , yc), along with the color information
of the lesion.

Fig. 3. The growth pattern of an ideal skin lesion, as shown in dark and light pixels. For this
paper, the center point of the lesion is defined by the centroid of the dark pixels only.
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3.2. Clustering Decomposition

A set of connected pixels CP is decomposed into two regions using the well-
known k-means clustering algorithm, which minimizes the sum of squares of
the distance between the feature (variable) associated with the pixels of the
region and the region centroids.19,20 For the dark and light regions, i.e. k = 2,
the k-means clustering is formulated as:

arg min
S

2∑
i=1

∑
fj ∈Si

1
wi

‖fj − µi‖2, (3)

where fj is the j feature (variable) of the region, and µi is the centroid of
the region Si . For our task, one spatial feature and two chromatic features are
applied in the clustering algorithm: the radial distance D and the blue and green
intensity channels of the RGB color image. The red channel is eliminated in
order to reduce the effect of the blood vessels. The radial distance D of a pixel
(x , y) is defined as the Euclidean distance between the pixel and the central
point of the original connected pixels CP, which is computed by Eq. (2). The
features are weighted by wi . Such a weight is especially important for the radial
distance D because too strong a weight on D places the emphasis on the spatial
feature over the chromatic features and results artificially rounded regions. After
clustering, the parent region formed by CP is divided into two disjoint sibling
regions CP 1 and CP 2.

3.3. Tree Construction

The root node of the tree structure is initialized to the cluster of all pixels
of the skin lesion image. Then the nodes for the subsequent depth is built
recursively by clustering the pixels of the parent’s node into the two disjoint
sibling regions (CP 1 and CP 2), using 2-means clustering, according to the
distances to the centroid of the parent nodes and the red and blue intensity
values. The termination condition varies according to the analysis need. As
demonstrated in the following sections, a tree with a fixed depth is used in the
segmentation task, while a tree with variable length is constructed for lesion
diagnosis.

The resultant tree structure has two important properties:

(1) Summation of the pixel counts at every level of the tree is equal to the
number of pixels in the original image, and

(2) Every pixel belongs to exactly one cluster at every level of the tree.
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End

Determine the 
central point (Eqs. 
(1) and (2 )) 

Gather D, and 
blue and red 
intensity values 

2-means cluster – 
forming 2 sibling 
regions (Eq. (3)) 

Terminate? 

Fig. 4. Flowchart of the image decomposition process.

These two properties along with the flexibility of the termination condition
during the tree construction provide a rich representation over which many
salient features of the color skin lesion can be extracted.

The flowchart of the decomposition process and tree construction is shown
in Fig. 4, outlining the entire process from an input image to the final tree
structure.

4. Skin Lesion Segmentation

The usefulness of the tree representation is first demonstrated in a skin
lesion segmentation application. The tree is constructed with the following
parameters. The cut-off intensity Id in Eq. (1) was set to 0.25, and the weights
wj in Eq. (2) were set to 2 for the radial distance D, and to 1 for both blue
and green channels. In addition, the depth of the tree was set to 4. In other
words, after decomposing a color skin image, the root level places all image
pixels into one cluster, and other level decomposes the pixels into different
clusters according to the procedure described in Section 3. Because a RGB
color image consists of 3 intensity channels, the tree decomposition method
generates 12 intensity images (3 color channels and 4 depth levels) as shown
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Fig. 5. Decompose the top figure of Fig. 1 for segmentation. The tree has 4 levels and 3
channels in each level.

in Fig. 5. The intensity value in each cluster is first assigned to the mean cluster
intensity value. Then each intensity image was smoothed by a 15×15 Gaussian
filters with σ = 5.

A feature vector of 13 elements was extracted for each pixel using the
above data representation. The feature elements were the 12 intensity values in
all levels and color channels, along with a spatial feature, the Euclidean distance
between the pixel and the center of the lesion (xc , yc) of the root level. The
feature vector was applied to a MAP estimation based on supervised learning
model for automated skin lesion analysis.21 The label set for the segmentation
task in this model was L = {‘lesion’ ; ‘background’}.

The first stage in the supervised learning model was the training stage in
which parameters for the multivariate Gaussian distribution were estimated for
the labeling phase. The posterior probabilities P (pj |li) (i.e. probability of a pixel
p given the label li in the label set L) were modeled as multivariate Gaussian
distribution. In the second stage which was the labeling stage, labels l∗ were
assigned to the pixels of previously unseen images using maximum likelihood
estimation in the following way:

l∗ = arg max
li∈L

(log P (p|li) + log P (li)). (4)

As in this case there were two classes l1 = lesion and l2 = background, the
following constraint was considered:

P (l1) + P (l2) = 1. (5)

The ROC curve was obtained by varying the values of P (l1) and P (l2)
according to constraint in equation above. Equivalently, the ROC curve could
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be generated using a simple threshold method over the pixel probability map
obtained using the following equation:

li(p) = P (p|li)
P (p|l2) + P (p|l2) , (6)

where li(p) is the likelihood of each label.21

The segmentation method was tested in a dataset, which has been used in
several segmentation algorithms. The dataset contained 116 images of which
100 were considered challenging from a dermoscopic atlas.22 An image is
considered challenging if at least one of the following conditions are true21:

(1) the contrast between skin and lesion is low,
(2) there is significant occlusion by oil or hair,
(3) the entire lesion is not visible (partial lesion),
(4) the lesion contains variegated colors, or
(5) the lesion border is not clearly defined.

In addition, each image was segmented by a dermatologist to provide the
ground truth, and pixels were labeled from the set L = {‘lesion’; ‘background’}.
Ten-fold cross-validation was used to validate the method.

Examples of five segmentation results from our method are provided in
Fig. 6, where the first row is an easy image to segment and the remaining rows
are the challenging cases containing lesions occluded with hair, partial lesions
and low contrast borders of the lesions. No pre-processing of removing hairs
or noise is applied to this segmentation test of the data representation.

The segmentation results are tabulated in Table 1 along with six other
state-of-the-art skin lesion segmentation techniques: G-LoG/LDA,21 KPP,16

JSEG,23 DTEA,24 SRM,25 and FSN.26 The dataset was tested using the authors’
implementation of their methods. Similar to G-LoG/LDA,21 the output of the
current method is a probability map of the pixels. Consequently, by changing
the threshold of the segmentation over this probability map, the ROC curves
were obtained (see Fig. 7). The output of the five other methods is binary
segmentation of lesions; therefore, the nearest point on the ROC curve was
compared with the sensitivity/specificity pairs. Table 1 lists �Sens and �Spec,
which show the difference between the sensitivity/specificity of methods with
the closest pair on ROC curve of the current method. The area under the curve
is only used to compare the current method with G-LoG/LDA in the column
AUC. The sensitivity/specicity reported in the table for the current method
and for G-LoG/LDA is the closest point to (0; 1), the optimal performance,
on the ROC curve.
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Fig. 6. Examples for the segmentation model. Examples of easy (first row) and challenging
(second to the fifth rows) images are shown. The first column shows the original dermoscopic
images. The second column demonstrates resulting probability maps obtained using the learning
model. Our segmentation results and the ground-truth are depicted as blue and red dashed line,
respectively, in the third column. Note: hair or noise removal pre-processing was not applied in
this experiment.

The current method with tree decomposition achieved excellent AUC,
sensitivity and specificity of 0.96, 0.89 and 0.90, respectively. These indicators
showed that the technique outperformed G-LoG/LDA. The tree-based
approach also outperformed KPP, DTEA, SRM, and FSN, and was comparable
to JSEG’s performance according to �Sens and �Spec.
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Table 1. Comparison of results of our segmentation method with six
other methods.

Method AUC Sens. Spec. �AUC �Sens. �Spec.

Our method 0.954 0.881 0.903 N/A N/A N/A
G-LoG/LDA 0.948 0.880 0.887 0.006 0.001 0.016
KPP N/A 0.717 0.790 N/A 0.164 0.025
DTEA N/A 0.641 0.987 N/A 0.035 −0.001
SRM N/A 0.770 0.946 N/A 0.002 0.024
JSEG N/A 0.678 0.986 N/A −0.002 −0.001
FSN N/A 0.812 0.935 N/A 0.012 0.017

Fig. 7. Comparing the ROC curves for our method and six other methods, G-LoG/LDA,21

KPP,16 JSEG,23 DTEA,24 SRM,25 and FSN.26

5. Skin Lesion Diagnosis

In the second experiment, we demonstrated the flexibility of the framework
by modifying the decomposition process for a lesion diagnosis problem. The
cut-off intensity Id in Eq. (1) and the weights wj for spatial parameter D and
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chromatic channels in Eq. (2) were kept to 0.25, 1, and 2, respectively, similar
to the skin lesion segmentation experiment. However, instead of using the RGB
color channels, hue, saturation, and intensity of HSI color space were used in
the k-means clustering procedure described in Section 3.2. There were two
other major modifications for building the data structure: a tree structure with
a variable depth is constructed and a cluster and shrink procedure is deployed
for pruning one of the regions. During the tree construction, the lighter regions
obtained from the k-means were pruned. Only the darker regions were kept
and decomposed again. In additional, the following four conditions were set
for the termination of the tree construction:

(1) A dark region was too small in size;
(2) A dark region consisted of similar colors;
(3) The decomposed dark region had not significantly changed in comparison

to its parent; and
(4) The depth of the constructed tree reached a predefined limit.

When one of the above conditions was met, the decomposition terminated.
Figure 8 depicts the resultant tree structure for a benign and an abnormal
lesion.

Features used for analysing lesion condition were also changed. Observing
the new tree structures in Fig. 8 for a typical benign and a malignant lesion, we
realized that the tree itself (graphical aspect) could be used to differentiate the
disease condition. Thus the following feature vector was selected: the number of
nodes and leaves of the tree, the depth of the tree and the average compactness
index for each level of the tree. Compactness index CI was defined as

CI = PE
4πA

, (7)

where PE and A denoted the perimeter and the corresponding area, respec-
tively, of the darker region. The CI was calculated for all the nodes in the tree;
then, the mean value of the all CI s over each depth of the tree was calculated
and stored in the feature vector. Because the root region was rectangular, the
CI for this node was ignored. Thus, the number of CIs was one less than
the maximum possible depth of the tree which was defined in the termination
condition.

The tree representation and the feature vector were tested in a two-class
classification (malignant vs. benign) experiment, using a data set of 410 pig-
mented skin images randomly selected from Interactive Atlas of Dermoscopy.27

In this dataset, there were 112 malignant lesion images (containing melanoma
and pigmented basal cell carcinomas), and 298 benign lesion images (consisting
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Fig. 8. The variable tree structures with the lighter region pruned for (a) a melanoma and (b)
a benign lesion.

Table 2. Classification results for the two-class classification, benign and malignant, using a
data set of 410 lesion images.

Feature set Classifier Precision Recall F-Measure AUC of ROC

All features 3-layer perceptron 0.855 0.849 0.834 0.786
Graphical features 3-layer perceptron 0.848 0.841 0.824 0.787
CI1 to CI3 3-layer perceptron 0.639 0.712 0.641 0.617
CI4 to CI9 3-layer perceptron 0.713 0.729 0.622 0.494
All features AdaBoost 0.829 0.832 0.817 0.745
Graphical Features AdaBoost 0.835 0.837 0.823 0.776
CI1 to CI3 AdaBoost 0.692 0.732 0.685 0.637
CI4 to CI9 AdaBoost 0.596 0.722 0.614 0.490
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of atypical, congenital, compound, dermal, Spitz, and blue nevi; seborrheic
keratosis; and dermatofibroma). The ground truth was provided by the atlas.

Publicly available machine learning tools, a 3-layer perceptron and
AdaBoost of WEKA28 were used to classify the 410 images into malignant
and benign. The parameters for the perceptron were set as follows: learning
rate was set to 0.3, momentum was set to 0.2, training time was set to 500
and validation threshold was set to 20. The parameters of AdaBoost were set as
follows: the number of iterations was set to 10, the seed was randomly generated
and the weight threshold was set to 100.

The data set was tested in four different ways. In the first approach, all
twelve features were gathered in a 12-dimensional feature set [number of nodes,
number of leaves, depth, and 9 compactness index (CI ) components] and the
resulting set was fed into the two classifiers separately. The second evaluation
was done by just using the graphical feature set (number of nodes, number of
leaves, depth). In the third and fourth approaches, CI1 to CI3 and CI4 to CI9
were evaluated respectively to validate the discriminative power of different lay-
ers in the tree in our method. In all these approaches, the validation method was
set to a ten-fold cross validation. The malignant and benign images were ran-
domly chosen from separate classes and uniformly merged and distributed over
the folds. Table 2 provides the classification results between the malignant and
benign classes for our dataset using two classifiers and four approaches. Figure 9
shows the ROC curves from the 3-layer perceptron and AdaBoost classifiers.

Table 2 shows that using all features, both classifiers returned very good
results in precision, recall and F-Measure. The 3-layer perceptron achieved
0.86, 0.85 and 0.83 for precision, recall and F-measure, respectively. The
results for AdaBoost were slightly lower, but were above 0.8 for precision and
recall. Interestingly, the graphical features alone were performing so well. They
achieved similar performance as all features under the perceptron classifier,
and they surpassed the all features results under the AdaBoost classifier. This
illustrated the strength of the tree structure over the other methods that were
only based on textural/geometrical features. These results also explained that
the CI1 to CI3 feature set, the top three layers, had more discriminative power
than the CI4 to CI9 feature set, the lower layer set.

The ROC curves in this study are obtained using WEKA machine learning
software.28 The reason behind the more jagged ROC curve for AdaBoost was
likely due to the low density of the grid search over the parameters of the
classifier. The denser grid for the 3-layer perceptron classifier results in the
smoother curves.
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Fig. 9. ROC curves for (top) 3-layer perceptron and (bottom) AdaBoost classifiers for lesion
diagnosis.
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6. Conclusions

In this chapter, we introduce a novel tree structure-based framework for
dermoscopic image analysis. Inspired by skin lesion growth patterns, we
designed a flexible and powerful framework, which decomposes a skin image
into a mutli-level tree structure. All pixels are represented uniquely in each level;
hence, task-specific salient features can be extracted. In order to demonstrate
the flexibility and the power of the framework, it was tested in two common
skin image analysis tasks of segmentation and diagnosis. Both segmentation
and diagnosis programs returns good and promising results. However, the
configurations and the parameters for these two programs are not the emphasis
of this chapter because we believe one can extract new features to future improve
the results. The main focus is the tree structure framework itself, which can be
applied to other skin image analysis tasks.
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