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Abstract

Melanoma, the deadliest form of skin cancer, must be diagnosed eadyfdéative treatment. Ir-
regular pigment network and streaks are important clues for melanomadiagising dermoscopy
images. This thesis describes novel image processing approachesiouter-aided pigment net-
work and streaks detection on dermoscopy images. Our methods providengfahvisualization
of these structures, and extract features for irregularity detectiodgitiddally we present our efforts
towards prevention of melanoma, by developing a smartphone app, Udd@ato raise awareness
of the importance of using sunscreen to prevent melanoma.

To locate pigment networks, after preprocessing steps, which inclgieesging the lesion
from the normal skin in the dermoscopy image, we use a graph-baseshappo extract the holes
and meshes of the pigment network, where cyclic subgraphs corie$pakin texture structures.
Each correctly extracted subgraph has a node corresponding to i tieéepigment network, and
the image is classified according to the density ratio of the graph. Our reseitaset of 500
dermoscopy images show an accuracy of 94.3% on classification of thesmsagegment network
Present or Absent. For analyzing the irregularity of the structure, watddbe network lines and
define features inspired by the clinical definition to classify the network witaauracy of 82%
discriminating between Absent, Typical or Atypical, which is important for mataa diagnosis.

To find streaks in dermoscopy images, filters are applied, and in a similaorfietshfingerprint
analysis, orientation estimation and correction is performed to detect lonasbaird fuzzy streak
lines. A graph representation is used to analyze the geometric pattern ctvaliéls, to model their
distribution and coverage. We achieved an accuracy of 77% for glassidlermoscopy images into
streaks Absent, Regular, or Irregular on 945 images; the largesttiatidiataset published to date.

Our contributions will improve automated diagnosis of melanoma using dermpsoages.

Keywords: Computer Aided Diagnosis (CAD); Dermoscopy; Melanomameig Network;
Streaks; Skin Cancer Prevention.
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Chapter 1

Introduction

Skin cancer is the most common form of human cancer if melanoma, basabaadchaus cell
skin cancers are included. The annual rates of all forms of skin camedncreasing each year,
representing a growing public concern. Based onGhacer Trends Progress Repdry National
Institute of Health of United States (NIH) [80], it is estimated that nearly hadfllohimericans who
live to age 65 will develop skin cancer at least once [58]. Malignant noefer) the most deadly
form of skin cancer, is one of the most rapidly increasing cancers indhle wWMelanoma is now the
7th most frequent cancer in Canada [58, 1] affecting 5,300 peoplelid @0d causing 920 deaths
[1] and the 5th most common malignancy in the United States [58]. 10710 destle$ 1,700
incidences are estimated numbers in the United States during 2012 [99].t&fietazelanoma is
very difficult to treat, so the best treatment is still early diagnosis and preuangical excision of the
primary cancer so that it can be completely excised while it is still localizedreTdwe, advances
in computer-aided diagnostic methods can aid self-examining approacsess dra digital images,
and may significantly reduce the mortality. This thesis investigates and reviewsanpaspects of
automated analysis of skin lesions using digital dermoscopy images andspsopoovel approach
for automated detection of the two important dermoscopy structures: pigresvank and streaks.

1.1 Problem Definition and Motivation

As mentioned in the previous section, melanoma is now the 7th most frequest cariGanada.
Over the past 31 years, more people have had skin cancer than allcatiears combined [1].
In addition, unlike many cancers, melanoma is clearly visible on the skin and @@%oof all

melanomas are first identified by the patients themselves (53%) or close familyarse(hb%) [63].



CHAPTER 1. INTRODUCTION 2

Therefore, advances in computer-aided diagnostic methods can agkaeifhation approaches and
reduce the mortality significantly.

Dermoscopy, a non-invasive skin imaging techniques, has become #aglitaol in the di-
agnosis of melanoma and other pigmented skin lesions. It involves opticaliffoation of the
region-of-interest, which makes subsurface structures more visiblectirarentional macroscopic
images. However, it has also been demonstrated that dermoscopy mdly dotvex the diagnostic
accuracy in the hands of inexperienced dermatologists [103]. Thierefomputerized image un-
derstanding tools are needed to minimize the diagnostic errors. These amgyenerally caused
by the complexity of the subsurface structures and the subjectivity oflvigegpretations [22, 36].

In almost all of the clinical dermoscopy methods, dermatologists look for #seprce of specific
visual features for making a diagnosis. Then, these features arezeddlyr irregularities and
malignancy [85, 105, 74, 61, 11].

To simulate an expert’s diagnostic approach, an automated analysis ofstepgamages re-
quires several steps. Delineation of the region of interest, which hasviidely addressed in the
literature, is always the first essential step in a computerized analysismdésion images [22, 110].
The border characteristics provide essential information for an aeadiegnosis [23]. For instance,
asymmetry, border irregularity, and abrupt border cutoff are someeddritical features calculated
based on the lesion border [66]. Furthermore, the extraction of otltieatclinical indicators and
dermoscopy structures such as atypical pigment networks, globukkdl@swhite areas depend
on the border detection. The next essential step is the detection andisodliree key diagnos-
tic features of the dermoscopic structures. Automatic detection and andlykis key diagnostic
features of the some of these dermoscopic structures has been receintigsed in the literature
[96, 106, 36, 34, 8, 17, 31, 98] and will be reviewed in the followingpthes.

The problem addressed in this thesis is how to analyze a given digital despiosmage for
detecting pigment networks and streaks, and quantifying the irregularitiyese structures, for
use in diagnosing cancerous lesions especially melanoma. Images disoudsis thesis are a
combination of images by oil immersion (non-polarised) dermoscopy and-palarized imaging.

1.2 Organization of the thesis

The rest of this thesis is organized as follows: Chapter 2 begins with adveefiew of the biology
of skin and pigmented skin lesions, and formally introduces the dermosadmyidgeie and the com-
mon clinical skin cancer diagnostic methods. This chapter also investigatespgbgant features
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and characteristics of the deadliest skin cancer (melanoma), that caetdmted by dermoscopy.
This chapter also briefly reviews the current commercial systems avaitatileef computer-aided
diagnosis of melanoma. Chapter 3 reviews the previous work in automatedamelatiagnosis,

and surveys the common steps used in an automatic skin lesion analysis systasmsieps include
image acquisition, pre-processing (image enhancement and skin lesioergatjon), and detection
of dermoscopy structures, with a special focus on pigment networkstegaks, which are crucial
for diagnosing melanoma.

My contributions to the field of computer-aided diagnosis of skin cancet istaChapter 4,
which briefly describes our approach to segment lesions from the nekimalThen Chapters 5 and
6 describe my methods to detect and analyze two important dermoscopggegtigment networks
and streaks respectively. My work towards skin cancer preventigrubiic education is described
in Chapter 7, and Chapter 8 concludes the thesis and summarizes my comntributio



Chapter 2

Background

2.1 Skin Biology and Pigmented Skin Lesions

2.1.1 Human Skin Biology

The skin is the human body’s largest organ. It covers the entire batljtsthickness varies from
0.5mm on eyelids to 4mm or more on the palms of hands and the soles of feeT f¢23kin is our

first line of defense. Its primary roles are to protect the body and to maih&integrity of internal

systems. Its other functions are insulation, temperature regulation, sensaibthe production of
vitamin D [42]. Technically, the skin consists of the three layers shown inr€igLl: the epidermis
or top layer, the dermis or middle layer and the hypodermis or bottom layer [42]

Epidermis

The outer surface of the skin is called epidermis. The outer layer of therepislis comprised

of hard, flattened dead cells. The epidermis mainly consists of keratinociesepidermis also
contains melanocytes, cells which are responsible for the skin’s pigmentdt#improvides natural
protection against the sun’s rays and Langerhans cells which arefghg immune system. The
epidermis is composed of 4 or 5 layers depending on the region of skin beirgidered: the

outermost layer being stratum corneum and then follows stratum lucidunyretigranulosum,

stratum spinosum and stratum basal illustrated in Figure 2.2. It is the modeévisgion under both

dermoscopy and naked-eye examination and it is the origin of melanoma [42].
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Figure 2.1: Skin structure: epidermis, dermis and hypodermis layers ana$B6].

Dermis

Below the epidermis is the dermis which is a thick, supple and sturdy layer néctive tissue. The
dermis a dense meshwork of collagen and elastin fibers, two connectiegngrarhich supports tiny
lymph and blood vessels. It allows the skin as well as the nerves, muscleseadtst and sebaceous
glands, and hair follicles to breathe and be nourished. This layer cortenspecial cells that
repair the skin, such as the fibroblasts that synthesize the skin proteinsllikgen and elastin. The
dermis is divided into the papillary dermis, and the reticular dermis [42].

Hypodermis

The hypodermis is the deepest layer of the skin, composed primarily oftfatariages the skin's

functions of feeding, excreting and heat exchange. The key cellaacells that provide energy,

serve as a heat insulator for the body, and act as a shock absopbeteict underlying tissue against
mechanical trauma and helps give our skin its resilience. Sweat glandsabeign this layer and

control the body’s temperature by evaporating and cooling the skinceud2].

Melanocytes

Melanocytes are the pigment producing cells in the skin. They are eveitipdied in the skin
along the basal layer at the dermo-epidermal junction. Melanocytes ggadalanosomes which
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Figure 2.2: Structures of the epidermis layer are shown on the schemadicd &jstology (b) im-
ages: the outermost layer is stratum corneum and then follows stratumryathatum granulosum,
stratum spinosum and stratum basal [3].

can be transferred to the surrounding keratinocytes. Melanin is the mgjoeptation factor for
our skin colour due to the variation in number, size and distribution of melamesavhich will be
increased if stimulated by UV-radiation or hormones [42].

2.1.2 Benign Pigmented Skin Lesions

The purpose of this section is not to give a complete overview of all typegofented skin lesions,
but to provide a short presentation of the most common lesions. The follawingections will
briefly review the benign and cancerous skin lesions.

Benign melanocytic lesions

Freckles and lentigo Freckles and lentigines are two benign pigmented lesions that can arise in
the skin. In freckles, there is a temporary overproduction of melanin in dkénto exposure to
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(d) Atypical Nevus (Clark Nevus)

=

(e) Seborrhoeic Keratosis () Dermatofibroma

Figure 2.3: Examples of benign melanocytic and non-melanocytic lesiang, candd show
examples of benign melanocytic lesionsandf illustrate two types of benign non-melanocytic
lesions. Images are taken with permission from [10, 82(a digital RGB image whild-f are
dermoscopic images).
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UV-radiation, while in lentigo maligna there are an increased number of meftasdio the dermo-
epidermal junction. Figures 2.3-a and 2.3-b show examples of freckika Emtigo lesion respec-
tively [82].

Melanocytic nevi Nevi are lesions which are the result of proliferation of melanocytes at the
dermo-epidermal junction. These clusters of melanocytes can either $héy pbsition or migrate
into the dermis where they will be destroyed and disappear. There g@atganf nevi with different
growth patterns; junctional, compound, dermal, Spitz, Reed, blue nevnhanel The melanocytic
nevi are categorized by their location in the skin (junctional nevi locate eatldrmo-epidermal
junction, compound nevi locate at both the dermo-epidermal junction ancetindg] and dermal
nevilocated at the dermis), histological patterns and clinical patternanajogity are totally benign
with no, or very limited, malignant potential, although it has been shown that muttphlenon nevi
is a strong risk factor for melanoma. [49, 40]. For example all Spitz neimirigsn adults should be
excised for histopathologic evaluation [88]. Figure 2.3-c shows an ebeanfip melanocytic Nevus
(Blue Nevus).

Atypical or dysplastic nevi Some nevi lesions have architectural and cytological atypia, and they
are called dysplastic nevi, also known as: atypical mole, atypical nevags’€nevus, dysplastic
melanocytic nevus. Atypical nevi are defined based on abnormal clii@iatires (by naked-eyes
usually) and dysplastic nevi are defined by abnormal histological sy biopsies). Atypical
nevi are generally larger than ordinary moles@mm in diameter) and have irregular and indistinct
borders. They are often asymmetrical and their color frequently is rifiromand ranges from
pink to dark brown; they usually are flat, but parts may be raised abowkihesurface [82, 21].
Dysplastic nevi can be found anywhere, but are most common on theitromén, and on the calves
in women. The clinical importance of atypical nevi lies in their association witleased melanoma
risk [21, 33, 29]. An individual with multiple atypical nevi or a family historjraultiple atypical
nevi or melanoma has an increased risk of developing superficialdpgeaelanoma. Figure 2.3-d
shows an example of an atypical nevus (Clark’s nevus).

Benign non-melanocytic lesions

Seborrhoeic keratosis Seborrhoeic keratosis is a benign, often pigmented, tumour composed of
epidermal keratinocytes. These lesions are very common, especially dhsoelglerly, which can
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be flat but are more commonly verrucous in their appearance. Seburtkeratosis can also re-
semble melanoma skin cancer in terms of the clinical ABCD features, thouglataeynrelated to

melanoma because these are benign non-melanocytic lesions [82]. FigwestZows an example
of a seborrhoeic keratosis lesion.

Dermatofiboroma A dermatofibroma is a common benign fibrous skin lesion. It is due to a non-
cancerous growth of dermal dendritic cells. Dermatofibromas most oftam on the legs and arms.
Once developed, they usually persist for years. They appear atefding nodules, often yellow-
brown in colour, sometimes pink and sometimes quite dark, especially in dankredlskin [82].
Figure 2.3-f shows an examples of a dermatofibroma lesion.

2.1.3 Skin Cancer

Skin cancer is by far the most common of all cancers. As discussed inel®yps section, skin
lesions can have melanocytic and non-melanocytic origins. So, skin sasarebe divided into two
major categories as well: melanocytic and non-melanocytic.

Malignant non-melanocytic lesions

The most common non-melanocytic skin cancers are basal cell carcin@®@ é®d squamous cell
carcinoma (SCC), which are briefly explained in the following sections.

Basal cell carcinoma Basal cell carcinoma (BCC) is the most common type of skin cancer. BCC
arises in cells called basal keratinocytes in the deepest layer of therafEdérrarely metastasizes
or kills [111]. However, because it can cause significant destructidndésfigurement, it is still
considered malignant by invading surrounding tissues. Statistically, dpmately 3 out of 10 Cau-
casians may develop a basal cell cancer within their lifetime [111]. BCCgbywdirect extension
and appears to rely on the surrounding supportive tissue to growefbnerit does not metastasize
through blood vessels or lymphatics [42, 111]. Pigmented basal ceihoara is a cutaneous con-
dition, a subtype of BCC, that exhibits increased melanization. In some, ¢asesy be difficult
to distinguish deeply pigmented or even non-pigmented basal cell carcimomarfelanoma [11].
The skin changes caused by this skin cancer depend on the type of Ba&ith The most common
appearance is of a raised pink or pearly white bump that may have a tranisltalled, pearly edge
and small visible blood vessels [11]. Pigmented BCC may look like a mole with dypsander.
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Typical BCC temple

Linear serpentine vessels are typically seen
in BCCs and adnexal tumours but any large
tumour can have linear branched vessels

This lesion shows many of the dermatoscopic features of a BCC when it reaches a certain size and thickness

Figure 2.4: An example of basal cell carcinoma. The dermoscopy stescawe annotated by ex-
perts. Images are taken with permission from [70].

Another type of BCC is flat and scaly with a waxy appearance and an iradibinder [11]. Figure
2.4 shows an example of BCC in which the dermoscopy structures useiddmogis are annotated
by experts [70].

Squamous cell carcinoma Squamous cell carcinomas (SCC) arise from the keratinocytes of the
epidermis. SCCs begin when the atypical keratinocytes grow through seeneat membrane and
invade the dermis. When growing only in the epidermis they are consideszedmuerous, and this
condition is called actinic keratosis. More advanced changes with full epal¢hickness dysplasia
but no dermal invasion is called squamous cell carcinoma in-situ, or Bewtksgase. Once an
invasive SCC has developed it has metastatic potential and can be f3taFi@5re 2.5 shows an
example of SCC along with the dermoscopy structures annotated by exfirts [



CHAPTER 2. BACKGROUND 11

~ T -g‘ ;
.4

Coiled vessels Big dots at this Two areas of
magnification hemorrhage

Typical dermatoscopic picture of an area of SCC in situ on the scalp. A superficial BCC would have
serpentine or linear branched vessels

Figure 2.5: An example of squamous cell carcinoma. The dermoscopyusasi@re annotated by
experts [70].

Melanoma: Malignant melanocytic lesion

Melanoma is a malignant tumor of melanocytes. Melanocytes are cells thatcprtti melanin,
dark pigments responsible for the color of skin. They predominantly decskin, but are also
found in other parts of the body including the bowel and the eye. Melanoleasscommon than
other skin cancers. However, it is much more dangerous and causge anlajority of skin cancer
deaths since it can spread in the body [42]. As long as the malignant clong/igrowing in the
epidermis, the lesion is called a melanoma in-situ. When the malignant melanocytds thea
dermis, the lesion has become an invasive melanoma (they may have metastatii@lpot€he
level of invasion in the dermis, through to the subcutaneous fat, is meadunied histopathologic
examination of the tumour after excision. Two measurements are made; theirdepth according
to Breslow is the thickness, in millimetres, from the stratum granulosum in therepglé the
deepest invasive melanoma cell [20]. Another measurement system, Cédldd describes the
thickness of a melanoma in relation to its penetration into the skin layers wheté tepeesents
intraepidermal growth, i.e. in-situ, level Il a few cells in the papillary dermigllél occupation
and expansion of the papillary dermis, level IV invasion of the reticulam@eand level V invasion
into subcutaneous fat [27].
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Figure 2.6: A melanoma lesion with indicative features. Images are taken withigséon from
[70].

Melanomas are divided into subsets due to clinical and pathological feasungerficial spread-
ing melanoma (SSM), nodular melanoma (NM), lentigo malignant melanoma (LMl)aaral
lentigious melanoma. Figure 2.6 shows an example of melanoma (SSM) in whichrthestopy
structures are annotated by experts [70].

Superficial spreading melanoma is the most common type of melanoma. Aboub B of
all melanomas are this type. They are most common in middle aged people. TWitttattey tend
to grow outwards rather than downwards into the skin in the radial growabkephit is not usually at
risk of spreading to other parts of the body until it begins to grow dowdsvanto the deeper layers
of skin [82].

Nodular melanoma tends to develop quite quickly. It is found most often in midgie people
found on the chest or back. It begins to grow downwards, deepethiatskin, quite quickly if it is
not removed. There is often a raised area on the skin surface with thisftypelanoma. Nodular
melanomas are often very dark brownish black, or black, in colour. Thay not necessarily
develop from a mole which was already there, however a rapidly-grondunigilar melanoma can
arise within superficial spreading melanoma and start to proliferate morbyaédpn the skin [82].

Lentigo maligna is an early form of melanoma often reported as in situ melanomai¢h wh
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the malignant cells are confined to the epidermis. It occurs in sun damamedosls generally

found on the face or neck, particularly the nose and cheek. It grtmmgdysover 5 to 20 years or
longer. Itis diagnosed when the malignant melanoma cells have invaded imterthis and deeper
layers of skin. Lentigo maligna has a lower rate of transformation to invaselanoma than the
other forms of melanoma in situ. Thus, these flat lesions sometimes grow to arsosime without

being dangerous. The risk of lentigo maligna relates to sun damage. Thige leraligna is more

common in outdoor workers and in older people with sun damaged skin and irésaommon in

males than females [82].

Acral lentiginous melanoma is type of melanoma arising on the palms or soles hHriscter-
ized by its site: palm, sole, or beneath the nail. It is more common on feet thaands.Ht can arise
de novo in normal-appearing skin, or it can develop within an existing mejéinow@evus (mole).
Acral melanoma starts as a slowly-enlarging flat patch of discolored skiriirsfy the malignant
cells remain within the epidermis. This is the in-situ phase of melanoma, which csistdfer
months or years and it becomes invasive when the melanoma cells crosseéhebamembrane of
the epidermis and malignant cells enter the dermis. A rapidly-growing nodulanorea can also
arise within acral melanoma and proliferate more deeply within the skin [82].

2.2 Dermoscopy and Clinical Diagnosis

In the 1990s, light-based visual technologies were adopted to augmedlirtival diagnosis of
melanoma. Dermaoscopy is a noninvasive method that allows in vivo evaludtmsiars and mi-

crostructures of the epidermis, the dermo-epidermal junction, and the papidlemis not visible

to the naked eye. During a dermoscopy assessment, the pigmented skindesioered with lig-

uid (usually oil or alcohol) and examined under a specific optical systemlyAg oil reduces the
reflectivity of the skin and enhances the transparency of the straturawor This allows visualiza-
tion of specific structures related to the epidermis, the dermo-epidermal junatid the papillary
dermis, and it also suggests the location and distribution of melanin.

In the last few years dermoscopes with LED light with polarization have beesduced and
by using polarized light, immersion liquid is no longer necessary, and somes# thstruments do
not need direct skin contact. Non-polarized versus polarized lightanthct versus non-contact
dermoscopy gives somewhat different appearance of the examinealsiés regards to colour and
visualization of vessels. In a study by Benvenuto-Andrade et al. thmyrtrexcellent agreement
for most dermoscopic colours, with the exception of blue-white veil and (ied) colour when
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Figure 2.7: a) An image of a lesion under clinical view (naked eye). wslibe same lesion under
a dermoscope with oil immersion. Images are taken from [100] with permission.

comparing non-polarized and polarized light [15]. They also concluatentiost dermoscopic struc-
tures had fair to perfect agreement, with the exception of milia-like cysts@meédo-like openings,
which seem to be better visualized with non-polarized light [15] and theipethtight improves
the visualization of red areas and vessels, especially the latter with ndsstdermoscopy [15].

Figure 2.7-a shows an image of a lesion under the clinical (naked eyepni@\®&.7-b shows the
same lesion under a dermoscope with oil immersion. Significant features gtedia the image.
These structures are specifically correlated to histologic features. €htfication of specific di-
agnostic patterns related to the distribution of colors and dermoscopy sésician better suggest
a malignant or benign pigmented skin lesion [11]. The use of this techniguwédps a valuable
aid in diagnosing pigmented skin lesions. Because of the complexity involisandthodology is
reserved for experienced clinicians.

2.2.1 Image Acquisition - Digital Dermoscopes

There are different kinds of dermoscope and they are roughly divid® analogue and digital
types. Digital types are easier to take and store dermoscopy images,en@amalogue types are
more widely used. Figure 28e show Heine Delta 1@, Heine Delta 2®, DermLite Ill DL3®),
Dermogeniu®), and DermLite Il Pr®which are analogue dermoscopes. All of them exeeg#n
be attached to a digital camera to provide advantages of digital dermo$iopy.ite, Handyscope
and DermScope are examples of digital dermoscopes shown in Figufra Be8pectively.

There is a study in the literature that compares images of a dysplastic comp@laaocytic
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nevus and a thin malignant melanoma under five different handheld despessHeine Delta 1),
Heine Delta 2(R), Dermogenius and DermLite Foto @vith and without glass plate). The mag-
nification was identical in all dermoscopes. The authors show that in therrd®ymoscopes, the
image quality with regard to color and visible differential structures is distinctlydwgd compared

to the dermoscope (Heine Delta@®0) with only one light source [18]. Three advanced dermoscopes
will be reviewed briefly here.

DermLite Il Pro

With new advances in technology, dermoscopes have also evolved. Deifrdm 3Gen Co. is a
dermoscope consisting of a magnifying lens encircled by light-emitting diodesahae adjusted
for polarization. This multi-spectral dermoscope provides color visualizatemging from white
light epiluminescence, surface pigmentation using blue light, superficiallzagy under yellow
light, and deeper pigmentation and vascularity with the deeper-penetratiigine frequency. A
new version of the DermLite can be used for the evaluation of pigmented $emnahnon-pigmented
skin cancers, scalp disease, and vascular patterns. The DermLite @tathed to a camera to
record images and has a retractable faceplate for use with immersion oil. Defnt, shown in
the figure 2.8d, is one of the most widely used dermoscopes. Recently, the companydviseplr
an iPhone kit that users can snap the DermLite onto their iPhone cameras.

Dino-Lite Pro USB Dermoscope with Polarizer

The DinoLite is a compact digital microscope with USB - PC connectivity. Maggtifin ranges
from 10X to 200X (adjustable single lens) to 500X with white polarized LED lightse LED’s
light is around the 400 nm spectrum. The polarization feature allows thegaseduce the effect
of reflections and glare when looking at highly reflective surfacegugtchent of the polarization
feature is performed by way of a rotating collar, allowing the user to exantijeeis with varying
levels of polarization. Figure 2.Bshows an image of the DinoLite dermoscope.

Handyscope by FotoFinder Systems, Inc.

Handyscope from FotoFinder is a new mobile dermoscope, shown in thre g8, that allows
one to take polarized mole pictures of up to 20X magnification and to save there iRlbne
application [4]. Handyscope can be used for tele-dermatology, combiaiegt communication
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(b) Heine2@® (c) DermLite Il DL3®

(d) DermLite(TM) DL10QR)

(f) DinoLite (g) Handyscope (h) DermScopeCanfield

Figure 2.8: Figures, b, ¢, d,and e show analogue dermoscopes. All of them, exegpire attach-
able to digital cameras to function as digital dermoscopes. DinoLite, Haopgsand DermScope
are modern digital dermoscopes showth, ig, andh respectively.
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technology of iPhone with a tool for skin cancer screening. Dermositoages taken with iPhone
camera and the dermoscope attachment can be e-mailed to other specialistedond opinion.
Mobile dermoscopes can provide a good mobility for experts while they aneecbed to servers
through wifi connections to provide an integrated dermoscopy station.

DermScope by Canfield Scientific, Inc.

The new DermScope from Canfield, shown in Figurel2.& another intelligent dermoscope made
for iPhone that addresses all of the important modes of skin visualizatituding contact and
non-contact images with the dual-lighting modes for white light and the crolssiped light. The
DermScope’s design has been optimized for iPhone 4 and It has opticalaf@0x and the viewing
field is 15 mm [2].

2.2.2 Dermoscopy - Clinical Diagnostic Methods

In this section, the four diagnostic algorithms, which have gained the largestst among der-
moscopy users, will be briefly reviewed. In the first step, the algorithmtifiies whether a lesion
is melanocytic or non-melanocytic. If yes, various algorithms may be usedttoglissh benign
melanocytic lesions from malignant melanoma.

Pattern analysis was the first dermoscopic method presented for diagradgtigmented skin
lesions [85]. This method has further been modified and refined by the&tienal Dermoscopy
Society (IDS). The other three algorithms with the largest impacts are AB@DMenzies method
and the 7-point checklist which will be described in the current chapidir.of these methods
were evaluated in the 2000 consensus net meeting [100], showing sinsildisren sensitivity for
melanoma, but specificity differed slightly in favor of pattern analysis [106]fact, the ABCD
rule, Menzies method and the 7-point checklist attempt to simplify the pattetys@method by
analyzing only a small sub-set of dermoscopic structures and createiagssystem. As a result,
the accuracy of these simplified systems are somewhat lower than the telinisymttern analysis.
For more details on the dermoscopy of pigmented skin lesions please ref@2{o [

Pattern Analysis

Diagnosis based on pattern analysis demands a critical assessmentarfitloscbpic features seen
in a pigmented skin lesion. It provides the initial definitions of many patterrigdcdermoscopic
structures, which have proven to be critical in the clinical diagnosis oflskions.
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Low Medium High
Colours: few vs many 1-2 colours | 3-4 colours | 5-6 colours

brown, black, red, white, blue (1-2 points) | (3-4 points) | (5-6 points)

Score 1 point for each colour

Architecture: order vs disorder | None or mild| Moderate Marked
Score 0-2 points (no points) (1 point) (2 points)
Symmetry vs asymmetry Symmetry Symmetry | No symmetry
border, colours and structures in 2 axes in 1 axis
Score 0-2 points (no points) (1 point) (2 points)
Homogeneity vs Heterogeneity | one structure| 2 of structure| 3 > structures
Pigment network, dots/globules (1 point) (2 points) (3-7 points)

blotches, regression, streaks
blue-white veil, polymorphous vessels
Score 1 point for each structure

Table 2.1: CASH is used for the dermoscopic differentiation between bemiganocytic lesions
and melanoma using pattern analysis [53]. Add up the scores for a total Gé@&e (2to 17). The
score of 7 or less is likely benign and the CASH score of 8 or more is sugpioianelanoma

The first step is to decide whether the lesion is melanocytic or non-melanogygezlching for
the presence of pigmented structures or the specific features of nonengia lesions. The main
goal for the second step is to make an accurate differential diagnosisdretyenign melanocytic
lesions and melanomas. The important features in distinguishing these twmsgnauthe overall
general appearance of color, architectural order, symmetry of pasiied homogeneity, also known
by the acronym CASH coined by Kopf et al. [53]. Melanocytic nevi héae colors, a regular
design, and symmetrical patterns. In contrast, malignant melanoma ofteevesal <olors, ar-
chitectural disorder, asymmetrical patterns, and heterogeneity. Tab#h@uks the details of this
approach. It adds up the CASH scores for a total score of 2 to 17 sddre of 7 or less is likely
benign and the CASH score of 8 or more is suspicious of melanoma.

Semi quantitative/quantitative dermoscopic algorithms have been pressnieara simplified
diagnostic methods for differential diagnosis between malignant and bev@tamocytic lesions.

ABCD

There are two ABCD rules: clinical and dermoscopic. The ABCD rulermuted by the America
Cancer Society and the Canadian Cancer Society, describes the chaicakl of melanomas using
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mnemonics: A for Asymmetry varies 0-2, B for Border irregularity varie®, @ for Colour varie-
gation varies 1-6 and D for Diameter= 6mm. There is no scoring system for the clinical rule
[79]. For the dermoscopic ABCD rule [105], D is used for Differentialistural components or
Dermoscopic structures (pigment network, structureless areas, dgtegated globules, branched
streaks). There is a formula to score and differentiate between benigmoogle lesions and
melanoma. The formula for calculating total score is:

Total Score= (ASCOI'E* 13) + (Bscore* 01) + (Cscore* 05) + (Dscore* 05)

The interpretation of the total score says if the score i575, the lesion is a benign melanocytic
lesion; A total score between 4.75 and 5.45 is considered a suspiciousdesi@nclose follow-up
or excision is recommended); and the scorg.45 indicates that the lesion is highly suspicious for
melanoma. ABCDE is also a modified ABCD that adds E for Elevation or Evoluiomglanoma
diagnosis.

7-Point Checklist

The dermoscopic seven point checklist is another attempt to formalize/simptiigrp analysis by
assigning points to specific dermoscopic structures. This checklist to$i8 major features:
atypical pigment network, gray-blue areas and atypical vascular patsarell as 4 minor criteria:
streaks, blotches, irregular dots and globules and regression patéraa any of the major features
is detected in a melanocytic lesion, immediate help from health professionalsismemded. The
presence of any minor features is advised to be monitored regularly. Thoe amiteria are worth
1 point each whereas the major are worth two. A final score is calculatediioyning the point
value of each criteria that is present. If the scorei8, then the lesion is classified as melanoma
[59, 100].

Recently, a further simplified algorithm has been developed for nonAexigescreen for skin
cancers. This method considers only 3 criteria and is called 3-point. Asymrastpical network
and blue-white structures are the three indicative criteria of this method.[101]

Menzies Method

Menzies method is another simplified version of pattern analysis method [43listiaguishes the
dermoscopic features of benign melanocytic lesions from melanoma by tvabiveegnd positive
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feature sets. The negative set includes symmetry of pigmentation pattepresahce of only a
single color and the positive set contains 9 positive features which aeewdlite veil, multiple
brown dots, pseudopods, radial streaming, scarlike depigmentatigohged black dots/globules,
multiple colors (5 or 6), multiple blue/gray dots and broad pigment network. fAlefeatures are
defined in [72]. For melanoma to be diagnosed a lesion must have neithethaiidgative features
and 1 or more of the 9 positive features.

2.2.3 Dermoscopy Colors

Accurate evaluations of the color of a pigmented skin lesion, the degreigrakptation, and the
distribution of the colors within the lesion are the most important elements of a deopy ex-

amination. The epidermis usually appears as white, but acanthosis resulggagish-brown or

brownish-yellow color [102]. Melanin is the most important pigment in deterngidifferent struc-

tural and chromatic patterns. The pigmented skin lesion can have a difflergmree and distribution
of pigmentation depending on the location of melanin in different layers ofking 502]:

e Upper epidermis (stratum corneum, stratum spinosum) - Black
e Dermo-epidermal junction - Light-to-dark brown
e Papillary dermis - Slate blue

e Reticular dermis - Steel blue

Other possible colors include various shades of white and red. Whiteshaelrelated to regres-
sion and may be seen with melanomas, benign melanocytic nevi (halo newligmmelanocytic
lesions (lichenoid keratosis, scars, vitiligo). Red shades are relatedréa$sel vascularization in
tumors, an increased number of capillary vessels, and bleeding within ibie. IEdleeding persists
and crust develops, the color ranges from red-black to blue-blagkird=2.9 shows the correlation
of the dermoscopy colors with histology. A good evaluation of colors anid tblative distribution
is essential for achieving the correct clinical diagnosis of a pigmentedesion [102].

2.2.4 Pigment Network

The most important feature of melanocytic lesions is the pigment network, whbitsists of pig-
mented network lines and hypo-pigmented holes [11]. The presenceadfginal pigment network
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Black Brown Gray Blue
superficial dermoepidermal papillary reticular
epidermis junction dermis dermis

Figure 2.9: a) Colors allow the physician, to some extent, to draw conclusiing the localization
of pigmented cells within the skin. Black and brown indicate pigmentation in the episievhile
gray and blue correspond to pigmented cells within the superficial anddézeps, respectively
[115].

is indicated by a black, brown, or gray network with irregular meshes aokl lines. A typical
pigment network is defined as a light- to-dark-brown network with small, umifipspaced network
holes and thin network lines distributed more or less regularly throughouéesien and usually
thinning out at the periphery [100]. These structures show prominesd, limomogeneous or in-
homogeneous meshes. The anatomic basis of the pigment network is eitheinrpeament in
keratinocytes, or in melanocytes along the dermoepidermal junction. Thalagto (network)
represents the rete ridge pattern of the epidermis. The holes in the networkpond to tips of the
dermal papillae and the overlying suprapapillary plates of the epidermig (0],

Figure 2.10-a and 2.10-c show exampledPaésentand Absentlesions and 2.10-b and 2.10-d
show both images enlarged. In melanocytic nevi, the pigment network is sligbthepted. Light-
brown network lines are thin and fade gradually at the periphery. Hokesegular and narrow.
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In melanoma, the pigment network usually ends abruptly at the peripheriauregular holes,
thickened and darkened network lines, and treelike branching at thehesr where pigment net-
work features change between bordering regions [102]. Some @fr@aalignant lesions manifest
as a broad and prominent pigment network, while others have a discegjalar pigment network.
The pigment network also may be absent in some areas or the entire lesion.

(d)

Figure 2.10: aPresent A lesion containing a pigment network. b) Enlarged pigment network. c)
Absent An image of a lesion without pigment network. d)Enlargdasentimage.
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(@) (d)

Figure 2.11: Examples of streaks.(a)and (c) are lesions contatuilig) streamingandpseudopods
pattern respectively. (b) and (d) are magnified images to show the lineaiuss. Images are taken
with permission from [100].

2.2.5 Streaks
Clinical Definition

Streaks is a term used interchangeably with radial streaming or pseldbpoduse of the same
histopathological correlation [19]. We use the term streaks to include lbdihlrstreaming and
pseudopods, shown in Figure 2.11-a and Figure 2.11-c respectiydylial streaming is a linear
extension of pigment at the periphery of a lesion as radially arranged Btreatures in the growth
direction, and pseudopods represent finger-like projections offignkent (brown to black) at the
periphery of the lesion [19]. Figure 2.11-a shows an example of a lesibrtive radial streaming
pattern, enlarged in Figure 2.11-b. Figure 2.11-c shows an example siba lgith the pseudopods
pattern. The enlarged image is shown in Figure2.11-d. in order to enscuease recognition,
streaks are numerated only when at least 3 near linear and parallelusteuare clearly visible
[100]. Streaks aréocal dermoscopy features of skin lesions, however they can correlate with a
global pattern of skin lesions called a starburst pattern if symmetrically arrangedtlo entire
lesion.

The Menzie’s scoring method states that irregular streaks are nevédsudistirregularly or sym-
metrically around the lesion [75, 100]. Also, based on the 7-Point cheddk 9, 100] irregular
streaks should not be clearly combined with pigment network lines. Thésgides are used later
in Chapter 6 to define discriminative models towards automResgilarirregular classifications of
streaks.
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Streaks

(b) ()

Figure 2.12: Examples dfbsentRegularandIrregular streak images. (a) shows a lesion without
streaks Absen}. (b) illustrates a lesion with a complete symmetric regular streak pattern called
starburst and in (¢) a melanoma with irregular streaks which are partially distributédani (c)

are calledPresentmages. (a) is taken from [100], (b) and (c) are from [10] with permissio

Mathematical definition

The above clinical definition is translated to mathematical concepts with justifradnpéers to be
captured by image processing techniques: 1) Streaks are three or nearresliructures co-radially
oriented in the boundary which is a contour with the thickness equil3®f the minor axis of
the lesion. 2) Streaks are darker than their neighborhood. 3) Stremkbarter than th&é/3 of the
minor axis of the lesion and they should be longer than one percent of theam&jo4) Streaks do
not branch and their curvature is less than one. 5) A symmetric and retistidbution of streaks
all over the lesion forms a starburst pattern. These specific mathematicefioles are based on
the author’s distillation of salient features, and not from the literature.

Figure 2.12 shows examples of lesions with no streAksé¢n}, Regular(Preseny, andlrregular
(Presen} streaks. Figure 2.12-a showdsent 2.12-b shows a starburst or complete pattern with
Regularstreaks, and Figure 2.12-c shows a melanoma lesion with irregular stnedles @artial
pattern.

Diagnostic importance

Streaks are important morphologic expressions of malignant melanoméjcgdlgcmelanoma in
the radial growth phase [75, 103]. Irregular streaks are one of tl# onitical features (included
in almost all of dermoscopy procedures) that shows the highest assoaiath melanoma. Also
Menzies et al. [75] found pseudopods to be one of the most specificésanf superficial spreading
melanoma which is a subset of malignant melanoma. In addition, symmetric stetalzu(st
pattern) are one of the specific dermoscopic criteria to differentiate usaealign Spitz nevi (a dark
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nevus common in children) from melanoma, thus increasing diagnostic agciarapigmented
Spitz nevus from 56% to 93% [104]. However, all lesions in adults exhibgisgarburst pattern
should be excised for histopathologic evaluations [75]. Thereforeti@teand analysis of streaks
and starburst pattern can be a significant step towards computer-gg@asis of skin lesions and
melanoma detection.

2.3 Commercial Computer-aided Diagnostic Systems

Advances in computer science and applied mathematics are now allowing tbédoasiology of
dermoscopy to be extended to a more complex application: predicting whétbenved spots are
cancerous. Several teams are working toward computer-assistedsimghmelanoma using dif-
ferent mathematical and analytical strategies. Computer software caad®uwgchive skin images
and allow remote diagnosis and reporting by a dermatologist (digital epiluneginesaenicroscopy,
teledermoscopy, mole mapping). MoleMap NZ is such a system which is usedctuving and
patient management.

Some systems such as SlAscope, SolarScan (also called MoleTrac)edalimdl offer smart
programs to aid in diagnosis by comparing the new image with stored cases wital figatures
of benign and malignant pigmented skin lesions. Given good images of thepaigpe lesion, they
may be as accurate as an expert dermatologist. However, they arertimilpdy useful for non-
pigmented lesions and they can’t make the decision which lesions should bedifif$, 82, 39,
87, 71]. Table 2.2 compares some of these systems.

To the best of our knowledge, none of the above systems is based ogtéieiah and analysis
of specific dermoscopic patterns which is the main stream in clinical diagnblsions. They
are built based on the general image processing approaches (stabragexture and other image
statistics of the entire lesion) and image retrieval methods that cannot findrthestcopy structures
and their irregularities which are crucial features for the melanoma diegrnbae want to develop
computer-aided diagnosis systems, we should address the important steppatttdrn analysis
approach which is the segmentation and analysis of the dermoscopy ssuctur

2.3.1 SolarScan Melanoma Monitoring

SolarScan is a device priced for use by individual practitioners anelajged by Australian startup
Polartechnics, with assistance from Australia’s Commonwealth Scientificrahgbtrial Research
Organization (CSIRO) and the Sydney Melanoma Unit [71]. SolarScaesiusage analysis, which
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has turned diagnostic criteria used by doctors into defined decision tiedsdd toward or away
from a decision to help general physicians (GPs) diagnose melanomaTfi@]device works by
capturing an image of a patient’'s skin spot using an object shaped like dryleaiwith a built-
in surface microscope. Image analysis software removes extraneogs from the image like
hairs and oil bubbles and analyses the spot’s features such as itsastthpelour. SolarScan then
compares the features against images of melanomas and non-melanomaslraaejaeturning an
advice to a GP. A record of the spot’s status can be stored in PolarteédBaiths Map software so
that it can be rechecked another time if necessary [73].

2.3.2 MoleMax

MoleMax (Derma Medical Systems, Vienna, Austria) is a computer-baskdizexd-light dermo-
scope [69]. The polarized-light source is used with the hand-held \ddemoscope for close-up
imaging and does not require any oil immersion or contact fluids betweerkitnarsd the video
head. The MoleMax software is convenient for follow-up examinatiosashea transparent overlay
feature performs a standardized comparison of images with previous Alpsat from live-video
dermoscopy, MoleMax also allows total-body photography and creatiggtal dnap of the skin of
patients with high-risk factors and numerous pigmented lesions. These imagd® used as a
baseline for comparison when suspicious changes are found aralléev fip melanoma screening
visits [87]. Molemax automatically analyses captured dermoscopy imageg gi\doore that helps
to determine if a pigmented skin lesion is benign or malignant. The automatic algorniiysas
the lesion based on the ABCD factors. Although it is not a final diagnosisskecore is based on
a large and proven database.

2.3.3 SlAscope

The SlAscope (SIA: Spectrophotometric Intracutaneous Analysis) asisomated dermoscopy de-
vice that uses 12 wavebands to evaluate the skin, rather than convehtimadband white light. It
is a handheld medical device used in conjunction with the MoleMate and MoleNiege of soft-
ware [44, 78]. Patterns of collagen, vascular and melanin distributiodeméfied within the lesion
from the spectrophotometric analysis of a skin lesion.

e MoleMate is a non-invasive melanoma screening device that has beenatktéig General
Practitioners and skin specialists.

e MoleView assists in the management of patients for skin cancer screening.
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SYSTEM | SEN. SPEC. ADVANTAGES DISADVANTAGES
MoleMax N/A N/A Two camera system No computer analysis
no oil immersion
transparent overlay follow up
total body photography
MelaFind | 95.100% | 70.85% | multispectral image sequence
Handheld scanner
SolarScan  91% 68% database for comparison; | Requires oil immersior
accurate calibration
graphic map of body

Table 2.2: Comparison of emerging technologies in melanoma diagnosis. Thasotainally
appeared in the European Journal of Dermatology [84] and it is cited [B3].

e MoleView+ provides the mole mapping functionality for the long term managenfepd-o
tients.

2.3.4 MelaFind

MelaFind is a multispectral digital dermoscope with a specialized imaging prabsdadtware to
assist with differentiation between early melanoma and other skin lesiong132A hand-held
imaging device that shines light of 10 different, specific, wavelength ®&ndsed to collect data.
Proprietary processing software is used to extract specific featunestfie images [50, 64]. The
software determines the edge of the lesion and generates a 10 digital iqagese The images
are then analyzed for wavelet maxima, asymmetry, color variation, perinfeiages, and texture
changes, and the output is a binary recommendation of whether or nafdonpa biopsy [87]. The
results of a clinical trial were published in April 2008, leading to submissfaheMelaFind to the
FDA and recently it has been approved for use in the United States.

Many of the available systems either were discontinued or have not béetogiass the FDA
evaluation process yet. There is a big question why these systems areoessful enough to be
used in clinics. To answer such a fundamental question, after taking deompcourses, talking
to experts in this field and reviewing the current systems, we came up with th¢hdethere is a
big missing step in the available system designs that may be the main sourcetodstings. Der-
moscopic structures (or texture, in image processing parlance) are th@mmsnent features for
the clinical diagnosis of skin lesions and in almost all of the clinical appesdtecisions are made
based on the presence and irregularities of critical dermoscopic sgsactliherefore, to simulate
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and develop an accurate computer program, segmentation and analysislefritoscopic features
(such as pigment network, blood vessels, and etc.) are essential, isthéne main strength of
dermoscopes which is providing visual features is useless. In fachodeopic structures were
developed based on the observation of thousands of images and tieelydeavshown to improve
diagnostic accuracy. Therefore, failing to incorporate this wealth ofrimé¢ion would be unfortu-

nate.

To the best of our knowledge, none of the available commercial prograchsystems can ex-
tract and analyze the dermoscopy structures comprehensively. ;nspstems, the vast majority of
features which are used are based on general image processing noéttalds or common texture
analysis. Where texture features are employed, they are often uselg,ldimidlan image processing
method is applied directly without consideration for what exactly is beingtifiexhor how it relates
to clinical concepts. At very most, texture features use some aspectsmbtdtesimpler and less
accurate ABCD rule that only considers general lesion characterissiesnhof shape, color and ge-
ometric features of dermoscopy structures. Asking a computer to makerediagvithout finding
any dermoscopy structure is similar to asking a general physician withaubdeopy knowledge to
make a diagnosis. Therefore, to have a comprehensive computerd#adedstic system, extraction
and analysis of dermoscopy structures is an essential step.

We believe that with new advances in dermoscopy, the texture analysikmpraould be
changed to an object recognition problem that involves identification, sggti@ and recogni-
tion of individual shapes and structures in skin lesions and this will be eraglay identify and
classify specific dermoscopic structures. It is hoped that this will lead tdetaelopment of many
new approaches that can be included to increase the diagnostic goctiaatomated systems.

2.4 Summary

In this chapter, basics of human skin biology are described and diffgypas of common skin
lesions are briefly reviewed, and the new imaging system which is called digitaloscopy and
different clinical diagnostic method are introduced. We also definedxgidired the two important
dermoscopy structures, pigment network and streaks. Finally, we rediaad evaluated the current
computer-aided diagnostic systems.



Chapter 3

Previous Work

Computer-aided diagnosis of dermoscopy images has shown a greatenmoméveloping a quan-
titative and objective way of classifying skin lesions. A non-invasive asiepaided diagnostic
system typically consists of several components: image acquisition, imagespiog, and a clas-
sifier with a knowledge database. When a melanocytic lesion is captureiavia digital image
using a dermoscope, the characteristics of the lesion can be extraatedhiadigital image by
image processing techniques. The image processing steps consistegfracpssing step which
includes calibration, image enhancement and removal of artifacts sucairasahd oil bubbles.
Then a border detection should be applied to segment the lesion from nekmalnd the lesion
area should be investigated to find dermoscopic structures and irregalafigeding the features
to a classifier which is connected to a medical knowledge database camtgemeomputerized
diagnosis, suggesting whether the lesion is benign or malignant.

In this chapter, the previous work on the main stages of a computer-aidgpubdia system are
discussed. First, we review the preprocessing phase that includesitiredegmentation task, and
then consider previous work on the automated detection of pigment netamdlkstreaks, which are
the important dermoscopic structures.

3.1 Pre-precessing

3.1.1 Removal of Artifacts

Dermoscopic images often contain artifacts such as illumination, dermoscaopiageskin lines,
and ruler markings. As a result, there is a need for robust methods to eesntifacts and detect

29
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(b) ()

Figure 3.1: Three examples of dermoscopy images with hair (a), oil bufilesd low-contrast

(©).

lesion borders in dermoscopy images. As shown in figure 3.1, hair pixdlsiahubbles, usually
present in dermoscopic images, occlude some of the information of the lesibras its boundary
and texture. With new dermoscopes and using polarized light, oil or airésilalbe less common.
However removing hairs from dermoscopy images remains a serious gjebaa in a real-time
computer-aided diagnosis systems, an automatic hair removal method thavgseskethe lesion
features is needed.

There are a few methods described in the literature to remove light, dark, thithiak hairs.
These studies mainly focused on measuring the hair detection error, igrbereffect on the le-
sion’s patterns. As a result, these hair removal methods often leave haidegirable blurring,
they disturb the texture of the tumor, and often result in color bleeding. derethese methods
required high computational cost. Abbas et al. in [5] have a comparatidy ®n hair removal
methods on dermoscopy images. They have classified the hair-removadsi@ttmthe following
categories: linear interpolation techniques [67, 81, 94, 36], inpaintintgpbylinear-PDE based dif-
fusion algorithms [14, 113] and exemplar-based methods [5, 6, 301169, A detailed description
and comparison of each hair removal method is presented in [5].

3.2 Skin Lesion Segmentation

The segmentation of skin lesions is a crucial early step in the process ofiaitally diagnosing
melanoma. Inaccurate segmentations will affect all downstream precasseas feature extraction,
feature selection and the final diagnosis. Accurate segmentations aeadigpcrucial for features
that measure properties of the lesion border [66].

In recent years, many studies have focused on lesion segmentation imakjes [114, 68, 22,
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24, 23, 57, 117, 119, 41, 76, 118]. First, Xu et al. [114] developedutomatic segmentation
method for segmenting pigmented skin lesions in clinical images. Further, Li[68ashowed that
adding 3D depth information to RGB color images improved segmentation in clinicgesnd-or
dermoscopy images, Celebi et al. [24, 23] recommended a fast anpemased approach based on
the statistical region merging algorithm (SRM). A multi-direction gradient veftbar snake-based
scheme is advised by Tang [107].

Celebi et al. in [22] reduce a dermoscopic image to 20 distinct colour graum assign labels
to pixels based on the colour groups to which they belong. They then defiredtric, thel-value
which measures the spatial separation, or isolation of each groupJ-Valeeis derived from the
separability criterion used by Fisher in Linear Discriminant Analysis [3®&xtiNthey define a local-
ized J-valuefor a specific pixel by computing the metric over a neighborhood arounpixieé By
varying the neighborhood size, they create several of thésmges Multiscale methods are used
to combine the images into a final segmentation. By creating a class map usingedoiction, and
employing various neighborhood sizes they are incorporating, on somils,l&sxtural information
into their segmentation.

In another attempt, lyatomi et al. presented a dermatologist-like tumor areatextralgorithm
(DTEA) [57]. The DTEA segmentation algorithm first obtains an initial segiaigon by finding
high-frequency components and then thresholding using the Otsu metBlod\[@w the image is
divided into many small regions which are merged until they are of suffisieet (at least 5% of
the image). Then the subset of regions which is considered to belong tcstbe i selected via
elaborate rules. Finally, to mimic dermatologists’ tendency to conservativgiyess the lesion, the
border is slightly expanded.

3.3 Automatic Detection of Dermoscopy Structures

As a fundamental step towards computer-aided diagnosis of skin canagsmatic detection and
analysis of many local dermoscopic structures such as pigment netwaitks@d vessels, have
been frequently addressed in the literature [47, 98, 91, 92, 34, 38.,8,7, 90]. Also, global
pattern detection on dermoscopy images has been addressed by ®t@bhn@o6] and Tanaka et
al. [106].

In this section we review two of the most indicative dermoscopic featureshwdrie crucial
towards computer aided diagnosis of melanoma. These structures inclymgrttent network, and
streaks.
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3.3.1 Pigment Network Detection

The automated detection of pigment network has received some recetibattf86, 48, 34, 8, 17,
31, 98, 96, 13]. Fleming et al. [36] report techniques for extractirgd)\asualizing pigment net-
works via morphological operators. They investigated the thickness angthability of thickness
of network lines; the size and variability of network holes; and the presen@absence of radial
streaming and pseudopods near the network periphery. They useatamichl techniques in their
method and their results are purely qualitative. Fischer et al. [34] uskHstagram equalization
and gray level morphological operations to enhance the pigment netWwodntha et al. [8] pro-
pose two algorithms for detecting pigment networks in skin lesions: one ingpbtatistics over
neighboring gray-level dependence matrices, and one involving filteritigLaws energy masks.
Various Laws masks are applied and the responses are squaredveohpesults are obtained by a
weighted average of two Laws masks whose weights are determined empiri@lalbgification of
these tiles is done with approximately 80% accuracy. Betta et al. [17] bedaking the difference
of an image and its response to a median filter. This difference image is tlitedho create a
binary mask which undergoes a morphological closing operation to remmyvieal discontinu-
ities. This mask is then combined with a mask created from a high-pass filtercpptiee Fourier
domain to exclude any slowly modulating frequencies. Results are repastelly, but appear to
achieve a sensitivity of 50% with a specificity of 100%. Di Leo et. al. [31¢er this method and
compute features over the ‘holes’ of the pigment network. A decision ttearised in order to clas-
sify future images and an accuracy of 71.9% is achieved. Shrestha[@8]ddegin with a set of 106
images where the location of the atypical pigment network (APN) has beenaityasegmented.
If no APN is present, then the location of the most ‘irregular texture’ is mignsalected. They
then compute several texture metrics over these areas (energy, erti@pyand employ various
classifiers to label unseen images. They report accuracies of apjaiteky 95%.

Although these studies have certainly made significant contributions, theseehto be a com-
prehensive analysis of pigment network detection on a large numberrabdeopic images under
‘real-world’ conditions. All work to date has either: 1) not reportedmfitative validation [36, 34];
2) validated against a smatt (< 100) number of images[17]; 3) only considered or reported results
for the 2-class problem (e.d\bsentPresentrather tharAbsentTypicalAtypica)[8, 17, 31, 98]; 4)
not explicitly identified the location of the network [8]; or 5) has made usenoéalistic exclusion
criteria and other manual interventions [98].
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3.3.2 Automated Detection of Streaks

Even though the presence of irregular streaks is highly suggestivadiignancy of a lesion, the
modeling, detection and analysis of streak lines and starburst pattedasgaly omitted from liter-
ature, and it has very rarely been used for automated skin lesion diagBt®aks on dermoscopy
images usually are difficult to detect since they are not perfect lineatstas, but often fuzzy and
low-contrast oriented intensities. Furthermore, streaks may have uctpied spatial distribution
(partial pattern) with just a few streak lines in a small region of a lesion. éfbes, it is not easy
to detect them using general oriented pattern analysis. The automatic detdcitoeaks has only
recently been investigated [16, 36, 77].

Betta et al. [16] developed a method in which streaks were detected by sigauty looking
for occurrence of finger-like tracks along the contour of a lesion,odn pigmentation for the
corresponding region. They divide an image into 16 sub-images. Forsedéecimage they compute
the irregularity of the lesion border and also the hue component of the arigihtor image in the
HSV color space. The final diagnostic decision is made by a simple threshdltese computed
values.

Also in a recent work, Mirzaalian et al. [77] have used a machine-leguagiproach for classi-
fying streaks in dermoscopic images. Although the methodology is interestirag lieen tested on
only a small number (99) of dermoscopic images with wide exclusion criteria.nttiglear how
the method would generalize to all conditions of dermoscopic images captuaedeirmatologist
clinic.

Fleming et al. [36] also considered the streak detection problem, howeyedith not provide
a concrete solution. They argued that the presence and absend@abt@aming and pseudopods
and their characteristics could be tested from a skeleton of the pigmentrketd@wvever, details
of the method were not reported. It is not clear how to find streaks fri@si@n without a pigment
network nor how to separate streaks from other dermoscopic structure.

3.4 Summary

In this chapter, we performed a literature review on the published agpedor pre-processing
for enhancement and removal of artifacts on dermoscopy images, siggnire lesion from the
normal skin and finding dermoscopy structures such as the pigment keinestreaks.



Chapter 4

Skin Lesion Segmentation Using
Automated Random Walker

The Random Walker (RW) algorithm[45] is a general purpose interaativié-label segmentation
technigue where a user labels the image with 'seed points’ which denoteaimedgtruth label for
that pixel. Then, for an arbitrary pixel, the probability of a random waleaching a seed of a
specific label (before reaching seeds of any other label) is computadewdr, the RW algorithm
is sensitive to the exact placement of seeds and to the number of seest$ [délc While the RW
algorithm is fast, intuitive and robust, it has been determined that a largeanwhbeed points (up
to 50% of the image) is required to reproduce a segmentation with only minorediffes[46].

We have adopted the RW method described above into a novel framewalifdmatically
segment skin lesions from dermoscopic images.

4.1 Method

In this chapter we present an approach to leverage the advantag®ésfof Rutomatic skin lesion
segmentation. We initialize the RW algorithm automatically with seed points geneyetedining’
(by means of a training set) the difference between the properties ofiéskon pixels’ and ‘healthy
skin pixels’.

34
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4.1.1 Supervised Probabilistic Segmentation

We begin with a set of 120 expertly segmented dermoscopic images takearirattas [10][100].
Each pixel is assigned either the label 'insidk)) (or 'outside’ (») based on the ground truth seg-
mentation. In this stage we aim to learn the difference between these twosgrdmpages are
converted to L*a*b* space, and each channel is filtered with a set os§&an and Laplacian of
Gaussian filters. Letn denote the number of filters employed. Pixels are then represented as a
1 x 3m vector since each filter is applied to each of the 3 image channels. Lineainiiismt
Analysis (LDA)[35] is then used to determine the linear combination of filterisltest discriminate
‘inside’ and ‘outside’ pixels. LDA is similar to Principal Component AnalygikC@A), but where
PCA is anunsupervisedechnique that reduces dimensionality while maintaining variance, LDA
is asupervisedechnique that reduces dimensionality while maintaining class separability. This is
achieved through an eigenvalue decomposition dfranx< 3m scatter matrix, which represents the
separability of the classes with respect to each filter. Since this is a 2-cladsm, we consider
only the principle eigenvector. This eigenvector results in a linear combinatithre filtersets for
each image channel. Since the filterset employed is a series of low-passs{&g and high-pass
(Laplacian of Gaussian) filters, the resulting ‘eigenfilters’ can be intéegdras either a high, low,
or multiple-band-pass filters. This filter bank includes five Gaussian aad.&iplacian of Gaussian
filters applied to the three channels of the L*a*b* space, that results 30rBbponses in total. We
are therefore not only learning the colour difference between thesgrowps of pixels, but also the
difference in the spatial variation of colors. This process is illustrated inrgig.1.

Next, the response of the pixel groups (‘inside’ and ‘outside’) alorgdigenvector are modeled
as Gaussian distributions

v — )2
Polt) = ——exp (—(“)) @.1)

202
We create probability maps for unseen images by filtering the image with the rgseitjienfilters

from LDA, and for each pixep, assigning it a normalized probability that the pixel is inside the

lesion
_ P(plly)
P(pll1) + P(pll2)

The creation of a probability map is illustrated in Figure 4.2

(4.2)
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(d)

(e) () 9

Figure 4.1: Learning the difference between pixels inside and outsidegheesitation. a)-d): Some
filters from the filterset applied to each channel of each image. The filteossists of Gaussian
filters (a,b) and Laplacian of Gaussian filters (c,d) and the ‘eigenfiltera’ r@sult of LDA for the
L*, a* and b* channels respectively (e,f,g).

(@) (b) (©

Figure 4.2: The creation of a supervised probabilistic segmentation. adrigieal dermoscopic
image b) The image’s response to the ‘eigenfilter’ from Figure 4.1(c) &belting probability map
by applying equation 2. Note the high response to the photodamaged skirrigghthef the lesion.
This is due to the fact that this pattern (known gggment networkusually occurs within lesions.
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4.1.2 Initializing the Random Walker Algorithm

The original RW algorithm is an interactive segmentation which requires thetasplace seed
points. In our proposed automatic RW approach, there is no user interaciibthe object and the
background seeds are automatically determined from the probability magatgshiz section 4.1.1.
To generate seed points, two thresholds must be determined sLretpresent the skin threshold
andT7y, represent the lesion threshold. Once these thresholds are determimeblitiary number of
seeds can be automatically generated as long as the thresholding conateag#tisfied. LeP(p)
represent the probability a pixglis a part of the lesion, as determined by the probability map. A
pixel is a candidate for a background see®i{fp) < Ts. Similarly, a pixel is a candidate for an
object seed ifP(p) > T7.

To determinel’s and 17, we analyze the histogram of the probability map (shown in Figure
4.3(b),(f)). We fit a Gaussian Mixture Model to the histogram and extrectiominant Gaussians
that represent the skin and lesion [56]. Let and .;, represent the means of the ‘skin’ and ‘le-
sion” Gaussians respectively. Similarly, e ando;, represent the variances. Thresholds are then
determined by:

Ts = ps + 305 (4.3)

TL = MU — 30’L (44)

Now, let F'(x) represent the cumulative histogram of the probability map. We then define two
metricsa; and Gy, using the subscript H (Chistogram’) to differentiate from thearameter of the
RW algorithm:

F(Tr) — F(Ts)

ag = F(Ts) (45)
_ F(Ty) - F(Ty)
Br = F(f) —FT) (4.6)

Low values for bothyy and G imply an easy to segment, high contrast image, as shown in
Figure 4.3(a)-(d). The area shaded red in Figure 4.3(b) denotesigna of pixels which a label
cannot be determined with certainty.

If however, eithervy, By or both are above a certain threshold, then the contrast between the
lesion and skin is poor, and the segmentation is more difficult. Empirically, thishible has been
defined a2.0. If « is above2.0 then we define a new skin threshdld as the median of the
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(f) C) (h)

Figure 4.3: Automatically initializing the RW algorithm. First row: A high contrassye® segment
image. a) The initial image. b) The histogram of the image’s probability map @&sated by section
4.1.1. The blue area denotes candidate seed pixgls=£ 1.27,0y = 1.74,Ts = 0.10,T;, =
0.85). ¢) Seed pixels randomly selected. d) The resulting segmentation. Semend difficult
low-contrast lesion with occluding hair. The original parameterg & 0.77, 3y = 7.88,Ts =
0.18, 77, = 0.97) indicate its difficulty sincegy > 2.0. T is therefore set t6.42 (reducing the
uncertainty area to the red shaded region)

uncertainty range (the range betwéBnand77). Similarly, if 3 is above2.0 we definel’ as the
median of the uncertainty range. If bathandg are above.0, we take the larger value to determine
which threshold to shift. This threshold adaptation is illustrated in Figure 4(Bfe)nitially o
andgy are computed in Figure 4.3(e). The amount of uncertain pixels is large dgoered shaded
are) which is reflected in the high valwe; = 7.88. Sincefy > 2.00, we definel’; = 0.42, which
reduces the uncertain region (red) considerably.

After determining the thresholds for the skifis(or 7'¢) and the lesionTy, or T7}) pixels, seed
points can now be chosen according to these thresholding constrainteandémly choose only
3% of pixels as seeds. Since spatial filtering methods are inaccurate ngarbim@ers (as can be
seen in Figure 4.2(b) we impose an additional constraint and do not eompsi@ls in proximity to
the image border as seed point candidates.

After placing seeds in the areas of high certainty, RW segments the image. r&afugly
handles the uncertain area between the skin and lesion borders wheresthet enough accurate
information from the probability map. We initialize the RW graph edge weights wsiGgussian
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function of the image intensity as Grady does[45]. The Gaussian width inwhéién, which we
denote agzy, is a free parameter that determines the degree to which two intensities sigered
similar. Throughout this experiment, this parameter has been fix@d &inally, after applying the
RW algorithm, the segmentations undergo morphological post-processingholdis and break
isthmuses.

4.2 Results

We tested our method on a dataset of images taken from [10] and [100beWir by selecting
100 images that pose a challenge to segmentation methods, and call this imelugistging’.
These represent images that are often excluded from other studieg{f@dmage is considered
challenging if one or more of the following conditions is met: 1) the contrastdstvhe skin and
lesion is low, 2) there is significant occlusion by either oil or hair, 3) the etision is not visible,
4) the lesion contains variegated colors or 5) the lesion border is notychsfined. Next, we
select 20 images that do not meet any of the above conditions, and call tigissetasimple’. We
merge these two imagesets, calling the resulting imageset ‘whole’. Finally,eatecan imageset
to measure the intra-observer agreement of our expert. We randomty $6lémages from the
‘challenging’ imageset. These images undergo a random rotation of 909r1870 degrees, and
some are randomly inverted along the X and/or Y axes. This is done to réuitigelihood that
the dermatologist would recognize the duplicate image while performing the séafina task. We
call this imageset ‘intra’.

Probability maps for all images are generated as described in section 4rigtarsfold cross
validation. Seeds are placed automatically as described in section 4.1.2sllte are summarized
in Table 4.1. We also compare our results to the Otsu thresholding method[@8dlability maps
and measure the intra-observer variability of the expert. Segmentatiomsezbteom our modified
random walker algorithm, the Otsu method and the dermatologist are denGt\&S ‘Otsu’ and
‘Derm’ respectively. For all comparisons we compute precision, recafieBsure x (precision x
recall) /(precision + recall)), and border error [51] which is also called XOR measure and it is
defined as

BE = (automaticborder ® manualborder)/manualborder

As can be seen in Table 4.1, while the Otsu method consistently achieves a fhrigtigion,
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Comparison Imageset | n | Precision | Recall | F-measure| Mean BE | Std BE
MRW vs. Derm simple 20 0.96 0.95 0.95 0.079 0.024
MRW vs. Derm| challenging| 100 0.83 0.90 0.85 0.31 0.19
MRW vs. Derm whole 120 0.87 0.92 0.88 0.24 0.18
Otsu vs. Derm simple 20 0.99 0.86 0.91 0.15 0.083
Otsu vs. Derm | challenging| 100 0.88 0.68 0.71 0.44 0.40
Otsu vs. Derm whole 120 0.91 0.74 0.78 0.34 0.36
Derm vs. Derm intra 10 0.95 0.91 0.93 0.085 0.036

Table 4.1: Comparing the results of our modified random walker segmentégioritam (MRW)
to that of Otsu’s thresholding method[83] (Otsu), and a dermatologist’s ahgaagmentation which
acts as ground truth (Derm). Comparisons are performed over simple ahengjing imagesets
taken from [10] and [100]. See Section 4.2 for a description of thesedseds,.

its recall is much worse. This implies that the Otsu method consistently underestifmatiesion
border, labeling many pixels as ‘skin’ that ought to be labeled as ‘lesiwhen examining the more
comprehensive metrics such as F-measure or border error, it iseapplaat our modified random
walker outperforms Otsu’s method. The poorer F-measure and bamderresults for the Otsu
method on the challenging imagest indicates how very difficult that imagesd¢sdshorn out by the
results of the intra-observer agreement of the expert dermatologisedntifa’ imageset.

Figure 4.4 shows sample results of the segmentations obtained from our njeémaded in
black) as well as the ground truth segmentation (denoted in green) foleg\af lesions, including
several difficult lesions.

4.3 Contribution

Results of our method were presented in Medical Image Computing and Caomissisted Inter-

ventions (MICCAI) in 2009 [110]. As the co-first author of this pap®s contribution was the
design and implementation of the study in collaboration with Paul Wighton. Heedook the

supervised probabilistic learning section for creating probability maps teséeé im segmentation
using the RW method and | was in charge of designing the automated segmemtatiod based
on RW, performing experiments and analyzing the results. We wrote the {oae¢her.
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(d)

Figure 4.4: Sample segmentation results for our method (denoted in blackpeio ground
truth (denoted in green). a) A typical, easy to segment lesion. b) A lesiorvaitbgated colours.
c) An example of the entire lesion not being visible. Also, the lesion borderdkear in the bottom
right hand side. d) A low contrast lesion. e) A lesion occluded significdntlair. f) A difficult
case where our method fails.
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4.4 Conclusion

We have developed a fully automatic method for segmenting unseen skin I&sidageraging
knowledge extracted from expert ground truth, and the random walgerithm. Our method uses
colour as well as texture to perform the segmentation, and adapts itself dée hdifficult, low-
contrast images. Clinically, this is the first step towards an automated skin thagmosis system.



Chapter 5

Pigment Network Detection and Analysis

In this chapter, we address the problem of how to determine the absepcesence of pigment
networks in a given dermoscopic image. As we described in Chapter 2, argigrigvork can
be classified as eithdiypical or Atypical where the definition of ypical pigment network is “a
light-to-dark-brown network with small, uniformly spaced network holes #mial network lines
distributed more or less regularly throughout the lesion and usually thinningtdhe periphery”
[11]. For anAtypical pigment network, we use the definition “a black, brown or gray network with
irregular holes and thick lines” [11]. The goal is to automatically classifyvargimage to one of
three classesAbsent Typical or Atypical Figure 5.1 exemplifies these 3 classes.

We use these definitions to subdivide the structure into the darker meshmgthent network
(which we refer to as the ‘net’) and the lighter colored areas the netwus (which we refer to
as the ‘holes’). After identifying these substructures we use the defigitibove to derive several
structural, geometric, chromatic and textural features suitable for clas®ific The result is a
robust, reliable, automated method for identifying and classifying the steuptgment network.

Figure 5.2 illustrates an overview of our approach to irregular pigmentarktdetection. After
pre-processing, we find the ‘hole mask’ indicating the pixels belonging tbdhes of the pigment
network. Next, a ‘net mask’ is created, indicating the pixels belonging to ¢hefithe pigment
network. We then use these masks to compute a variety of features incladiotusal (which
characterizes shape), geometric (which characterizes distributionréfiogdnuity), chromatic and
textural features. These features are fed into a classifier to classi§enrimages into 3 classes
of Absent Typical and Atypical The major modules in Figure 5.2 are explained in the following

43
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Figure 5.1: The 3 classes of the dermoscopic structure pigment netwbjlAlzsent c-d) Typicat
and e-f)Atypical b),d),f) are magnifications of a),c),e) respectively.
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Figure 5.2: Overview of construction of our classification model

sub-sections.

(a) (b) (©

Figure 5.3: a) A given skin lesion image. b) Sharpened image. c) Reghk edge detection after
segmenting the lesion.

5.1 Pre-processing

In order to prevent unnecessary analysis of the pixels belonging titietlse lesion is first seg-
mented. Either manual segmentation or our automatic segmentation method [5l§eda Next
the image is sharpened using the MATLAB Image Processing Tool Boxiturildnsharpmask, one
of the most popular tools for image sharpening [86]. A two-dimensional pags- filter is created
using Equation 5.1. This high-pass filter sharpens the image by removingattieetfuency noise.
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We use the default parameters of MATLAB in our experiments={ 3). Figure 5.3-b shows the
result of the sharpening step.

. —-a a—-1 -«
SharpeningFilter(a) = (m) a—1 a+b a—1|. (5.1)
—-a a—-1 -«

To investigate structures of the skin texture, it was necessary to redeiamlttr images to a
single plane before applying our algorithm. Various color transforms M T3a*b, Red, Green,
and Blue channels separately, Gray(intensity image), etc) were invedtigatiis purpose. After
the training and validation step, we selected the green channel as the luemimage. Results of
the different color transformations are reported in the result sectionsofhlapter.

5.2 Hole detection

As discussed previously, a pigment network is composed of holes and\Wet§irst describe the
detection of the holes. Figure 5.4 shows steps of our novel grapld-laggeoach to hole detec-
tion. After the pre-processing step described above, sharp chahgdsnsity are detected using
the Laplacian of Gaussian (LoG) filter. The result of this edge detectignista binary image
which is subsequently converted into a graph to find holes or cyclic stasctirthe lesion. After
finding loops or cyclic subgraphs of the graph, noise or undesirddsyce removed and a graph
of the pigment network is created using the extracted cyclic structuresordiog to the density
of the pigment network graph, the given image can be classifiedPir®entor Absentclasses, but
for irregularity analysis we also need to extract more features andatbestics of the net of the
network.

We used the LoG filter to detect the sharp changes of intensity along thegtthgeholes inside
the segmented lesion. Because of the inherent properties of the filtam, dietact the “light-dark-
light” changes of the intensity well. Therefore it is good choice for blob ai&te and results in
closed contours. The detection criterion of the edge of a hole is set to thecessing in the
second derivative with the corresponding large peak in the firstatemv We follow the MATLAB
implementation of the LoG edge detection which looks for zero crossings aidrimsposes. All
zeros are kept and edges lie on the zero points. If there is no zerdgarpeint is arbitrarily chosen
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e {}

(d) Cyclic subgraphs (e) Graph of holes

Figure 5.4: Steps of the proposed algorithm for hole detection

as a negative second derivative point. Therefore when all "zersfjanses of the filtered image
are selected, the output image includes all closed contours of the zeingrdocations inside a
segmented lesion. An example of the edge detection step is shown in Figuwebdin Figure
5.4-b. This black and white image captures the potential holes of the pigntertrke

Now, we consider the steps necessary to extract the holes accuratgyevious works [36,
17, 48], these structures usually are found by morphologic techniquea aequence of closing
and opening functions applied to the black and white image. We did not usefitiseeh because
using morphologic techniques is error-prone in detecting the round disipestures. Instead, the
binary image is converted to a graph)(using 8-connected neighbors. Each pixel in the connected
component is a node @f and each node has a unique label according to its coordinate.
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To find round texture features (i.e. holes), all cyclic subgraphé& @fre detected using the
Iterative Loop Counting Algorithm (ILCA) [62]. This algorithm transforrige network into a tree
and does a depth first search on the tree for loops.

After finding cyclic subgraphs which may represent the holes of a pigmegatork, these sub-
graphs were filtered and noise or wrongly detected structures (gloanteslots) were removed
according to parameters learned in a training and validation step.

Pigment network holes should have higher mean intensity than the bordée other hand the
reverse is true for globules and brown dots. Therefore we threghdttdedifference between the
average intensity of inner pixels and the average intensity of the bordisctinginate globules from
holes of the pigment network. First, we remove all detected cycles whictharéer than 7 pixels
and longer than 150 pixels. These parameters can be set for a gieesetlaccording to the scale,
maghnification and resolution of images. The atlas image set [10] used in tkeregpt does not
provide precise information about the resolution and magnification of the isetgehich is used
in our experiment. Furthermore, we are uncertain if the resolution and negifi is the same
for all images of the atlas. Therefore, to play safe, we set a wide rangel(0) to find as many
holes of pigment networks as possible. In order to belong to a pigment rietavdetected cyclic
subgraph should have a higher intensity on the area contained by theketatures (holes) than
on the network itself (lines), but in globules and brown dots, the mean interishg area inside the
structure is lower than the intensity of border pixels so we can discriminate enalso have to
deal with oil bubbles and white cysts and dots. These structures are sintialetof the pigment
network in terms of the mean intensity of the inside being lighter than the boreier laut they are
much brighter inside. So, if there is at least one pixel with high intensity (€e8t@mn a scale of 0 to
1) inthe inside area of a hole, it will be colored as white representing olllesbwhite cysts or dots.
Therefore, these wrongly detected round structures of brown ddtglabules, white dots, white
cysts and oil bubbles are removed from the rest of the analysis. Weeddloese noise structures
with red and white in Figure 5.5. Thus, the multi-level thresholds, determingkebtyaining step,
are set up as:

Green 001 < (I-B)<0.1
Color = { White 01<(—-B) A 3P >0.8 (5.2)
Red Otherwise

wherel is mean intensity of the inside arejs the mean intensity of the border or outside area,
and P is a pixel inside the hole. Figure 5.5 shows three examples of skin lesionsltetadicyclic
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subgraphs overlaid. These structures can be used later for theiamdlgtobules and dots which
are other important structures of the skin lesion texture.

In order to visualize the location of a pigment network based on the deteclkes| e created
a new higher-level grapty’ whose nodes are centers of the holes belonging to the pigment network
(green colors). Nodes within a maximum distance threshold (MDT) areembed together. How-
ever, there is not a minimum node distance threshold. The value of the MDdmputed based
on the average diameter of all holes in the image. Based on the pigment nelsimikion, holes
of a regular network are uniformly spaced. To consider this spatiaigeraent, the MDT should
be proportional to the size of holes and is defined as alpha (set to 3) timagdizge diameter of
holes.

Figure 5.6 illustrates two examples of skin lesions with their graphs of holetaale green.
The first column shows Bresentimage and the second one showsAdrsenimage, both of which
are classified correctly using the only the graph of the pigment network.hole

5.3 Net Detection

In order to identify the net of a pigment network, we apply the Laplacianaigsian (LoG) filter
to the green channel of the image. The LoG filter identifies high frequemopanents of an image
and therefore makes an ideal net detector. The major issue with applyingptiator is that its
response is strongly dependent on the relationship between the frgqfdhe structures and the
size of the Gaussian kernel used. We useé- 0.15, which is an appropriate value for images
of the two atlases used in our experiment [10, 100], however it can feel tiam a given imageset
according to scale and magnification. In our experiment, we observethéhaverage thickness of
the pigment network is proportional to the average size of holes of the rietWée therefore set
the size of the LoG window size to half of the average hole size in the imageavEnage window
size over all images of our data set is 11 pixels. We then threshold the fafgrse automatically,
resulting in a 'net mask’ which indicates which pixels belong to the net of thpitimaent network.
Furthermore, we skeletonize this mask, resulting in a 'skeleton mask’. Figaii#ustrates the net
extraction process.

Qualitative results of detecting pigment network ‘net’ and ‘holes’ ares ititistrin Figure 5.8.
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Figure 5.5: Detected cyclic subgraphs are filtered based on their ingidel@intensity differences.

(a), (c), and (e) show original skin lesions. (b), (d), (f) showegrered and white colors overlaid;
The red colors mostly belong to globules and brown dots. White dots andidildsiare colored as

white and holes of the pigment network are visualized as green.
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(c) Cyclic Subgraphs (d) Cyclic Subgraphs

(e) Present (f) Absent

Figure 5.6: Results of applying our approach to taresentand Absentdermoscopic images; (a)

and (b) are skin lesions, (c) and (d) show cyclic subgraphs, the ¢jress represent potential holes
of the pigment network and red lines show holes that did not pass the tedbofying to the pigment

network, and (e) and (f) visualize the pigment network over the image.



CHAPTER 5. PIGMENT NETWORK DETECTION AND ANALYSIS 52

Figure 5.7: Net detection. a) A dermoscopic image, b) detected holes in e¢kimys step, c)
response of the LoG filter, d) the resulting ‘net mask’, e) the extractedfriee pigment network
overlaid on the original image, and f) the segmented pigment network.
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Figure 5.8: Three images of the image set: the top row shows the original irmaddhle bottom
row shows their corresponding pigment networks (brown) and holeggw

5.4 Feature Extraction

Based on the definitions diypical and Atypical pigment networks, we use the results of the hole
and net detection to propose a set of features capable of discriminatimgaheo3 classefpsent
Typical and Atypical). We propose a set of structural (shape), geometric (spatial) chroaratic
textural features.

5.4.1 Structural Features (20 features):

Diagnostically important characteristics of a network include the thicknetbeafets as well as the
size of the holes.

For each spatially disjoint section of the net mask, we compute its size (nurhpeets in
the net mask) and length (number of pixels in the skeleton mask). Our feaa¢hen the mean,
standard deviation and coefficient of variationdan/std) of the sizes and lengths of the nets.
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Thickness is also computed by measuring the distance from each pixel iattirask to the closest
pixel in the skeleton mask. The mean, standard deviation and ratio of thicksesell as a 6-bin
thickness histogram are also included as features. For each spatialiptdégotion of the hole
mask, we compute the size (number of pixels) and include as features thestegmtard deviation
and coefficient of variationtean /std) of hole size as well as the total number of holes.

We also include the ratio of the network size (hnumber of pixels in the net dedesks) to the
lesion size (number of pixels in the segmentation mask).

5.4.2 Geometric Features (2 features)

We have defined a new feature called ‘Density Ratio’ of holes which isubgefdiscriminating
between the absence and presence of a pigment network. This featafméd as

£

|V'| * log(LesionSize) (-3)

Density =

where| E| is the number of edges in the gra@gh|V| is the number of nodes of the graph dresbion-
Sizeis the size of the area of the image within the lesion boundary, being investigafedling the
pigment network. The rationale of Eq. 5.3 is that a bigggrmeans that more holes are closer than
the MDT. Also, having a smallgii/| for a fixed| E| means that nodes or holes are uniformly spaced
close to each other and the graph of the pigment network is dense. diiegfgdised on the pigment
network definition, having a high 'Density Ratio’ is a requirement for béngsent LesionSizés
used to normalize the ratid|/|V|. For example, a fixed number of vertices and edges in a small
lesion is more likely representirigresenthan in a relatively big lesion. However, since there is not
a linear relationship between the size of a lesion and the probability of Begsgntor Absentwe
found experimentally that the logarithm bésionSizés more appropriate.

Clinically, there is an emphasis on the ‘uniformity’ of the network in order toedéhtiate be-
tweenTypical and Atypical In addition to the 'Density Ratio’ of holes as a feature, we included
another feature, which is the number of edges in the géaph

5.4.3 Chromatic Features (37 features)

Color also plays a crucial role in clinical diagnosis. We therefore cokierimage to HSV colour
space [97] and compute features over each channel as well as timalbggeen channel of the
image. In each channel, for the hole, net and lesion masks respectigetpmpute the mean,
standard deviation and coefficient of variationdan/std) of the intensity values. Additionally,
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(b) ()

Figure 5.9: Three difficult examples of our image set: a) A hairy image. bdiinimage. c) A
low-contrast image.

we also propose a new chromatic feature called the ‘atypicality measurehwhibhe sum of the
intensity values over the green channel of the pixels in the net mask norchbize number of
the pixels.

5.4.4 Textural Features (10 features)

We use five of the classical statistical texture measures of Haralick et2d. €ntropy, energy,
contrast, correlation and homogeneity which are derived from a grey ¢evoccurrence matrix
(GLCM). The GLCM is a tabulation of how often different combinations ofgbixminance values
(gray levels) occur in a specific pixel pairing of an image. We construLZMs (in the four
directions of 0, 45, 90, 135 and within the distance of 4 pixels using 8 gvajslaveraged to obtain
a single GLCM) and extract the 5 texture metrics from each. The first GisCédnstructed over
the entire lesion (using the pixels in the lesion mask) and the second is coedtover the pigment
network (using the pixels in the net and hole masks).

5.5 Evaluation for Absent/Present classification using ‘Density Ratio’

To measure the strength of our proposed feature, ‘Density Ratio’, wedpour method to a set
of dermoscopic images taken from Argenziano et al.’s Interactive Afl@eomoscopy [10]. We
tuned the parameters and thresholds of our proposed method accordisgttofal00 images of
size 768x512. Then we tested the method for another set of images (50&simagdomly selected
from the atlas. We classified the unseen images by feeding the 'Density Ratithie SimpleLogis-
tic [65] classifier implemented in Weka [43] (a general data mining tool deeelby University of
Waikato in New Zealand) which uses a powerful boosting algorithm, LoggB3Y]. Boosting is a
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method for combining the performance of many weak features to produmeexfol classifier [37].
SimpleLogistic fits logistic models by applying LogitBoost with simple regressiortioms as base
learners. Some of these images were challenging due to acquisition pasasueteras lighting and
magnification, being partial (entire lesion was not visible), or due to thepoesof an unreasonable
amount of occlusion by either oil or hair. These challenging images aedlysiiscarded from test
sets in the previous work. However, these images were kept in our test se

Table 5.1 shows the percentage of correct classificatiBreséntor Absen} for the 500 test
images, using different color transformations. It is seen that the giesmel gives the best clas-
sification. Comparing our results to Anantha et al.’s method [8] (achievi)¥$ &ccuracy), we
achieved a better result, however the same gold standard is not useccandgfe sets are differ-
ent. Therefore, a direct comparison is impossible due to different imagegraund truths. Note
that we deliberately created a difficult dataset by not excluding oily, zaidylow-contrast images.
Figure 5.9 shows three difficult examples of our image set. Our method adothe pigment
network and provides a qualitative analysis which can be used for aatrasf pigment network
characteristics to discriminate typical pigment networks from atypical ones.

R G B YIQ | Gray | L*a*b
Correct Classification (Accuracy)90.7 | 94.3 | 90.1| 92.6 | 91.1 | 89.7

Table 5.1: Correct classification rates (Accuracy) of different aoteansformations for N=500
images.

According to the results of the various color transformations, the gremmnet is the best one
for the pigment network detection. Interestingly the Y channel of YIQ (thegformation used for
NTSC systems) has the second best result. The Y channel transforiisatefined as:

Y =0.299R + 0.587G + 0.114B (5.4)

where R, G, B are the red, green, and blue color components, regheclio compute the lumi-
nance Y, the green channel has larger weight than the other chaorislghe likely reason the Y
channel works well. In the gray-scale experiment, the intensity image idat@dby(R+G+B)/3
and in the L* experiment, the L* component of the L*a*b space is used aisitbesity image.

In some images, it is not easy to detect the pigment network even by expégtse 5.10(a)
shows one of these challenging images taken from [11], where thetalgraenatologists only had



CHAPTER 5. PIGMENT NETWORK DETECTION AND ANALYSIS 57

© (d)

Figure 5.10: A challenging image with 51.5% inter-expert agreement faytrePresendiagnosis.
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51.5% agreement among themselves, with a small majority favorin@tbsentdiagnosis. Our
algorithm can assist dermatologists to make their diagnosis by visualizing thergigetevork (if
any). This method may also be used for training purposes. Figure 5.10atksthe outcome of
applying our method on the image, which classifies it Bsesentpigment network.

5.6 Evaluation for Absent/Typical/Atypical Classification

In another experiment, we evaluated the whole feature set (69 featurdsg three class problem
using the SimpleLogistic classifier.

| Absent-Typical-Atypical Classification |
] | Precision Recall F-measufeAccuracy| N |

Absent 0.905 0.950  0.927 - 161
Typical 0.787 0792  0.790 - 154
Atypical 0.750 0.694  0.721 - 121
Our Weighted Avg | 0.820  0.823  0.821 | 0.823 | 436

[DiLeoetal.[3]] | 0.709 0711  0.709 | 0.719 | 436|
] Absent-Present Classification \

Absent 0.893 0.932 0.912 - 161
Present 0.959 0.935 0.947 - 275
Our Weighted Avg 0.935 0.933 0.934 0.933 | 436

[Dileoetal.[3]] | 0.875 0.876  0.875 | 0.876 | 436]

Table 5.2: Comparing accuracy, precision, recall and f-measurergfroposed features with Di
Leo et al.s features [31] using the same set of 436 images.

Since we have not performed any artifact (hair and oil bubble) deteatidmemoval algorithm,
in this evaluation we excluded oily and hairy images and we applied the methoibaesabove to
a set of 436 dermoscopic images taken from two atlases of dermoscoid[I0 Among these im-
ages, a clean subset of 400 images, from the set of 600 images used\sentPresent evaluation
from [10], is used. Each image is labeledAdssent Typical or Atypical representing the presence
and the regularity of the pigment network. The other 36 images are frond] Hiti have been
labeled by 40 experts, each one assigning a label of eltheent Typicalor Atypicalto each image.
Overall labels for these images are generated by majority voting. In totadataset consists of 436
images (161Absent 154 Typical 121 Atypical). We compute results for both the 3-clagdsent
Typical or Atypical) and 2-class problem#\bsent Presen}. Ten-fold cross validation was used to
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generate all results. Table 5.2 summarizes these results in terms of PreBissiivé Predictive
value), Recall (True Positive Rate or Sensitivity), F-measure, andrAcg. F-measure is a measure
of a test’s accuracy that considers both the Precision and the Recad| fsthto compute the score

where
. TruePositive
Precision= 55
TruePositive + FalsePositive (5.5)
TruePositi
Recall— ruePositive (5.6)

TruePositive + FalseNegative

Precision - Recall
F-measure= 2 - 57
u Precision + Recall (.7)

And Accuracy is computed as:

TruePositive + TrueNegative
TruePositive + TrueNegative + FalsePositive + FalseNegative

Accuracy= (5.8)

Comparing our results with the results generated by the others using diffietasets is not possible,
and the only work that we could reproduce is the method by Di Leo et al. dgcribed in Chapter
3. For comparison, the feature set described in [31] was also implemerttedsalts over our image
sets are computed. As can be seen, this work outperforms the previokis[84 on the 2-class
problem and is the only one to date that reports quantitative results fordlasSproblem.

5.7 Contribution

The contributions described in this chapter, published in [90, 91], are:
e Finding pigment networks using the holes of the network.
e Using graphs for modeling the presence and coverage of pigment kettmoctures.

e Developing a new measure called "Density Ratio” to detect absence angeesf pigment
network structures.

e Locating nets of the pigment network structure and validating them using tee $egmented
in previous steps.

e The proposal of a new clinically motivated feature set to classify a givegeénaad assign a
label of Absent Typical or Atypicalto each image.
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e The validation of the proposed method on a large dataset consisting of 488snwvahich is
the only validation to date on the 3-class problem.

5.8 Conclusion and Future Work

We proposed a novel graph-based method for classifying and visgpjiegment networks and
validated the method by evaluating its ability to classify and visualize the real deapic images.
Furthermore, we have proposed and validated a set of clinically motiveéddrés over these sub-
structures suitable for classification. Our feature set has proven tbbsty outperforming previous
work on a large dataset consisting of 436 images, which is the only validataatéoon the 3-class
problem.

The accuracy of the system is 94.3% in classifying images to one of two slak&esentand
Presenbver a large and inclusive dataset consisting of 500 images. We alsaealig¢anethod on a
different set and achieve an accuracy of 82.3% discriminating betwesmdlassesAbsent Typical
or Atypical). This method can be used as a part of an automatic diagnosis systemsgifyatg
moles and detecting skin cancer. This is a novel idea that needs more iatiestignd evaluation
and has a good potential for future research. Furthermore, we beliavehe same idea with
different features can also be applied for extracting other skin pasenisas globules and streaks.



Chapter 6

Detection of Streak Lines

As we described in Chapter 2.2.5, the presence of irregular streak liarsrigoortant morpholog-
ical expression of malignant melanoma. In particular, irregular stre@kerse of the most critical
features that shows the highest association with melanoma. Further, symsiretaks are one of
the specific dermoscopic criteria to differentiate usually benign Spitz newi melanoma. There-
fore detection and analysis of streaks can be a significant step toveamgisiter-aided diagnosis of
skin lesions and melanoma detection. In this chapter, we propose a nevaclppo estimate and
segment streak lines and classify them iAttsent Regular andlrregular classes.

6.1 Overview

To locate candidate streak lines, we perform some preprocessingatelpdetect linear structures
in the orientation flow of the image. Then to identify valid streaks from candisi@éak lines,
an orientation pattern analysis is performed and noise and wrongly delewsdare removed.
The result includes line segments that indicate the pixels that belong to streaksdentifying
streaks and finding irregular patterns, we use the clinical criteria suobraber of streaks in the
images, color, and spatial arrangement of streaks to derive a seatafds including structural
(which characterizes shape), geometric (which characterizes distritauttbuniformity), chromatic
and textural features for detected line segments. These featuresmartes#tkto train a supervised
machine learning algorithm..

61
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(d) (e) (f)

Figure 6.1: The preprocessing steps. (a) shows a lesionReitularstreaks and (b) illustrates the
result of segmentation with major and minor axes of the lesion overlaid in gtegmhe result of
re-orientation followed by re-sizing and sharpening is shown in (c) dpdi{ows the L channel of
the image in the L*a*b* color space. (e) shows the distance transformedé#ion mask with the
major and minor axes of the lesion in green and the boundary thickness (i@ af axis) in red
and (f) illustrates the region of interest that will be processed to findkstrea

6.2 Pre-processing

First the lesion is segmented using our method [110] which employs suptes®ing from a
training set manually outlined by a dermatologist, in conjunction with the randdkenalgorithm
[45]. Figure 6.1-a shows an original image, and Figure 6.1-b illustratesethdt of segmentation
with major and minor axes of the lesion overlaid in green. After segmenting tios Jéke orienta-
tion of the lesion which is the angle between the x-axis and the major axis of theeelgfsund,
and the image is rotated to align the major axis horizontally since the major axiseafs¢he lesion
growth direction (Figure 6.1-b). Then, to have a relatively uniform imazg, ¢he lesion is re-sized
so that its major axis occupies 500 pixels. Since our images come from difie®urces with
unknown imaging settings, we had to first normalize the size of the images taX#$, and then
we tuned the parameters of the method accordingly. These parameteestoaedh more accurately
if imaging setting, scaling, and the resolution are known. Finally, the image Bsneed using a
simple 3x3 high pass filter that removes the low frequency noise [91]. Affterpening, the image
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is smoothed using an averaging filter of the same size to enhance shaspdulgaemoving noise.
Figure 6.1-c shows the result of re-orientation followed by re-sizingsiradpening.

To get a single plane luminance image, the given RGB image is converted todhle tdlor-
space [112] which is designed to approximate human perception. Otherat@onels such as
the green and blue channels of RGB, and Y of YIQ were also tested. Xperiments showed
(in Section 4) that L* component outperforms other color channels; thekeep the L* channel,
shown in Figure 6.1-d, for the rest of our analysis. Finally, to find theregf interest (ROI), which
is the boundary of the lesion where we expect to find streaks, distamséamna of the lesion mask
is calculated from the lesion border. One third of the length of the lesion’srraixis is used to
determine the ROI. In fact, the minor axis is divided into three sections, vilméne middle section
we do not expect to see streaks. Figure 6.1-e shows the distancetnasgfthe lesion mask with
the major and minor axes of the lesion in green, and the boundary thickness and Figure 6.1-f
illustrates the ROI that will be processed to find streaks.

6.3 ldentifying linear structures after orientation enhancement

6.3.1 Blob detection using Laplacian of Gaussian (LoG)

Since streaks are linear structures with Gaussian cross-sectionEgnaf detect the linear struc-
tures using LoG filters. To capture objects of different sizes a multi-sggdeoach is necessary.
Thus, an input image (x,y) is filtered by rotationally symmetric LoG filters of siZesize =
3,5,7,9 as follows:

hz,y) = VZg(z,y) = f(z,9)] = [V2q(z,y)] = f(z,9) (6.1)
22 2 _ 9,2 _(xi;y%
Vig(z,y) = (W) (6.2)

whereo is the standard deviation of the filters with a small value of 0.1 assigned intordehieve
high sensitivity even to a small change in intensity. We have performed 25ieqrds with 5
different sigmas and 5 filter sizes, and our results show that the ceetimg gives the best results.
At the end, we will use the union of the results from the four scales to fomulti-scale result.
Figure 6.2-b, 6.2-c, and 6.2-d show the LoG responses at threeediffecales ofisize;, = 3,5,9
respectively.
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Figure 6.2: Intermediate steps of the method. (a) shows the region of interadesion with
Regularstreaks in the L* channel after segmentation, reorientation and shagpéb)n(c), and (d)
show the LoG filter responses in three scdlege;,. = 3, 5,9 respectively. (e) shows the orientation
flow plotted in red lines folhsize = 5, and (f) shows the coherence or reliability of orientation
estimation. The frequency of the parallel pattern, illustrated in (g), is usedmarameter of the
Gabor filters which is created to enhance the estimation of the orientationvas sh¢h). (i) shows
the binary image of the enhanced orientation with 1 for ridges and O for gal{gyis created from
(i) and (f) by removing pixels withreliability < 50%. In the skeleton of the result, after removing
joint pixels, the inner borders and also short line segments are remowegltbe min and max
threshold of the length of line segments. The result is shown in (k) as detéotar structures
in the image. These line segments will be validated for valid streaks selecti@sasbed in the
section 3.4.
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6.3.2 Orientation estimation

After finding linear structures by LoG, the orientation estimation is perfornsétguthe Averaged
Squared Gradient Flow (ASGF) algorithm [60]. The reason for usiugused gradient instead of
the elementary gradient is that after computing the local orientation for a gieegstimation will
be averaged over a block of £86. Since a ridge line has two edges, the gradient vectors at both
sides of a ridge are opposite to each other. Therefore, gradientstadirectly be averaged since
opposite vectors will cancel each other, although they indicate the saneevadlgy orientation.
Therefore, by applying ASGF that doubles the angles of the gradienbreebefore averaging,
opposite gradient vectors will point in the same direction and will reinfoeaghether. Also, the
length of the gradient vectors is squared. Thus, strong orientatioesaht@igher vote in the average
orientation than weaker orientations.

The qualitative analysis that was given above is made quantitative hezalddrithm starts by
computing the gradients,(4, j) andG, (i, j) at each pixe(s, j) in imagel. For doubling the angle
and squaring the length in ASGF, the gradient vector is convertpdlgw coordinates, in which it
is given by[G,,, Gy]:

G, = /G:+G2, Go = tan 1 (G, Gy) (6.3)

G, = G,x*cos(Gy), Gy = G, * sin(Gy) (6.4)
G B G ,?cos(2Gy) G%(cos2(G9) — sin?(Gy)) B G2 - GZZ/ (6.5)
Gy G,%sin(2G)) G2 (2sin(Gy)cos(Gy)) 2G..G, '

1 [ 2G.G,

Where[ o ' ] is the squared gradient and DF is the directional flow of imhg&he image
S?y
is then divided into blocks of size W=16. For each block, the local oriemtattopixel (i, j) is

estimated and averaged using DF as follows:

Gs,x

7 6.7
o (6.7)

_ L [ Yw G -Gy
W Sy 2G.G,

wherelV is a non-overlapping window df6 x 16. To reduce the effect of noise on the estimated
orientation, a low-pass filter (Gaussian) is used to modify the local ridgatatien. To apply the
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Gaussian filter, the orientation image is converted back to a continuous esdtmlows:

®i(i,j) = cos(2Gp(i,),  ®y(i,j) = sin(2Gy (i, j)) (6.8)
O(i.5) = D F)P00,5),  ®6,5) =Y F(i,j)®,,]) (6.9)
w w

whereF' is the Gaussian filter with unit integral and specifiedf o = 5.
Now, the local orientation and its reliability (the coherence of the squatadiegts given by
[60]) can be computed at pixé, j) using the following equation:

S
0(i, j) = %tan_l (i’ixi ;) , Reliability — ’ZZVZVI((ZJL gi))\ (6.10)

which means if all squared gradient vectors are pointing in exactly the smewtiah, the sum
of the vectors equals the modulus of the sum of the vectors, resulting ineserwie value of 1.
On the other hand, if the gradient vectors are random in all directionsutimeof them will be 0,
resulting in a coherence equal to 0. This algorithm results in a smooth intemsityflentation
over the image (shown in Figure 6.2-e), and Figure 6.2-f shows the reliabiipyof the orientation
estimation of Figure 6.2-a.

6.3.3 Estimating ridge frequency

After finding the local orientation and averaging for image blocks, the lddge frequency is
estimated by rotating the block so that the ridges are vertical. Then, the cotuenpsojected down
to find peaks in the projected gray values by performing a gray-scale dikatid then finding where
the dilation equals the original values and it is higher than mean of the projgeigdalues. The
frequency of ridges can be calculated by dividing the distance betwesdirshand last peaks by
(number of peaks - 1), and finally the median frequency is computed bbtlee dlocks in the image.
Figure 6.3-a shows an example block of<®2 annotated on the LoG response. The window size of
32 is used for a better illustration in the paper, however the window sizeingen experiments is
16x16. The block is magnified in Figure 6.3-b for illustration. The result of roggtire block with
the average block orientation to make it vertical is shown in Figure 6.3-cttengrojection and
dilation results are shown in Figures 6.3-d and 6.3-e respectively. Naksp# the block, pointed
with red arrows, can be easily found by comparing the dilation and projessardts. The frequency
is found using these peaks and their wavelength. The wavelength of tilsiblol8 — 4)/2 = 7
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Figure 6.3: Ridge frequency estimation. (a) shows an example block aedotathe LoG response.
(b) shows the magnified block for illustration. (c) illustrates the result otimiand cropping with
average block orientation; 8 degrees for this block. (d) shows thegbiamjeand (e) the dilation,
with red arrows pointing to the peaks where the dilation equals the originad eald is higher than
the mean of the projected gray values. The wavelength of this blddisis 4)/(3 — 1) = 7 which
results in a frequency df/7 = 0.14.
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that results in frequency df/7 = 0.14. The final result of frequency estimation for all blocks of
our example image (6.2-a) is shown in Figure 6.2-g.
6.3.4 Enhancing the orientation image

From [54], a Gabor filter with tuned ridge frequency and orientation,reamove the noise effi-
ciently while preserving true ridges and valleys. The even-symmetric Gadeorhas the general

form of
:E/2 y/2
g(z,y; f,0,0) = exp <—22> cos (2w fa'), (6.11)
o
2’ =z cosf +ysind, y' = —wxsinf + ycosb (6.12)

whereo is the sigma of the Gaussian kernel in the filter, and f @ade the corresponding median
ridge frequency over the image and local orientation respectively. d@hdtrof this step is shown
in Figure 6.2-h. Figure 6.2-i shows the binary image of the enhancedatimmcreated by thresh-
olding (1 for ridges and O for valleys), and Figure 6.2-j is created fFogures 6.2-f and 6.2-i by
removing pixels withreliability < 50%. In the skeleton of the result, after removing joint pixels,
the inner borders and also short line segments are removed using the nmraankreshold of the
length of line segments. The result is shown in Figure 6.2-k as detecteddineetures in the im-
age. These line segments, called candidate streak lines, will be validataifbstreaks selection
in the next step.

6.4 ldentifying valid streak lines from candidate streaks

So far, we have identified many line segments which are spread in diffdirentions belonging to
either streaks, or other dermoscopy structures and artifacts sucir@asAwording to the clinical
and mathematical definitions of streaks, we expect to see a smooth orientetiggedn the streaks
directions. To capture the underlying pattern, we need a geometric intestigaat identifies valid
streaks and removes false positives from the candidate streak lines. S&mslare mainly circular
in dermoscopy images, but they can be any shape. We generalize thedeajmn as an ellipse
that has the same normalized second central moments as the lesion regidociTivoand F, are
computed using the eccentricity of the ellipse. To test whether a line segmeekaimple the red
line segment with the anglé, with respect to the horizontal direction and the centroiddefin
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S o= arctan(Y/X)
=7 |Yes |a-Bl<n/6
Streaks
No  otherwise

(b) ()

Figure 6.4: Validating streaks candidates. (a) illustrates how line segmeriiléeaed based on their
orientation differencér/6) from the expected direction. (b) shows the line segments detected after
orientation estimation and (c) shows valid streaks after removing false @ssitiv
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Figure 6.4-a, is a streak or not, we conndgtto F; and F» and compute the angle betwednF;
and A, F; and find its bisector line4; B1). We expect the orientation of a true streak line segment
will coincide with the bisector linel; B;. To test such a condition, the angle betweli3, and the
line joining the fociFy F; (o) is compared to the orientation angle of the line. We measure all
orientations counterclockwise from the horizontal axis in the ranffg ofr]. By comparinga — 3|

to a constant threshold af/6, non-streak line segments are eliminated from the set of detected lines,
and reliable line segments at every scale are found to form a multi-scaletogisel used for feature
extraction. For example, in Figure 6.4-a, the line segmgnivill be kept, but the line segment;

will be removed. Reliable lines detected after orientation enhancementawa s Figure 6.4-b,
and the result of valid streaks selection is illustrated in the Figure 6.4-c.eN&isl streaks are
ordered in the direction of the red arrow franto 27 for feature extraction in the next step.

6.5 Feature extraction

Based on our mathematical definitions of streaks, we propose a new2@feditures for streaks,
called STR(streaks), which includes three Structural, three Geometric, six Orientanheight
Chromatic characteristics of valid streaks.

We have also used common color and texture features [25, 92] of the lesétfncalledLCT
(Lesion Color Texture).

6.5.1 OurSTR features

STRIis a clinically inspired feature set, based on our mathematical definition okstteanodel
characteristics oAbsentRegular andlrregular streaks.

Structural Features (3 features)

Diagnostically important characteristics of streaks include the shape, Jamgtivariability of lines.
Therefore, we compute the length of each line, which is the number of pikéte dine segment.
Our features are the mean of the lengths of streaks, and the total number s€égments in the
image. We also include the ratio of the streak size to the lesion size (# of stretdd# of pixels in
the lesion area).
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Geometric Graph Features (3 features)

Clinically, there is an emphasis on the 'uniformity’ and smoothness of the otiemtehange in
streaks for irregularity detection. There is also another important deaistic which is connectivity
of the structure that represents the completeness of the pattern. In Chapte proposed the
'Density Ratio’ feature which represents the density of the dermoscopgtste called pigment
network (PN). We have used a similar concept here with some modificationsasuneghe density
of streaks on the image. This feature is useful to discrimiAsenimages fromPresentmages.

For geometric analysis, we created a graph of shealid streak lines found in the previous
section, by reducing each lineto v, nodes, based on the average length of streaks in the image.
For NV lines, the total number of nodes equalg¥d = ZZJL((%) + 1) where|L;| is the
length of the line segmerit; in the image an({:?le |L;|/N denétes the average length of streaks.

Density Ratio: A graphG = (V, E) consists of pairs with vertices (nodes)k V' and edges
EC (V x V). The standar®ensityof graphG is defined in [28] as the ratio of edgesahto the
maximum possible number of edgBgnsity = %
|V| is the number of vertices in gragh. Inspired by [91], we defined the density measure of the

where|E| is the number of edges, and

graph of streaks as following:

_ | E|(log | E|)
|V| x log(LesionSize)

(6.13)

Dens'itystreaks

where LesionSize is the size of the segmented lesion in pixels. The density feature is useful in
discriminating between thAbsentand Presentimages, however it does not say much about the
regularity or irregularity of the streaks, nor the completeness and gwefahe pattern.

Often there is a complete pattern with a high graph densiBegularstreaks all over the lesion
(Figure 6.5-a, 6.5-c, 6.5-e), whereadiiregular streaks, there may be a dense graph but over only
small parts of the lesion (Figure 6.5-b, 6.5-d, 6.5-f). Therefore, vesl r@mother measurement to
find out if the dense pattern is distributed all over the lesion or if it is just pgricavering the
lesion. Thus we propose two new features called pattern coveragepanulieteness.

Coverage: To measure the coverage of the streak pattern, the histogram of the nuratieaks
in different areas (arcs) of the lesion is computed for bins f in the range of0, 2x|. According
to the mathematical definition of streaks, we defined the graph coverage faadtion of bins with
more than 2 streak lines (based on the clinical definitions of streaks).r&éym/eanges from 0 to 1
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Figure 6.5: Lesions witlRegular(a) andlrregular (b) streaks. The red lines in (a) segment the
lesion into 12 areas to calculate the coverage of streaks. (c) and @)}isbaesults of multi-scale
streak detection on (a) and (b). (e) and (f) illustrate the graphs okstrdatted over the lesions.
In (g) and (h) the coverage histograms of (e) and (f) are showrectisply. The histogram counts
the number of streaks observations into each of the bins/6fin the range of0, 27]. From the
histogram (g), Coverage is 1 (maximum) and in (h), the red arrows poinétoitis with less than 3

line segments and Coveragerisl2 = 0.58.
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and the perfect coverage is equal to one that often belongsdalarstreaks which are distributed
symmetrically among the bins (Figure 6.5-g). Lesions witegular streaks often have a lower
Coverage because of the partial distribution pattern (Figure 6.5-h).ré~@§5-a shows a lesion
divided by red arrows into 12 areas and Figure 6.5-g shows the gevéiatogram of the lesion
with regular streaks. As shown in the figure, the number of streaks in tligohtal binsw /6,7,
77 /6, and2r are often higher than other bins because of the growth pattern of the lasibe
horizontal (major) axis.

Completeness: If each vertex; in G is reachable from the other vertices thenG is connected
and a maximal connected subgra@gh, = G(V,, E,,) is the largest connected sub3ét of the
vertex sefl”. Based on the above definitions the pattern completeness is equiabtplcteness =
% where|G,,| is equal to the number of maximal connected subgraphs in the image.

Orientation Features (6 features)

The orientation information of valid streak lines can also reveal valuableniaion about the
presence and regularity or irregularity of streaks. We order the vaéidlsirto track the orientation
change to detect the underlying pattern, if any. The line segments aresiuesed on their location
and their orientation from the major axis starting from @toin the counter-clockwise direction
(Figure 6.4-c). In Figure 6.6-a, streaks are ordered irxtéeis and their corresponding orientation
in they axis are shown for a typical lesion wilRegularstreaks (in red) and a lesion wiliregular
streaks (in green)Regularstreaks tend to have smooth orientation changes without major jumps
between consecutive data points comparing to irregular streaks. Afterirog the line segments,
based on the fact that they should be co-radially oriented, a lineasgégnas applied to measure the
error from an expected perfect orientation change pattern, so tramextract informative features
of regularity or irregularity of the orientation change. Assume that thereddealid streaksX; are
indexed by the subscript wherei ranges from 1 taV (the total number of valid streaks), apdis
the corresponding orientation. In the linear regressipis a linear combination of the parameters
of 5y and3; with the variabler; asy; = Bo+31xi for i=1,...,N. Theresiduale; = y; —¥;, IS
the difference between the predicted orientation of the line segitgrthe model ¢;), and the true
direction of line ;). The slope of the fitted ling;, is used as one of the orientation features. Figure
6.6 shows also the linear regression on the orientation data Bigtelarandlrregular images. The
slope; for the regular streaks and irregular streaks are 0.67 and 4.6, tiespec

We also calculate the Root Mean Square Error (RMSE) of the modelaS E = %‘“2
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Linear Regression to Orientaion Data
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Figure 6.6: Linear regression of features extracted from the orientptittern. The top figure
shows the ordered line segments in #haxis with their corresponding orientation in axis The

red data points show the orientation data for the regular lesion shown irefégaic and the green
data points illustrate the orientation of streaks of litiegular lesion shown in Figure 6.5-d. The
bottom figure illustrates the corresponding fit error (residuals) of thadiregression. The RMSE
of Irregular streaks (in green) is 47.68 where the RMSE error of the regular stfiealesl) is 13.21.

All residuals outside of the blue box in the bottom figure are counted amdatized by the number

of line segments as our outliers feature.
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Our experiments show that images with regular streaks have |éwend RMSE which is because
of the high number of streaks in theaxis with smooth orientation changegn The bottom part of
Figure 6.6 shows the residuals of the regression corresponding todtieedrstreaks above. In this
example, the RMSE of the irregular streaks (green plot) is 47.7 and the R¥ABE regular streaks
(red plot) is 13.2.

Two more features involving residuals are the RMSE of the first derivatiwrientations, and a
normalized count of outlier orientations, the outlier ratio, shown outside tieedalx in the residuals
in Figure 6.6.

We have also used the entropy of the lines orientations and residuals txtehee the ran-
domness or existence of a specific pattern in the orientation change. Tbpyeis a statistical
measure of randomness and the motivating idea behind the entropy is tgatarrstreaks with
unpredictable orientation change have a high entropy while regular stvéttka specific smooth
orientation change show a relatively low entropy.

For X with N lines{z; : i« = 1,..., N}, entropy is denoted by/(X), and is defined as

n
H(X)=- Zp(xi) log p(z;) wherep(z;) is the probability function ofc; and contains the his-

i=1

togram counts o bins whereh) = % = 36.

Chromatic Features of Streaks (8 features)

Since the images are not calibrated, we do not have reliable color inform&iancolor features
of streaks include the mean, standard deviation of intensity values in HIS/ ahannel of HSV
color space as well as the choice of the color channel for luminance irh&ge gur experiment)
used for streak detection over segmented streak lines.

6.5.2 Lesion Color Texture features (16 features)

Lesion Color Texturel(CT) set include the following 16 features: The mean, standard deviation and
reciprocal of coefficient of variation (mean/stdev) of the values in 8,V from HSV and L* of
L*a*b*, and four of the classical texture measures; energy, canttasrelation, and homogeneity
[52, 92]. These textural features are derived from a Grey Leweb€urrence Matrix (GLCM).
The GLCM, constructed over the entire lesion, is a tabulation of how oftéerelift combinations

of pixel brightness values (gray levels) occur in a pixel pair in an image.ciWated the GLCM
matrix which analyzes pairs of adjacent pixels in the 4 directions of 0, 45a9® 135 degree in
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the intensity image which is scaled to 8 levels. In this case, there are 8 x 8 =s6iblgoordered
combinations of values for each pixel pair.

6.6 Classification

Finally, these 36 features are fed into the SimpleLogistic [65] classifier implethém\Weka. This
choice of classifier was better than others such as Logistic, and Bayg8jetin the following
section, we will report results of our 2 data sets for 3 set of featw€d,(STR andLCT+STR
in classifying into 3-class ofbsentRegularirregular, 2-class ofAbsentPresent and 2-class of
Regularirregular.

6.7 Evaluation and Results

6.7.1 Data sets

In our experiments, two dermoscopic image sets with 945 and 300 images f{takethe 945)
are used to evaluate the proposed method. The set of 945 dermoscopss imeig taken from
three different resources, and contained 570 Absent, 245 Irreguié 130 Regular streak images.
The first resource subset included 745 images from [10] whereigsde was labeled ag\bsent
Regularor Irregular) representing the presence and regularity of streaks in the image. For the
second subset, we collected 100 images from the web which were refimhade streaksRegular
or Irregular) and for the third resource subset, 100 images Wlkent Regularor Irregular labels
were taken from [100]. By adding these three subsets, we createéttloé 845 images (Setl)
for our first experiment to demonstrate the strength of the proposed metkod large number of
dermoscopic images. Some of these images were challenging due to the acgpésiimeters such
as lighting and magnification; being partial (entire lesion was not visible)uertd the presence
of an unreasonable amount of occlusion by either oil or hair. Such clgatlg images are usually
discarded from test sets in previous works, but we kept these images fash set. In the second
experiment, we selected randomly a set of 300 clean and high resolutionsiitageSet 1, (105
Absent 110Irregular, and 85Regula) with a complete lesion and without artifacts such as hair or
oil bubbles (Set2).

We report the results of the experiments in Tables 6.1 and 6.2.
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6.7.2 Evaluation-Qualitative Results

Figure 6.7 illustrates six examples of our qualitative results with streak lingkaalen the images
and streaks graphs. The first two rows of Figure 6.7 sAbaentimages, with a few lines detected
as potential streak lines in the second column and very sparse and loity dgaphs in the third
column. The third and forth rows illustrate results of streak detection amhgran two images
with regular streaks in which Figure 6.7-g has the radial streaming streaksigure 6.7-j shows
pseudopod streaks demonstrating how our method successfully deteatiopsds. The last two
rows of Figure 6.7 show melanomas, with irregular streaks. The high eliféerin graph densities
and spatial arrangements and distribution is clear for different classes.

Detection and diagnosis of regular and irregular streaks is challengergfev experts. Ac-
cording to [100] there was an average disagreement of 24.5% on2glatislem AbsentPreseny
between 40 Experts. The difficulty and disagreement is even more onclhes8problem for detect-
ing irregular streaks. Figure 6.8 shows 3 examples of challenging imamedie difficult image
set with 945 images. Figure 6.8-a shows the result of streak detectionifiitaltdcase (case 43,
page 150 in [100]) that is labeled a&bsent(33.3%),Regular(17.9%), andrregular (48.7%). Our
method assignes a labellofegular with 68% probability. Detected streak lines are shown in Figure
6.8-b in green. Figure 6.8-c shows Absentimage that has co-radial liniear pigmented structures
which belong to clods and maple leaf structures in a pigmented basal céllaraec Our method
classified the image correctly because of the low number of detected stresiatid the low density
and coverage of the graph. Another challenging lesion with a strong ptgmeémork is shown in
(e) and the result of streak detection is shown in (f) with a very few fatsitipe lines in green,
and correctly classified asbsent Figure 6.8-g shows one of the missclassified images. It Btan
sentimage withunspecifigatterns that was diagnosed to be excised, but due to the linear co-radial
stuctures in the boundary area of the lesion, it is missclassifiecegsilar.

6.7.3 Evaluation-Quantitative Results

To evaluate the generalizability of our method, we conducted ten-fold-gedigkation in the first ex-
periment on Setl with 5 scales (four scales fze;, = 3,5, 7,9 and union of these scales) in 4 color
channels, in total 20 settings. The color channels used as the luminancefonatyeak detection
are B and G channels of RGB, L of L*a*b*, and Y from YIQ'(= 0.299R + 0.587G + 0.114B).
Table 6.1 shows our results on Setl with 945 images, using different catmformations on the
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(d) (e) )

() (h) @)

0 (k)
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Figure 6.7: Two Examples of each of t@dsent Regular andlrregular classes are shown. (a)
illustrates anAbsentimage from our experiments with streak lines and graphs in the second and
third columns respectively. (g) and (j) show tRegular(Spitz nevus) images with radial streaming
and pseudopods respectively, and two lesions (melanomas)rregiular streaks are shown in (m)

and (p).
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Figure 6.8: Our qualitative results on challenging examples. (a) showSauliiimage labeled by
40 experts with 33.3% inter-expert disagreement favdfregentand 26.8% disagreement favoring
Irregular diagnosis. Our method assignes a labéat@gular with 68% probability. Detected streak
lines are shown in (b) in green. (c) shows Absentimage that has co-radial liniear pigmented
structures which belong to clods and maple leaf structures of the lesion pagjlednted Basel Cell
Carcinoma. A challenging lesion with a strong pigment network is shown inng@}tee result of
streak detection is shown in (f) with a very few false positive lines. Our nietfessified (c) and
(e) correctly because of the low number of detected streak lines, andatldeltsity and coverage
of the graph. (g) shows one of thbsentimages that our method failed to classify it correctly
(missclassified asregular) due to the linear co-radial blood stuctures in the lesion boundary.
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multi-scale 3-class classificatioAljsentRegularirregular) in which the L channel of L*a*b* out-
performed the others. The best setting was used in the second expeoim8&et2 with N=300
images. We report Recall (ie. Sensitivity, TP/(TP+FN); Precision (iesitRe Predictive Value,
TP/(TP+FP) ); Accuracy=(TP+TN)/N; and AUC (the Area Under ROG\@).

Color Channnel G B Y (YIQ) | L (L*a*b)
Correct Classification 0.74 | 0.68 | 0.73 0.77

Table 6.1: Correct classification rates (accuracy) of various imagsftnanations for multi-scale
3-class streaks classification on 945 images (Setl).

Table 6.2 summarizes the evaluation of our method for the 2-chdsseatPresentand Regu-
lar/Irregular), and 3-classAbsentRegula¥irregular) classifications in Setl and Set2 using different
feature setsL.CT, STR andLCT+STR The highlighted numbers in the table show the evaluation
results using all feature CT+STR combined. This table reports the results of 12 experiments in
terms of Precision, Recall, F-measure, Accuracy and weighted avArageJnder Curve (AUC)
for the multi-scale analysis on the L channel of L*a*b*. The weighted agerAUC is a good
performance measure in imbalanced data sets with unequal numbers fatibss in each class
such as Setl because it illustrates the behavior of the classifier withawd tegclass distributions
or error costs [55].

A 10-fold cross-validation is used to evaluate our method and compareshiésref different
experiments. As shown in Table 6.2, by combining the new features and nn@ao color and
texture features, we achieved an accuracy of 77% and AUC of 84.7%dssifying streaks into
Absent Regular andlrregular, on N=945 images (Setl) without any exclusion criteria. We also
validate our method on a clean sub-set of Set1 with N=300 images with higlasbad no artifacts.
The classification accuracy for the 3-class problem on the second&g%asvith AUC of 91.8%.
Our method also works well on discriminatifegularstreaks fromirregular ones with AUC of
88.9% on Setl with N=945 images.

As mentioned before, Table 6.2 reports the weighted average of owrperice measures.
To show the class specific results on Setl, Figures 6.9 and 6.10 illustratketailed evaluation
on the 3-classAbsentRegularirregular) and the 2-classAbsentPresentand Regulaflrregular)
problems. Figures 6.9-a, 6.9-b, and 6.9-c show class specific resolts ofethod in more details
for the AbsentRegular andlrregular classes respectively for Setl with 945 images. ROC curves of
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Figure 6.9: ROC curves of multis-scale streak detection using@ie STR andLCT+STRfeature
sets in Setl with N=945 images. (a), (b), and (c) show the AUC and FiMeas our 3-class
classification for theAbsent Regulatr andlrregular classes respectively. (d) and (e) present the
performance of our approach f&bsentPresentclassification for theAbsentand Presentclasses
respectively. The ROC curves &egularirregular classification are shown in (f) and (g) for the
Regularandlrregular classes respectively. In all of the plots except (b), our propossdrie set
(STRoutperforms thd.CT set and using all features togeth&TR-LCT) results in a significant
improvement in AUC and F-Measure of all classifications.
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| | Experiment | N | Features | Prec. | Recall | F-Measure | Acc. | AUC |

LCT 0.667| 0.674 | 0.654 0.674| 0.7
Abs/Pres 945 | sTR 0.743| 0.743 | 0.74 0.743| 0.801
LCT+STR | 0.784| 0.786 | 0.783 0.785]| 0.83
- LCT 0.712| 0.722 | 0.714 0.722| 0.802
g Reg/Irr 375 | STR 0.791| 0.795 | 0.79 0.795| 0.849
LCT+STR | 0.834| 0.836 | 0.834 0.835| 0.889
LCT 0.577| 0.583 | 0.578 0.59 | 0.761
Abs/Reg/Irr | 945 | STR 0.679| 0.696 | 0.677 0.7 0.792
LCT+STR | 0.764| 0.77 0.762 0.77 | 0.847
«~ | Abs/Pres 300 | LcT+sTR | 0.89 | 0.89 0.89 0.89 | 0.929
g Reg/Irr 195 | LcT+STR | 0.866| 0.867 | 0.866 0.866 | 0.898
Abs/Reg/Irr | 300 | LCT+STR | 0.802]| 0.8 0.801 0.8 0.918

Table 6.2: Evaluation of the proposed method on the two set with N=945 aB0WNéselected
high resolution and clean) images. The 2-class experiment includésodetPresentand Regu-
lar/Irregular classifications and in the 3-class images are classifiedAbsgntRegularirregular.

We have evaluated the Lesion Color Texture Feature ISET) and the proposed Streaks Feature
Set STR separately and combined. The highlighted numbers show the evaluatidis tesing all
features (CT+STR combined. This table reports the summary of our results of 12 experiments in
terms of weighted average Precision, Recall, F-measure, AccuracikraadJnder Curve (AUC)

for the multi-scale analysis on the L* channel of L*a*b*.

classifications usin§ TR LCT, andSTR-LCT are shown to demonstrate the strength of our proposed
features in discriminating betwe&bsent Regular andlrregular streaks. Figures 6.9-d and 6.9-e
illustrate the ROC curves dhbsentand Presentlabels in the 2 class problem éfbsentPresent
classification, and results of olegulaflrregular classification are shown in Figures 6.9-f and
6.9-g for theRegularand Irregular labels respectively. In almost all of the plots (except 6.9-b)
our proposed feature sed [Routperforms the.CT set and using all features togeth&TR-LCT)
results in a significant improvement in AUC and F-Measure of all classifitsitio

As explained in the method, we have used 4 different scales for streag&tida (size, =
3,5,7,9) and then the responses are combined to achieve the final multi-scale reguie 6-10-a
shows the ROC curves of different scales for the chdssentin the 3-class classification of streaks
in the L* channel on Setl. The multi-scale analysis outperforms the singlesse#gh AUC of
82.8%. We have also reported results of classification on Setl using R@Esaf 3 different
classifiers, Simple Logistic, Logistic, and Bayes Net in Figure 6.10-b.
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Figure 6.10: ROC evaluation for different scales and classifiers. h@ys the results of differ-
ent scalesi{size;, = 3,5,7,9) and union of these scales AbsentRegulaflrregular classifica-
tion of streaks in the L* and (b) presents the performance of diffedassifiers using all features
(LCT+STR in the L* channel with multi-scale settings.)

To compare our results with previous work, a direct comparison of aulteis not possible
because of unknown images and ground truth used in experiments. elpwewdeliberately created
a difficult dataset of 945 images by not excluding oily, hairy, low-comtraisd partial images to
demonstrate the strength of the method. Images used in [77] are from thescaroe that we have
used in our experiment. Assuming the difficulty level of the images in [77] is sittal#rose of one
of our data sets, our approach achieves an AUC of 91.8% compared38itréported in [77] for
the 2-clas?bsentPresentclassification.

6.8 Contribution

The contributions described in this chapter, published in [89], are:

e The development of an automatic approach for detection, segmentationsaatization of
streaks.

e The proposal to use techniques based on ridge and valley detectiomdsegerprint image
recognition.

e The proposal of orientation estimation and correction to detect low comrtnasiuzzy streak
lines.
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e The use of ridge frequency estimation to enhance the orientation estimation
e The use of orientation pattern analysis to remove noise and non-streakediments.

e The development of a graphical representation to analyze the geométeimmd the structure
over the lesion with new features designed to model the distribution andageverf the
structure.

e The development of a clinically inspired feature set to classify a given irrageAbsent
Regular or Irregular classes.

6.9 Conclusion

We have presented an automatic approach for detection of radially orignéadts on almost 1000
real dermoscopic images, using techniques based on ridge and vallegiaretesed in fingerprint
image recognition. Orientation estimation and correction is applied to detect ltvwasband fuzzy
streak lines and the detected line segments are used to extract clinically dnfgzitere sets for
orientation analysis of the structure. A graph representation is usedlyaaiiae geometric pattern
of the structure over the lesion with new features designed to model the ulistntand coverage
of the structure. We demonstrated that the proposed approach can ldsatdize, and classify
streaks in dermoscopy images. Therefore, it can be used in compuwdrraglanoma diagnosis
using scoring methods. Furthermore, since our method locates streakiitheoaides a qualitative
analysis, it can be used to highlight suspicious areas for experts’aisgand for visualization and
training purposes.

We successfully apply our method in the specific case of automatic detectiarieasification
of streaks on dermoscopy images, which represent a stereotypicaplkexaf linear radial patterns.
In addition, oriented patterns produced by propagation, accretiordefodmation in radial phase,
are common in nature and also in different fields of computer vision, and tieegraimportant
class for visual analysis. Our approach helps to understand sucimpattg analysis of co-radial
linear structures in low contrast and low resolution images, in applicationistoplathology, video
capsule endoscopy, mammography, iris detection in retina images, sunggalingpindustry and
manufacturing.



Chapter 7

Towards Prevention of Skin Cancer

As mentioned before, in Chapter 1, it is known that skin cancers canree emd survival rates
significantly improved if patients are diagnosed at an early stage in the gaves of their disease.
In addition, many cases of skin cancer are preventable. Thereferendlst important aspect of
skin cancer management is public education (primary prevention) anddaggosis (secondary
prevention).

The secondary prevention involves the early detection and interventiba.pfioposed meth-
ods in the previous chapters focus on presenting a new methodology seténucomputer-aided
diagnosis of skin lesions with more emphasis on the detection and analysis shpedant der-
moscopy structures (pigment network and streaks) to simulate the clinicalodiégg scoring ap-
proaches. These steps can aid early diagnosis of melanoma as theasgqoedention steps. In
this research and thesis, we also made an attempt towards the primarytipreeérskin cancer,
by public education particularly through awareness of sun-damageolidmg unique solutions
based on technology uses of social media and the Internet, using léviecbsological gadgets
such as smartphones.

This chapter focuses on our attempts towards the primary prevention ofahkoer by raising
public awareness. Experience from other countries, particularly &lisstdemonstrates that it is
possible to substantially change a population’s behavior in sunlight, anchalsthem present
much earlier for the diagnosis of skin cancer. This has resulted in a fa#lathdates from skin
cancers [12].

Overexposure to the sun’s ultraviolet (UV) rays causes skin damageathéead to skin cancer,
including melanoma which is the most dangerous kind of skin cancer [93.UMIndex, issued
daily by Environment Canada, is a simple measure of the intensity of the siWradilation. The

85
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index is a useful tool to alert people to the need for sun protection. Tlmehige index, the more
careful they have to be when outside in the sun. | spearheaded a sogdlafrgraduate students to
develop an iPhone application called "UV-Canada” that helps people ttk¢he UV index easily.
It is a free iPhone app, launched in summer 2011, which received exceddews after it was
featured on Global TV, with over 30,000 downloads. In the new relearssuimmer 2012, we have
employed state-of-the-art human-computer interaction techniques to desigamartphone apps
for use by the public on beaches, in the water, and while working in theastineducational mate-
rial about calculating the sunburn time, the risks of sunburn, the apatepype and effectiveness
of sunscreen, and provide tips on how to avoid sunburn.
The UV-Canada iPhone app has many unique features:

¢ It has been developed for Canada. We cover all the cities reportedvisoBEment Canada.

e It gives reliable information because we have consulted with the dermatsi@gid experts
of BC Cancer Agency and UBC Dermatology. We also use the governmes@lirce of
Environment Canada for the weather forecast and the amount of daiip B&th city.

e It offers daily tips while opening the app.
e It gives the UV index based on the location of the users (GPS of the mobilexjle

e The app also provides weather forecast. We added this feature to nrakessus check the
app more frequently.

e Users have an option to search for other cities as well. They can enteaartieaf the city or
look for it from a provided list.

e This app provides knowledge about skin care and cancer to reducedhtve effects of long
UV exposure. It has a tab called "Tips”. Users can improve their knaydeabout the UV
index, skin cancer, sunscreen, tanning, skin aging and beauty,asldrotkids, and Vitamin
D.

e There is a very important feature that users can get daily notificationg #isolatest status of
the ultra violet (UV) radiation in users’ location of choice. They can turnfisgure on/off.
Users can also set a time to get the alert. They can also set a thresholdhe gt alert
based on their skin sensitivity.
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e The new advanced feature of our latest version will estimate the time fousuilased on
the users’ choice of environment, their Fitzpatrick skin type (self-asgddssa quiz approved
by dermatologists), the SPF of their sunscreen and the UV index of sumnégbtted by
Environment Canada. The modeling is based on [7]

Screen shots of the application are shown in Figure 7.1-a to 7.1-i pregéndrstarting page,
the current condition, the weather forecast, the page for searchingtéacities, the tips page,
information about UV index, the page for calculating time to burn, informatiayuabkin types,
and the UV hazard notification respectively. We are extending the applidaticover US, Europe,
Australia and Asia as well. We will also provide this service for users ofratiabile devices such
as Blackberry and Android.
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Chapter 8

Conclusion

This thesis proposes three significant approaches that can be usddran domputer-aided skin
lesion diagnosis from dermoscopy images: skin lesion segmentation, pigetertrk detection,
and streak detection.

Here the contributions made in this thesis are reviewed by chapter.

8.1 Skin lesion segmentation

The contributions described in this section are published in [110]. As tHestauthor of this
paper, my contribution was the design and implementation of the study in colleiovath Paul
Wighton. He worked on the supervised probabilistic learning section &aticrg probability maps
to be used in segmentation using the Random Walker method and | was in ohdegggning the
automated segmentation method based on the Random Walker approach.

My contributions are:

e Design and development of the automated segmentation stream.

e Analysis of probability maps created by learning probabilistic models to defijexivand
background boundaries on the histogram of the map.

e Modifying the random walker method for placing seeds automatically.

e Running experiments and performing analysis on the results and evaluation.
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8.2

Pigment network detection and analysis

The contributions described in this section, published in [90, 91], are:

8.3

The proposal for finding pigment networks, using holes of the network.

The proposal to use graphs for modeling the presence and covéigigenent network struc-
tures.

The development of a new measure called "density ratio” to detect absepoesence of the
pigment network structures.

The proposal to locate mesh or nets of the pigment network structuresaliddtivng them
using holes segmented in previous steps.

The development of a new clinically motivated feature set to classify a givage and assign
a label ofAbsent Typical or Atypicalto each image.

The validation of the proposed method on an inclusive dataset consisdidg ahages, which
is the largest validation to date on the 3-class problem.

Streaks detection and analysis

The development of an automatic approach for detection, segmentatiornisaatization of
streaks.

The proposal to use techniques based on ridge and valley detectiomdsegkrprint image
recognition.

The proposal of orientation estimation and correction to detect low comtndsfiizzy streak
lines.

The use of ridge frequency estimation to enhance the orientation estimation
The use of orientation pattern analysis to remove noise and non-streakediments.

The development of a graphical representation to analyze the geomdétigimd the structure
over the lesion with new features designed to model the distribution andagevexf the
structure.
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e The development of a clinically inspired feature set to classify a given inrageAbsent
Regular orIrregular classes.

8.4 Skin cancer prevention

We have developed the UV-Canada iPhone app with unique featurathéesa Chapter 7, as our
contribution to public health and community service.

8.5 Future Work

The goal of my thesis work was to develop a spectrum of skin cancegmiien measures, including
primary prevention methods based on public education and awarenedstadmcreased risk of
melanoma due to over-exposure to UV of sunlight, and secondary metased bn a cost-effective
automated methods to be used in screening tools for early diagnosis of melanoma

In the future, other important dermoscopy structures which are crumiahélanoma diagnosis
will be investigated to provide a computer program for clinical practice.

The final goal of such applications is to contribute to tele-dermatology to aiceiprésvention
and diagnosis of non-melanoma and melanoma skin cancer; tele-medicindeaddrteatology
offer the opportunity to make available consultations with experts by long distaarticularly in
those areas with no expert dermatologists available.
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