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A novel method for estimating a field of fiber orientation distribution (FOD) based on signal de-convolution
from a given set of diffusion weighted magnetic resonance (DW-MR) images is presented. We model the
FOD by higher order Cartesian tensor basis using a parametrization that explicitly enforces the positive
semi-definite property to the computed FOD. The computed Cartesian tensors, dubbed Cartesian Tensor-
FOD (CT-FOD), are symmetric positive semi-definite tensors whose coefficients can be efficiently estimated
by solving a linear system with non-negative constraints. Next, we show how to use our method for
converting higher-order diffusion tensors to CT-FODs, which is an essential task since the maxima of
higher-order tensors do not correspond to the underlying fiber orientations. Finally, we propose a diffusion
anisotropy index computed directly from CT-FODs using higher order tensor distance measures thus con-
solidating the whole analysis pipeline of diffusion imaging solely using CT-FODs. We evaluate our method
qualitatively and quantitatively using simulated DW-MR images, phantom images, and human brain real
dataset. The results conclusively demonstrate the superiority of the proposed technique over several exist-
ing multi-fiber reconstruction methods.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is a
non-invasive imaging technique that measures the self-diffusion
of water molecules in the body, thus capturing the microstructure
of the underlying tissues. Second order symmetric positive definite
(SPD) tensors have commonly been used to model the diffusivity
profile at each voxel with the assumption of a single coherent fiber
tract per voxel. Under this assumption diffusivity in the direction g
was defined as

dðgÞ ¼ gT Dg ð1Þ

where g ¼ ðg1; g2; g3Þ
T is the diffusion weighting magnetic gradient

vector and D is the 2nd order SPD tensor to be estimated from a set
of diffusion weighted magnetic resonance (DW-MR) images. This
model, despite its simplicity and robustness, has been shown to
be incorrect in regions containing intra-voxel orientational hetero-
geneity such as crossing and merging of fiber bundles (Aganj et al.,
2010; Alexander et al., 2002; Descoteaux et al., 2006, 2007; Tuch
et al., 1999, 2003).

Several methods have been proposed to overcome the single fi-
ber orientation limitation of second order tensors. In Tuch et al.
(1999) proposed the use of diffusion imaging with diffusion
ll rights reserved.
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weighting gradients applied along many directions distributed al-
most isotropically on the surface of the unit sphere, a method
known as high angular resolution diffusion imaging (HARDI). In
contrast to rank 2 tensors, this method does not assume any a pri-
ori knowledge about the diffusivity profile. A number of ap-
proaches have been proposed to compute the ensemble-average
diffusion propagator P(r, t) of HARDI data. These methods include
q-ball imaging (QBI) (Tuch, 2004), diffusion spectrum imaging
(DSI) (Wedeen et al., 2005), and diffusion orientation transform
(DOT) (Özarslan et al., 2006). These methods, collectively known
as q-space imaging techniques, identify multiple fibers compo-
nents by calculating the probability distribution function (PDF) of
the diffusion process in each voxel based on the Fourier transform
relationship between the PDF of diffusion displacement and the
diffusion weighted signal attenuation in q-space. DSI performs a
discrete Fourier transform to obtain Pðr; tÞ, which requires a time
intensive Cartesian sampling in q-space and hence is impractical
for routine clinical use. QBI method takes measurements on a q-
space ball and approximates the radial integral of the displacement
probability distribution function by the spherical Funk-Radon
transform. One problem with QBI is that the estimated diffusion
orientation distribution function (ODF) is modulated by a zeroth-
order Bessel function that induces spectral broadening of the diffu-
sion peaks. DOT computes PDF at a fixed radius by expressing the
Fourier transform in spherical coordinates and evaluating the ra-
dial part of the integral analytically assuming signals decay can
e semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).
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be described by either a mono or a multi-exponential model. Özar-
slan et al. show that PDF values on a fixed radius can be recon-
structed either directly or parametrically in terms of a Laplace
series and claim that their technique can be regarded as a transfor-
mation of diffusivity to probability profiles whose peaks corre-
spond to distinct fiber orientations. When signals decay is
assumed is described by multi-exponential model, this technique
requires data acquisition over multiple concentric spheres, a time
consuming proposition.

An important limitation of q-space imaging techniques is that
they do not enforce the estimated ODF to be non-negative; which
can cause the estimated ODF to have negative values, a situation
that does not obey the underlying principle of diffusion.

To overcome this limitation, Goh et al. proposed the use of
spherical harmonic representation to pose the ODF estimation
problem as a convex optimization problem and minimizing the
cost function with coordinate descent method (Goh et al., 2009).
While the authors claim that their method results to sharp diffu-
sion ODFs, constrains the estimated ODF to be non-negative, and
constrains the estimated ODF to be proper PDF (sum up to one);
it remains to be seen how this method may be extended to multi-
ple q-shell reconstruction method such as the one proposed in
Aganj et al. (2010). Similarly, Tournier et al. (2004, 2007) proposed
constrained spherical deconvolution method to directly estimate
the fiber orientation distribution (FOD) from diffusion-weighted
MRI data and reduced the occurrence of negative values, albeit
not completely eliminating them.

Of course, a careful distinction needs to be made between the
two different concepts of diffusion ODF and fiber FOD functions
although both have similar acronyms and are sometimes used
interchangeably in DT-MRI research community. While q-space
imaging techniques model the diffusion ODF, which is the radial
marginal distribution of the diffusion PDF or ensemble average
propagator (EAP) which in turn is the Fourier Transform of the dif-
fusion signal; the technique by Tournier et al. (2004, 2007) models
FOD based on deconvolution of a diffusion signal with a response
function. ODF model holds true only when the signal is acquired
using short gradient pulse assumption and it does not really indi-
cate fiber orientations but rather the primary diffusion orienta-
tions. Moreover, ODF is known to have broad peaks partially due
to the modulation of the Bessel function which is a concept from
the q-space formalism that establishes the Fourier relationship be-
tween the diffusion signal and the diffusion PDF. The FOD on the
other hand is a deconvolution of diffusion signal with a response
function that indicates fiber orientations and needs to make no
assumptions such as the narrow gradient pulse in the acquisition
process and neither does it require a Fourier relationship between
the diffusion signal and the diffusion PDF. Our method is therefore
an extension the de-convolution definition (Tournier et al., 2004)
and not the ODF (Tuch, 2004).

Another approach for multi-fiber reconstruction is to describe
the apparent diffusion coefficient (ADC) by higher order diffusion
tensors (e.g. 4th and 6th) that generalize the 2nd order tensors
and have the ability to approximate multi-lobed functions (Ozar-
slan and Mareci, 2003). Several methods have been proposed for
estimating 4th order tensors with positive semi-definite con-
straints (Barmpoutis et al., 2009; Barmpoutis and Vemuri, 2010;
Ghosh et al., 2009) as well as for processing higher order tensor
fields (Yassine and McGraw, 2009). This approach is attractive
not only because the rich set of processing and analysis algorithms
developed for second order tensor fields can be extended for higher
order tensors, but also the local maxima of higher order tensors can
be easily computed due to their simple polynomial form. The
polynomial form of spherical functions represented as higher order
tensors gives a significant algorithmic benefit from using the poly-
nomial representations to compute the local maxima and minima
Please cite this article in press as: Weldeselassie, Y.T., et al. Symmetric positiv
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compared to the equivalent spherical harmonics basis that need
techniques such as finite difference method, spherical Newton’s
method or Powell’s method. With the exception of the finite differ-
ence method, whose accuracy is limited to the mesh size, these
methods are numerical minimization problems and thus care must
be taken to avoid small local maxima and to ensure convergence
(Bloy and Verma, 2008; Schultz and Seidel, 2008; Ghosh et al.,
2011). Unfortunately, the use of higher order diffusion tensors
has been confined to the estimation of tensor ADC profiles,
although the local maxima of ADC profiles estimated using higher
order tensors generally do not match the underlying fiber bundle
orientations for the intravoxel crossing fibers (Alexander et al.,
2002; Von dem Hagen and Henkelman, 2002; Zhan et al., 2004).

In this paper, we extend our previous work (Weldeselassie et al.,
2010) where we developed the use of higher order symmetric po-
sitive semi-definite (PSD) Cartesian tensors to model FOD profiles
and presented a novel method for estimating the tensor field of
FOD profiles from a given set of DW-MR images. In our technique
the FOD is modeled by Cartesian tensor basis using a parametriza-
tion that explicitly enforces the positive semi-definite property to
the computed FOD functions. The computed Cartesian Tensor FODs
(CT-FODs) are PSD tensors whose coefficients can be efficiently
estimated by solving a linear system with non-negative con-
straints. We evaluate our method qualitatively and quantitatively
to demonstrate the superiority of the proposed technique over sev-
eral existing multi-fiber reconstruction methods. Moreover, we use
a distance measure for higher order tensors in order to derive dif-
fusion anisotropy index computed directly from CT-FODs.

There are three main contributions in this paper:

� We present a novel method for positive semi-definite
CT-FOD estimation from DW-MR images. To the best of
our knowledge there is no existing FOD model in literature
that imposes explicitly the positivity property to the esti-
mated FOD, which is naturally a positive-valued spherical
function.

� We present a useful application of our method for convert-
ing higher-order diffusion tensor ADC profiles to CT-FODs.
We should emphasize that this is an essential task since
the maxima of higher-order tensors do not correspond to
the underlying fiber orientations. On the other hand, our
method computes Cartesian Tensor FODs whose maxima
can be computed analytically and correspond to the true
diffusion orientations.

� We derive a rotationally invariant anisotropy index with
range [0,1) defined directly on CT-FODs which consolidates
the whole analysis pipeline of diffusion imaging using solely
CT-FODs.

In addition to these features of the proposed method, our prelimin-
ary work (Weldeselassie et al., 2010) has also been recently
extended by Jiao et al. (2011) where the authors not only demon-
strated that the proposed CT-FOD model accurately detects cross-
ings in white matter fibers but also estimating positive semi-
definite fourth order tensor FODs can be achieved by minimizing
an objective function subject to linear constraints by solving a lin-
ear programming problem that enforces non-negativity to com-
puted ODFs.

2. Method

2.1. Symmetric positive semi-definite Cartesian tensors of even orders

Any spherical function f ðgÞ can be approximated by Lth order
Cartesian tensor as:
e semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).
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f ðgÞ �
X3

i1¼1

X3

i2¼1

� � �
X3

iL¼1

gi1 gi2 � � � giL Ci1 ;i2 ;...;iL ð2Þ

where gi is the ith component of the 3-dimensional unit vector g,
and Ci1 ;i2 ;...;iL are the coefficients of an Lth order tensor.

When approximating certain spherical functions in DT-MRI, we
are interested in tensors of even orders with full symmetry, due to
the antipodal symmetric nature of the DW-MR signal acquisition.
In this case of symmetry, those tensor coefficients which corre-
spond to the same monomial ga

1gb
2gc

3 are equal to each other (e.g.
C2;2;2;1 ¼ C2;2;1;2 ¼ C2;1;2;2 ¼ C1;2;2;2, since they all correspond to the
monomial g1g3

2).
Notation:- The Einstein’s notation of Lth order tensors as Ci1 ;i2 ;...;iL

has been commonly used in literature. But in this notation, one needs
to explicitly specify the constraints of symmetry as in the case of
C2;2;2;1 ¼ C2;2;1;2 ¼ C2;1;2;2 ¼ C1;2;2;2 above. In order to avoid such expli-
cit specification of symmetry constraints, we will adopt an alternative
notation that incorporates such symmetry constraints more naturally.
In this new notation, the coefficient of a Lth order tensor corresponding
to the monomial gi

1gj
2gk

3 is denoted by a single term Ci;j;k with
iþ jþ k ¼ L and the spherical function in Eq. (2) can more naturally
be written as:

f ðgÞ �
X

iþjþk¼L

gi
1gj

2gk
3Ci;j;k i; j; k 2 f0;1; . . . ; Lg ð3Þ

Using this alternative notation, the 15 unique coefficients of fourth
order PSD tensors are C400;C310;C301;C220, C211;C202;C130;C121,
C112;C103;C040, C031;C022;C013, and C004. Their corresponding terms
using Einstein’s notation are C1111;C1112;C1113, C1122;C1123;C1133,
C1222;C1223;C1233, C1333;C2222;C2223, C2233;C2333, and C3333 respectively.
More importantly, note the correspondence that
Ci;j;k ¼ 4!=ði!j!k!ÞCi1 ;i2 ;���;iL . Example C400 ¼ Cxxxx but that C130 ¼ 4Cxyyy

etc.
Furthermore, if the approximated function f ðgÞ is a positive-val-

ued function, the Cartesian tensor should be positive-definite, i.e.
f ðgÞ > 0 8 g 2 S2. Therefore Eq. (3) needs to be re-parametrized
such that this positivity property is adhered to. In order to achieve
this goal, we use the higher-order positive semi-definite tensor
parametrization that has been recently proposed in Barmpoutis
and Vemuri (2010) and theoretically justified in Barmpoutis et al.
(2012). According to this parametrization, any non-negative spher-
ical function can be approximated by a positive semi-definite Lth
order homogeneous polynomial in three variables expressed as a
sum of squares of (L/2)th order homogeneous polynomials
pðg1; g2; g3; uÞ, where u is a vector that contains the polynomial
coefficients.

f ðgÞ ¼
XM

j¼1

kjpðg1; g2; g3; ujÞ2 ð4Þ

The parameters kj in Eq. (4) are non-negative weights. This
parametrization approximates any given symmetric positive func-
tion and the approximation accuracy depends on the order L and
on how well the set of vectors uj sample the space of unit vectors
u. It has been shown that by constructing a large enough set of well
sampled vectors uj, we can achieve any desired level of accuracy
(Barmpoutis and Vemuri, 2010; Barmpoutis et al., 2012).

2.2. Positive semi-definite Cartesian Tensor FOD (CT-FOD) profiles

The DW-MR signal for a given magnetic gradient orientation g
and gradient weighting b, can be modeled using the standard mul-
ti-fiber reconstruction framework as follows:

Sðg; bÞ ¼
Z

S2

wðvÞBðv;g; bÞdv ð5Þ
Please cite this article in press as: Weldeselassie, Y.T., et al. Symmetric positiv
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where the integration is over all unit vectors v;Bðv;g; bÞ is a basis
function, and wðvÞ is a non-negative spherical function that can
be seen as a mixing/weighting function. There have been several
proposed models for the basis function BðÞ such as a Rigaut-type
function (Jian et al., 2007), von Mises-Fisher distribution (Kumar
et al., 2008) and others. The main problem with all of these models
is that the integral in Eq. (5) cannot be computed analytically.
Therefore, one needs to approximate the space of unit vectors v
by a discrete set of vectors v1; . . . ;vK in which case Eq. (5) is cor-
rectly discretized by Sðg; bÞ ¼

PK
k¼1wkBðvk;g; bÞ if and only if there

are at most K underlying neural fibers that are oriented necessarily
along the vectors vk. Another problem with the aforementioned dis-
cretization is that the function wðÞ is no more continuous over the
sphere (it equals to wk for vk and it is zero everywhere else).

The main idea in this paper is to avoid the above unnatural dis-
cretization of the space of orientations, by using a blending func-
tion wðÞ, which can be appropriately decomposed so that:

1. wðÞ is positive semi-definite, and
2. wðÞ is continuous over the sphere.

In this work, we model such blending function as a Lth order PSD
tensor (say 4th) by plugging Eq. (4) into Eq. (5) as follows:

Sðg; bÞ ¼
Z

S2

XM

j¼1

kjpðv1;v2; v3; ujÞ2Bðv; g; bÞdv ð6Þ

where v1;v2;v3 are the three components of the unit vector v.
Given a data set of DW-MR signal attenuations Si=S0 associated

with magnetic gradient orientations gi and diffusion weighting b-
value b, the coefficients of a Lth order positive semi-definite CT-
FOD can be estimated by minimizing the following energy function
with respect to the unknown polynomial-weighting coefficients kj

E ¼
XN

i¼1

Si=S0 �
XM

j¼1

kj

Z
S2

pðv1; v2;v3; ujÞ2Bðv;gi; bÞdv

 !2

ð7Þ

In order for the basis function BðÞ to reflect the signal attenua-
tion of a single and highly oriented fiber response, we require
the basis function to be a Gaussian that represents the diffusion
process which is highly restricted perpendicular to the orientation
v. A common choice is the single fiber response which is described
by the bipolar Watson function (Cook et al., 2004)

Bðv; g; bÞ ¼ lim
d!þ1

e�dðvT gÞ2 ð8Þ

Here we should emphasize that the model in Eq. (8) agrees with
the properties of the DW-MR signal response, i.e. it takes maxi-
mum and minimum values for diffusion sensitizing gradient orien-
tations g that are perpendicular and parallel to the underlying fiber
orientation v respectively. Moreover, d ¼ cb where c is a positive
scalar captures information about b and mean diffusivity and can
be adjusted by altering either b or c. So this ‘symmetry’ can be sim-
plified by using only d in Eq. (8). In computer implementation, due
to finite precision calculations, Eq. (8) can be well approximated by
setting delta to a very large constant.

In order to compute the CT-FOD, we need to solve the minimi-
zation problem Eq. (7) for kj’s. This problem can be rewritten into
an equivalent linear system problem

Bx ¼ y ð9Þ

where x is an M-dimensional vector of the unknown kj; y is an N-
dimensional vector containing the given signal attenuations S=Si

and B is a matrix of size N �M with the elements Bi;j ¼
R

S2
pðv1;

v2;v3; ujÞ2Bðv;gi; bÞdv. This linear system is solved for the non-neg-
ative x using the efficient non-negative least squares (NNLS) algo-
rithm given in Lawson and Hanson (1995). The NNLS algorithm
e semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).
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produces sparse solution vectors and the sparsity depends on the
rank of the basis matrix. Moreover, NNLS is resistant to overfitting
and works excellently for sparse recovery when combined with
thresholding, experimentally even outperforming ‘1 regularization
(Slawski and Hein, 2011). We can then easily compute the CT-FOD
coefficients by multiplying the solution vector with a matrix U, (i.e.
Ux), where the matrix U is of size ð2þLÞ!

2ðL!Þ �M that contains monomials
formed by the vectors uj. Note that L is the order of the CT-FOD and
ð2þLÞ!
2ðL!Þ is the number of the unique coefficients in an Lth-order

Cartesian tensor. In the case of 4th-order CT-FODs, the multiplica-
tion Ux gives the 15 unique coefficients of a positive semi-definite
tensor.

An interesting property of the NNLS optimization algorithm is
that it produces sparse solution vectors and the sparsity depends
on the rank of the basis matrix. In our particular case, although
the problem seems significantly unconstrained; the solution vector
contains at most as many non-zero weights as the unknown tensor
coefficients, which corresponds to the rank of our polynomial basis
matrix. Therefore if the finitely-generated set of polynomial basis
contains a few thousands bases, the NNLS algorithm by definition
will select only up to 6, 15, 28 for tensors of order 2, 4, and 6
respectively. Moreover the number of non-zero weights in the
solution vector equals to the number of the unique unknown
parameters of the symmetric tensor in each case. The sparsity of
NNLS in comparison with other optimization techniques for mod-
eling the diffusion-weighted MR signal has also been studied in
Jian and Vemuri (2007). Therefore the degrees of freedom of our
method is equal to the number of unknown tensor coefficients
and it does not increase by the number of polynomial basis M
but by the number of the unknown tensor coefficients.1

We applied our proposed method for estimating 4th-order CT-
FODs (L ¼ 4), using a set of M ¼ 321 polynomial coefficients uj

and d ¼ 200. Regarding the parameter d, we performed several
experiments using different values d > 100 and we obtained simi-
lar fiber orientations density profiles, which shows that our meth-
od is not sensitive to the selection of the value of d.
2.3. Computing CT-FOD from higher-order diffusion tensor

Now, we present an application of our proposed framework for
computing the coefficients of a CT-FOD from a given higher-order
diffusion tensor and diffusion weighting b-value b, which is an
essential task since the maxima of higher-order tensors do not cor-
respond to the underlying fiber orientations. Given a higher-order
diffusion tensor, the coefficients of the corresponding CT-FOD are
computed by using the technique we presented in the previous
section as follows:
UB�1expð�bGtÞ ð10Þ
where the matrices U and B are as defined in the previous section, G
is of size N � ð2þLÞ!

2ðL!Þ and contains only monomials constructed from N
unit vectors gi uniformly distributed on the unit sphere, and t is a
vector of size ð2þLÞ!

2ðL!Þ that contains the unique coefficients of the given
higher-order diffusion tensor. For example, in the case of 4th-order
tensors, the 15 unique coefficients are given in the vector t, and G is
of size N � 15. Also notice that B is not a square matrix and the ma-
trix inverse B�1 corresponds to the solution provided by the NNLS
algorithm and therefore is a specifically non-negative constrained
solution, in contrast to the general pseudo-inverse solution.
1 Implementation of our algorithm can be found at: http://www.cise.ufl.edu/
abarmpou/lab/index.php.
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3. Distance and anisotropy measures of CT-FOD

3.1. Distance measure

After estimating CT-FODs, it is important that we define a dis-
tance measure between pairs of CT-FODs, for example, in order
to impose smoothness across image lattice or to compute anisot-
ropy measures. Since our CT-FODs are modeled as higher order
(say 4th order) PSD tensors which are isomorphic to homogeneous
polynomial functions of same order, one way to get a distance
measure between CT-FODs Ci and Cj is to define the distance as
the L2 distance between the corresponding spherical functions
fiðgÞ and fjðgÞ as follows:

d2ðCi;CjÞ ¼
1

4p

Z
S2

ðfiðgÞ � fjðgÞÞ2dg ð11Þ

where fiðgÞ and fjðgÞ are defined as given in Eq. (3) and the integral
is over all unit vectors g, i.e., the unit sphere S2.

Observe that this distance measure has the same mathematical
form as the tensor distance measure defined between higher order
tensors in Barmpoutis et al. (2009) when fiðgÞ and fjðgÞ are substi-
tuted with diffusivity functions. Denoting the fifteen components
of Ci � Cj by Dxyz, we get

d2ðCi;CjÞ ¼
1

315
ðD400 þ D040 þ D004 þ D220 þ D022 þ D202Þ2
h

þ 4½ðD400 þ D220Þ2 þ ðD400 þ D202Þ2 þ ðD040 þ D220Þ2

þ D040 þ D022Þ2 þ ðD004 þ D022Þ2 þ ðD004 þ D202Þ2�
�
þ 24ðD2

400 þ D2
040 þ D2

004Þ � 6ðD2
220 þ D2

022 þ D2
202Þ

þ 2ðD400 þ D040 þ D004Þ2 þ ðD211 þ D031 þ D013Þ2

þ D121 þ D301 þ D103Þ2 þ ðD112 þ D310 þ D130Þ2
�
þ 2½ðD310 þ D130Þ2 þ ðD301 þ D103Þ2 þ ðD031 þ D013Þ2�

þ 2ðD2
310 þ D2

301 þ D2
130 þ D2

031 þ D2
103 þ D2

013Þ
i

ð12Þ
3.2. Closest isotropy

Given a CT-FOD C, its closest isotropic CT-FOD Ciso is defined
such that the distance dðC;CisoÞ is minimum among all isotropic
CT-FODs. The conditions for isotropy in the case of fourth order
CT-FOD is:

Ciso ¼ �kIs ð13Þ

for some �k 2 Rþ and where Is is a totally symmetric fourth order
identity tensor (Moakher, 2008). In terms of components, Is is given
by

Is
400 ¼ Is

040 ¼ Is
004 ¼ 1

Is
220 ¼ Is

202 ¼ Is
022 ¼ 2 ð14Þ

and all remaining components equal to zero. Using this result and
minimizing the distance dðC;CisoÞ with respect to �k, we obtain
(Moakher and Norris, 2006)

�k ¼ 1
5
ðC400 þ C040 þ C004Þ þ

1
15
ðC220 þ C202 þ C022Þ ð15Þ

Observe that �k is actually the mean FOD of the CT-FOD C which
is the same as saying the zeroth order CT-FOD that is closest to C.
e semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).
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3.3. Anisotropy measure

We now present an anisotropy measure derived from fourth
order CT-FODs. This is important in order to consolidate the work
of diffusion tensor imaging towards CT-FODs. Similar to the
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Fig. 1. Comparison of FA, GA and our AI as diffusion profiles range from isotropic to lin
crossing fibers on the plane (right).

(a) Noise free. Top to bottom: schematic d
FOD profiles.

(b) Rician noise, std. dev.=0.02. Top to bot
ADC profiles and FOD profiles.

Fig. 2. Alignment of maxima of estimated ADC and CT

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

Fig. 3. Deviation angle between actual fiber orientations and maxima of estimated CT-FO
(cos 100�; sin 100�;0) at different levels of Rician noise.

Please cite this article in press as: Weldeselassie, Y.T., et al. Symmetric positiv
Med. Image Anal. (2012), http://dx.doi.org/10.1016/j.media.2012.07.002
definition of fractional anisotropy (FA) for second order tensors,
we propose the use of the distance of a given a CT-FOD from
its closest isotropy normalized by the norm of the CT-FOD as
our anisotropy index. Defining the norm of a given CT-FOD as
its L2 distance from ZERO, we see that the non-negative function
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(a) Generalized anisotropy. (b) 4th-order CT-FOD.

Fig. 4. Generalized anisotropy and 4th-order CT-FOD for fibercup phantom data. Crossing of fiber orientations is clearly depicted as expected.
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dðC;CisoÞ=dðC;0Þ can be used to infer anisotropy index. It is easy to
see that this expression takes its minimum value of 0 when C is
isotropic. In order to find its upper bound, it suffices to look at the
(a) Proposed anisotropy

(c) GA

Fig. 5. 4th-order CT-FOD and ADC tensor fields computed from hu
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limiting, but physically impossible, case of a non-zero diffusivity
in only one direction, say along the direction v ¼ ð1;0;0ÞT but
zero diffusivities along all directions perpendicular to v. In this
(b) 4th-order CT-FOD

(d) 4th-order ADC

man brain slice and their corresponding anisotropy measures.

e semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).
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case, all components of C except C400 will be zero and its mean
FOD will be C400=5 resulting an upper bound of 4=5. In order to
have an anisotropy index in the range ½0;1Þ, we would like to find
a monotonic function that will map the interval ½0; 4

5Þ to ½0;1Þ.
While several mapping functions can achieve this, in this work
we choose a linear mapping and define our anisotropy measure
as

AI ¼ 5
4

dðC;CisoÞ
dðC;0Þ

� �
ð16Þ

We simulated several synthetic diffusion profiles comprising of
isotropic, planar, linear and crossing fibers profiles in order to see
the behavior of this anisotropy measure and compare it with exist-
ing measures. Fig. 1, shows anisotropy measures as obtained by
our anisotropy index, FA and generalized anisotropy (GA) as de-
fined in Ozarslan et al. (2005). The DW signals for these simula-
tions were generated using the realistic diffusion MR simulation
model proposed in Söderman and Jönsson (1995). For the case of
isotropic to linear diffusion profile (Fig. 1 left), we started with
321 crossing fiber orientations that uniformly sample the unit
hemisphere with equal diffusivities and then gradually (in 100 time
steps) restricted the diffusion in all directions but along one fiber
orientation. In this configuration, while both FA and our anisotropy
measures show monotonically increasing values as we move from
isotropic to linear diffusion, GA however shows little changes at
both isotropic and anisotropic regions with larger changes in the
intermediate regions. As a result while the contrast of GA is con-
centrated in the gray matter, the contrast in both FA and our
anisotropy measures is more or less uniform at all regions. Simi-
larly, for the case of isotropic to two crossing fibers (Fig. 1 middle),
we started with the same 321 fiber orientations with equal diffu-
sivities and then gradually restricted diffusion in all directions
but two perpendicular fiber orientations. The important observa-
tion in this case is the fact that both GA and our anisotropy mea-
sure give rise to larger values for crossing fibers while FA does
not, which highlights the limitation of second order tensor model
in crossing fibers regions. Finally in the case of planar to two cross-
ing fibers (Fig. 1 right), we started with 16 crossing fiber orienta-
tions on a plane that sample a circle uniformly and then
restricted diffusion in all but two perpendicular directions on the
plane. As expected not only does FA gave rise to more or less uni-
form values in this configuration, but surprisingly both GA and our
anisotropy measures did so too, albeit with higher values. In other
words, even though both fourth order tensor ADC and FOD models
are able to model two crossing fibers, they do not distinguish as
such between only two or more than two crossing fibers. This is
of course the limitation of 4th order tensor model when there
are more than two crossing fibers. From tractography point of
view, where anisotropy index is used for seeding and stopping cri-
teria, however unlike FA both GA and our anisotropy measure will
be good indicators of presence of fibrous structures because they
show high anisotropy value in such regions (close to 0.7).
Fig. 6. Single slice of FA map from JHU_MNI_SS DTI dataset with corresponding
regions of interest segmented using JHU_MNI_SS_WMPM_TypeI white matter
parcellation map: CC = Corpus Callosum, IC = Internal Capsule, TH = Thalamus,
HC = Hippocampus, and PT = Putamen.
4. Experimental results

In this section, we present experimental results of the proposed
method applied to simulated as well as real DW-MR image from a
human brain dataset.

4.1. Synthetic dataset

In order to highlight the accuracy with which the maxima of
estimated CT-FOD profiles coincide with the actual underlying fi-
ber orientations, we first present qualitative results for the case
of a synthetic dataset comprising of two crossing fiber bundles
Please cite this article in press as: Weldeselassie, Y.T., et al. Symmetric positiv
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modeled as fourth order CT-FODs as shown in Fig. 2. Included is
also the results of ADC profiles modeled as fourth order tensors
in order to highlight the performance of CT-FODs over ADC tensors
of same order. In this experiment, we start with two fiber bundles
crossing at 90� degrees and then rotate one of the fiber orientations
gradually until it aligns with the second fiber orientation resulting
to a single fiber. The DW-MR signals for this simulated experiment
were generated by simulating the MR signals using the realistic
diffusion MR simulation model in Söderman and Jönsson (1995)
with b-value ¼ 1500 s=mm2 and 81 gradient directions. Fig. 2a
shows the result for a noise free case and Fig. 2b shows the results
obtained when a Rician noise with std. dev. = 0.02 is added to the
simulated DW-MR signals. It is evident from these results that
not only do CT-FOD profiles model the underlying structure better
but also have better noise immunity.

Next, we present quantitative results by presenting the devia-
tion angles of the maxima of estimated CT-FODs with respect to
the actual underlying fiber orientations. We consider the case of
two crossing fibers whose orientations are (cos 20�; sin 20�;0) and
(cos 100�; sin 100�;0) and the DW-MR signals are generated as de-
scribed above. In order to compare our results with spherical
deconvolution techniques, we also include the results obtained
using MOW (Jian et al., 2007), QBI (Tuch, 2004), DOT (Özarslan
et al., 2006) and MOVMF (Kumar et al., 2008) methods by comput-
ing the maxima of either the PDF or FOD profiles of the correspond-
ing methods. Six distinct Rician noise levels were added to the
simulated data and for each noise level the experiments were re-
peated 100 times. Fig. 3 shows a plot of the means and standard
deviations of deviation angles between the actual fiber orienta-
tions and the maxima of estimated CT-FODs. For the particular
noise level with std. dev. = 0.08 the deviation angles for all the
methods are reported in the adjacent table. Also notice that in this
experiment the deviation angle of the computed orientations is
compared to its closest actual fiber orientation because the cross-
ing fibers are weighted equally in generating the MR signals. The
results demonstrate the superiority of the proposed method over
QBI, DOT, MOVMF and MOW methods.
e semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).
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Table 1
Tissue detectability using GA and AI.

AIn CC vs CC vs CC vs CC vs IC vs IC vs IC vs TH vs TH vs HC vs
ROI IC TH HC PT TH HC PT HC PT PT

GA 0.6931 0.7361 0.5330 0.7686 0.4210 0.2045 0.5422 0.3897 0.3575 0.5578
AI 0.8080 1.4826 0.7314 0.9621 0.0938 0.1794 0.5861 0.0662 0.4429 0.6329
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4.2. Phantom dataset

Here, we present our results for the publicly available HARDI
phantom dataset whose ground truth fibers are known and was used
in the MICCAI 2009 Fiber Cup contest (Poupon et al., 2008). The data-
set consisted of 64 diffusion weighted images and one So volume ac-
quired in two different spatial resolutions: 3� 3� 3 mm3 and
6� 6� 6 mm3 and three different b-values: 650, 1500 and 2650 s/
mm2. We used the 3� 3� 3 mm3 resolution dataset with a b-value
of 650 s/mm2. Fig. 4a shows generalized anisotropy while Fig. 4b
gives a zoomed in visualization of fourth order CT-FODs computed
for the box shown in red. Clearly the fourth order CT-FOD correctly
depicts the fiber organization of crossings as well as single fiber
orientations.

4.3. Real dataset

Next, we present CT-FODs computed from a real dataset con-
sisting of a human brain dataset. The dataset consists of 63 contin-
uous slices of 2.0 mm thickness with a field of view (FOV) of
256� 256mm2 and pixel size of 2� 2 mm2. Ten images were col-
lected without diffusion weighting (b 	 0 s=mm2) which were
averaged during the CT-FOD reconstruction for a single average
So image and 99 diffusion weighted images are acquired in 99 gra-
dient directions. Each of these image sets used different diffusion
gradients with approximate b values of 3000 s=mm2. Fig. 5 shows
fourth order CT-FODs computed using our method along with the
proposed anisotropy index. Included is also fourth order diffusion
tensors and generalized anisotropy images. As can be verified in
the anisotropy images; the branching, bending and crossing of
tracts are better depicted by the computed CT-FODs as compared
to the diffusion tensors. Moreover unlike generalized anisotropy
map which reveals the white matter region with higher contrast
but fails to distinguish the gray matter from the background, the
proposed anisotropy map reveals both white matter and gray mat-
ter regions more clearly, albeit with less contrast.

Based on our preliminary CT-FOD results (Weldeselassie et al.,
2010) and in conjunction with their techniques Jiao et al. (2011)
have already shown that the proposed CT-FOD model improves
tractography results and accurately detects fiber crossings, splits
and kisses. Another potential fiber tracking algorithm that may
be used in conjunction with CT-FOD is the spin glass based frame-
work to untangle fiber crossing (Cointepas et al., 2002).

4.4. Tissue discrimination with GA and AI

Finally, we present a quantitative comparison of the anisotropy
index derived from CT-FOD with generalized anisotropy in dis-
criminating different tissue classes in a brain image. For the task
of discriminating between two tissue classes, a measure of diffu-
sion anisotropy, A, can be evaluated using a detectability index
Alexander et al. (2000),

d ¼ jhA1i � hA2ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2

q ð17Þ

where (hA1i;r2
1) and (hA2i;r2

2) are the means and variances of the
anisotropy values for the two tissue classes. In essence, this detect-
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ability index is a measure of how separable the distributions of the
anisotropy measures in a pair of tissue classes are by measuring the
difference of the distributions assuming the anisotropy measures of
each tissue class follows a Gaussian distribution. The anisotropy
measure with the greatest detectability index should be close to
optimum for the specified task. In order to compare GA and AI in
discriminating tissue classes, we calculated the detectability indices
of these anisotropy measures for the dataset described in Section
4.3 above. The brain was parcellated using a publicly available
while matter parcellation map (JHU_MNI_SS_WMPM_TypeI) down-
loaded from Johns Hopkins Medical Institute Laboratory of Brain
Anatomical MRI. The GA and AI maps of our dataset were registered
to the white matter parcellation map using FA map that was came
with the parcellation map and was already registered to it. An affine
registration was performed using the DiffeoMap software down-
loaded from the same source. Fig. 6 shows the publicly available
FA map with five regions of interest segmented. Our tissue detect-
ability results for the regions of interest are presented in Table 1
where the values of d shown in bold face indicate that the anisot-
ropy index given on that row performs best in discriminating tissue
classes on the corresponding column. We observe that our anisot-
ropy index generally performs better in detecting differences
among tissues presented.
5. Conclusions

We presented a novel technique to estimate FODs modeled as
PSD high order tensors from DW-MR images. The performance of
the proposed method is compared against several existing FOD
measures on a synthetic dataset with different noise levels and
outperformed the other methods. We also demonstrated the use
of our method on a real DT-MR image obtained from a human
brain dataset. Our results clearly demonstrate the superiority with
which the organizational structure of an underlying diffusion pro-
cess is neatly modeled with CT-FODs as compared to higher order
diffusion tensors and the fact that crossing, merging and bending
of fibers are correctly depicted with CT-FODs. By deriving anisot-
ropy map directly from CT-FOD profiles, we have attempted to
consolidate the analysis of diffusion imaging towards the use of so-
lely CT-FODs. Future work includes processing of diffusion images
such as segmentation and registration tasks with the proposed CT-
FOD fields.
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