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Capturing and evaluating blinks from video-based eyetrackers
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Abstract Blinks are related to several emotional states, and
the present report describes a simple, reliable way to measure
blinks from the video stream of an eye obtained during eye-
tracking, where the source of the eye video is a video camera
attached to a head-mounted eyetracker. Computer vision tech-
niques are employed to determine the moments that a blink
starts and ends, for the purpose of calculating blink frequency
and duration. The video is first processed to show blocks of
eyelid and pupil movements, and is then analyzed for blink
starts and ends. The moment of a blink start is reported when
the eyelid starts to move quickly, exceeding a predetermined
threshold. The end of a blink arises when the pupil size
increases by less than a separate threshold. We observed
several different blink patterns from different subjects, and
our algorithm was designed to work for all of these patterns.
We evaluated our algorithm by manually measuring the true
blinks of five different subjects while they were eyetracked.
To test the sensitivity and specificity of the algorithm, we
employed a series of threshold values to plot the receiver
operating characteristic curves. Using the best thresholds, we
achieved excellent sensitivity (>90 %) and specificity (>99 %)
over the five subjects. Potential applications of this research
include real-time, nonintrusive, continuous and automated
measurements of mental workload and other emotional states
related to blink rates and durations.
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Blink is an important eye motion, and involuntary eye blinks
are controlled by a central mechanism that is often associated
with the status of mental states such as fatigue, lapses of
attention, and stress (Andreassi, 2000; Marshall, 2007; Ryu
& Myung, 2005). Because of this, blink rates and durations
have been used in various studies—for instance, to check the
drowsiness of individuals in everyday life (Caffier, Erdmann &
Ullsperger, 2003) or evaluate the mental workloads of drivers
(Benedetto, Pedrotti, Minin, Baccino, Re & Montanari, 2011;
Haak, Bos, Panic & Rothkrantz, 2009; Smith, Shah & Lobo,
2000) and pilots (Veltman & Gaillard, 1996, 1998).

Eye blinks are also useful in diagnosing the mental status
of patients suffering from neurological disorders (Deuschl &
Goddemeier, 1998; Grauman, Betke, Gips & Bradski,
2001), in that a reduced rate of eye blinking is associated
with Parkinson’s disease, and excessive blinking may indi-
cate the onset of Tourette’s syndrome, strokes, or other
disorders of the nervous system (Deuschl & Goddemeier,
1998). Furthermore, real-time eye-blink detectors are used
as an alternative channel for severely disabled people to
interact with computers (Grauman et al., 2001).

To capture blinks, researchers have used methods includ-
ing electrooculography (EOG; Kong & Wilson, 1998; Ryu
& Myung, 2005; Veltman & Gaillard, 1998), electromyog-
raphy (EMG; Blumenthal, Cuthbert, Filion, Hackley, Lipp
& Van Boxtel, 2005), electroencephalography (EEG; Haak
et al., 2009), and other, custom-designed instruments, such
as an infrared light beam (Caffier et al., 2003), magnetic
coils (Evinger, Manning & Sibony, 1991), and an optoelec-
tronic motion detector (Mitalis & Druss, 1985). Pedrotti,
Lei, Dzaack and Rotting (2011) developed a data-driven
eye-blink detection algorithm for 50-Hz eyetracking proto-
cols, where the pupil diameter was used for correcting
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artifacts before estimating blink start and end. Our research
group is also developing a technique to capture blinks from
the output of an eyetracker, on the basis of missing data
frames saved in eyetracker text output recorded by a Tobii
1750 remote eyetracker. However, these methods of calcu-
lating blinks have their shortcomings, as the missing data
used for computing blinks are blended with other events that
cause data loss during eyetracking, such as large head move-
ments, lack of data quality, and tracking recovery delays.
Therefore, any algorithm built on counting missing data
may exclude true blinks, on the basis of too long a duration,
and may also include false blinks, which are nonblink
events that are mistaken for blinks.

Blinks can be manually counted accurately from a web-
cam video capturing eye movements. However, this is a
time-consuming task. We have developed a computer vision
algorithm to count blinks automatically from such videos.

Several studies have reported eye-blink detection meth-
ods using video analysis techniques (Grauman et al., 2001;
Lalonde, Byrns, Gagnon, Teasdale & Laurendeau, 2007;
Moriyama, Kanade, Cohn, Xiao, Ambadar, Gao & Imanur,
2002; Smith et al., 2000; Wu & Trivedi, 2008). For exam-
ple, Lalonde et al. recorded drivers’ eye motions in a driving
simulator with a specialized near-infrared video camera. The
occurrence of blinks was detected on the basis of scale-
invariant feature transform (SIFT) features from very-low-
contrast images. Lalonde et al. reported a 97 % detection
rate on blinks; however, they were unable to report the
durations of the blinks.

Sukno, Pavani, Butakoff and Frangi (2009) created an
algorithm capable of reporting blink frequency and duration
from webcam videos. First, they used a face detection tech-
nique to find the face area for drivers recorded in a video
image; the face area was then segmented to produce the
outlines of eyes and other landmarks in the face. Eye blinks
were detected when the distance between the eye and other
face landmarks changed above a threshold value. Besides
blink rate, this algorithm tracked the durations of eyes being
open and of full closures of the eyes. Sukno et al. reported a
97.1 % accuracy rate when compared to manual examina-
tion of the video database. Since this method was based on
face detection, accuracy would drop when the face was
undetectable due to large head movements.

Fig. 1 (a) The Locarna PT-
Mini eyetracker and (b) a
screenshot of the video graphic
array image of the subject’s eye
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Smith et al. (2000) developed methods to detect eye
occlusions caused by large head movements while driving
in a car simulator and to separate these occlusions from
naturally occurring blinks. Smith et al. detected the color
difference between skin on the face and the sclera in the eye.
When the participant’s head turned, the sclera in the eye
would no longer be detected. This could be used for adjust-
ing reports on blink frequency.

However, face detection techniques have limitations. The
eye area is relatively small in the image captured by a webcam,
so it is hard to calculate the blink duration accurately (Lalonde
et al., 2007; Moriyama et al., 2002; Smith et al., 2000).

We describe here a new algorithm designed to detect
blinks using a computer vision algorithm. Recently, in a
study on surgeons’ vigilance in the operating room (Tien,
Atkins, Zheng & Swindells, 2010; Zheng, Jiang, Tien,
Meneghetti, Panton & Atkins, 2012; Zheng, Tien, Atkins,
Swindells, Tanin, Meneghetti & Panton, 2011), we recorded
the eye motions of surgeons wearing head-mounted ecye-
trackers (PT Mini, Locarna System Inc, Victoria, BC). The
eyetracker consisted of an infrared camera pointing to the
wearer’s eye, designed to capture the motion of the eyeball,
and another camera pointing forward, which captured the
scene observed by the wearer (Fig. 1a). We describe here a
simple, reliable way to measure blinks from the video
graphic array (VGA) video stream of the eye obtained
during eyetracking, where the source of the eye video is a
video camera attached to a head-mounted eyetracker.
Through postprocessing, we applied computer vision tech-
niques to these videos to open a new opportunity for us to
retroactively identify the blinks from the eyetracking video.

There are several advantages of employing computer vision
techniques for capturing eye blinks from the eye camera of a
head-mounted eyetracker. First, the camera is set to focus on the
center of the eye, and the image is recorded using infrared light,
which provides constant illumination under varying conditions.
The quality of the image is high, which makes it easier to capture
blinks. Second, the contrast of the image is sufficient to separate
different components of the eye. As is shown in Fig. 1b, the
pupil is the darkest part in the image and has a relatively brighter
ring around it (the iris), so we can easily separate the pupil from
the remaining parts of the eye. Third, the eyelid moves speedily
during the start of a blink (Caffier et al., 2003).
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To identify the best parameter settings and test the sensi-
tivity and specificity of the algorithm, a series of threshold
values were used, and receiver operating characteristic
(ROC) curves were plotted.

Method
Experimental setting

Surgeons were asked to perform a simulated surgical task in a
virtual reality simulator (METI SurgicalSim). Their eye motions
were recorded using a wearable head-mounted eyetracker
(Locarna PT Mini). The task and apparatus were designed for
studying surgeons’ vigilance in the operating room. The details
of the experimental setting are given elsewhere (Tien et al.,
2010), and the results are in Zheng et al. (2012).

Observation of the videos

While reviewing the videos, we observed that individuals
have different blink patterns. We saw that most individuals’
blinks fell into one of two categories; completely closed eye
blinks, in which the upper eyelid would drop completely
over the pupil during a blink, and partially closed eye blinks,
in which the upper eyelid would barely drop over the top of
the pupil. Some partially closed eye blinkers even have
blinks in which the upper eyelid fails to touch the pupil
during blinking. Five different blink patterns are shown in
Fig. 2, in which each column corresponds to successive
frames of a subject during a blink. The first two columns
show subjects with completely closed eye blinks, and the
other three show subjects with partially closed eye blinks.
Analysis of these videos and natural observations convinced
us that these partially closed eye blinks did not arise as an
artifact of the relatively low (30-Hz) rate of sampling.

On the basis of these facts, we developed a robust algo-
rithm for computing the start and end of eye blinks from the
output videos of head-mounted eyetrackers. Our algorithm
was designed to work on all of these patterns. Once blinks
were identified, we reported blink frequency and duration
for the analysis of mental workload.

Video processing

We developed a computer algorithm to process videos to
capture blinks using C++ (Microsoft Visual Studio) and
Open Computer Vision Library (Open CV; Bradski & Kaehler,
2008). As is shown in Fig. la, two mini cameras are mounted
on the Locarna eyetracker: One records the motion of the right
eye of the wearer; this is an infrared camera, which is the video
source used in the present work. The other camera records the
scene that the wearer is looking at.

The video was originally saved in grayscale color mode
with a resolution of 352%240 pixels at 30 Hz. The video
was read in and processed frame by frame using Open CV
functions.

Figure 3, column 1, shows consecutive frames from the
eyetracker video during a typical completely closed eye
blink (the same subject shown in column 2 in Fig. 2).

Algorithm for detecting the start of a blink

The start of a blink is detected by examining the difference
between the current and the previous frame. The first step is
to calculate the grayscale difference image between the
current and the previous frames:

Idiff = 1cur _]pre- ( 1 )

In Eq. 1, I and I, are the grayscale images of the
current and the previous frame, and Iy is the difference
grayscale image between I, and /..

The second step is to convert /4 to a binary image using
a threshold 6;:

. ~  Lug(x,y) <04 0
Ibm(xvy) - {Idiﬂ(an) > 941 255" (2)

04 was determined using the method described in the Evalu-
ation of Algorithm section below. To make the binary image
I;, more structured, morphological image processing (erosion
and dilation) was applied (Bradski & Kaehler, 2008), with a
grid-shaped structuring element (three columns and three
rows) in opening operation mode (by first doing erosion and
then dilation). The erosion operation removes pixels on the
boundaries of objects in the input image according to the
structuring element, while dilation adds pixels on the object
boundaries. These two operations make the edge of the object
in the image more smooth and structured.

In these binary images, two important eye structures were
recognized: the eyelid and pupil. The blink start was iden-
tified by examining the position changes of the eyelid on
two consecutive image frames. As is shown in the second
column in Fig. 3, when the blink started, the difference in
eyelid position between the third and the second frames is
large, so it can be used for identifying the start of the blink.

The third step is to find the biggest connected object in
Ly;i,. If the ratio of the width of the found object and the
width of the eye area is larger than a threshold 6, the blink is
considered to have started. An illustration of the step for
detecting the blink start is shown in Fig. 4.

Algorithm for detecting the end of a blink

The end of the blink is detected by the change of pupil size
after the start of a blink. The pupil is the darkest part recorded
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Blinking
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Fig. 2 Successive screenshots from videos of five different blink patterns.

three columns have partially closed eye blinks

in the video image. To detect the pupil, the grayscale
image is converted into a binary by applying a preset
threshold 6, according to Eq. 3. The pupil then is sepa-
rated from the remaining parts of the eye. The method of
determining ¢, will be described in the next section.
After getting the binary image /,;,, morphological image
processing (erosion and dilation) similar to that for
detecting the blink start is applied. Finally, we find the
biggest connected object in the image.

' L (x,y) <6, 255
Ibm(x)y) - {Icur(xay) > 9p 0 (3)
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inkiﬁ;

The first two columns have completely closed eye blinks, and the other

In order to judge whether a detected connected object
is the pupil, we set up criteria to define pupil size,
position, and shape. Within these criteria, the width of
the detected object must be larger than a certain ratio to
the entire image; the location of the object cannot be
too close to the edge of the image; and the width-to-
height ratio of the object needs to be maintained be-
tween 0.3 and 3.

As is shown in the third column of Fig. 3, the height of
the pupil decreases as the eyelid drops from the second to
the third row. The pupil disappears for several frames (rows
4-6) when the eyes are completely closed. The pupil then
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Fig. 3 A series of consecutive
frames from the Locarna
eyetracker video during a
typical completely closed eye
blink. The left column shows
the original VGA image. The
blink is detected and labeled by
yellow text. The central column
shows the binary image of the
upper eyelid movement, and the
right column shows a binary
image in which the pupil is
extracted
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Fig. 4 Steps for detecting the start of a blink. The first column
contains the original video graphic array image; the image that results
from subtracting each two consecutive frames is shown in the second

reappears and the size increases (rows 7-9) during the
reopening phase. Therefore, following an eyelid drop, when
the pupil height does not increase above a threshold 6,
(pixels), the end of the blink is recorded.

For partially closed eye blinks, if the upper eyelid
fails to touch the pupil, this means that the change of
pupil size is not suitable for determining the end of an
eye blink. In these situations, we ended the blink in three
frames (90 ms), because these blinks usually are relative-
ly short; normally, the blink duration is longer than
100 ms (Schiffman, 2000).

Evaluation of algorithm

It is clear that the values of 0, 0., 4, and 6, will affect the
detection of blinks. A purpose of this study was to find the
best value of 6, 0., 84, and 6, so that computer-reported
blinks would match true blinks.

To verify the accuracy of the algorithm and to choose the
best 6;, 0., 04, and 0, ten videos from five different subjects
(each of whom performed two trials) with different blink
patterns, from the experiment described in the Experimental
Setting section, were watched by an experimenter to get the
true blink values, in terms of frequency and duration. Typ-
ical screenshots of the five subjects’ videos are shown in
Fig. 2.

We observed the videos frame by frame for true blinks.
The start and end criteria of blinks are as below:
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column; the third column displays the binary image transformed from
the corresponding grayscale images; and the fourth column shows the
biggest connected object found in the binary image

* Blink start The upper eyelid lowers to touch or cover part
of the pupil (or the upper eyelid falls quickly but fails to
touch the pupil, for some partially closed blinkers).

* Blink end The upper eyelid opens enough to release the
whole pupil (or three video frames after start, for some
partially closed blinkers).

According to the start and end criteria, the ten videos
were watched to get the true blinks set.

The algorithm was run for different values of 6, 6., 04,
and 0, to get different computer-generated blink sets. A
comparison was then performed between the computer-
generated blinks and the true blinks. Then true positives
(TP), false positives (FP), true negatives (TN), and false
negatives (FN) were obtained and receiver operating char-
acteristic (ROC) curves were plotted to decide the best
values of 6;, 0 , 04, and 0,,.

The thresholds 6, 6., 84, and 6, were determined sequen-
tially. Initially they were empirically set to default values. The
algorithm was run for different values of 6,—0.37, 0.38, 0.39,
0.40, and 0.41—to get five computer-generated blink sets.
Then the true blink set was matched to each computer-
generated blink set to generate sets of variables for true and
false positives and true and false negatives: TP, FP, TN, and
FN. Therefore, true-positive rates [TPR=TP/(TP+FN)*100]
and false-positive rates [FPR=FP/(FP+TN)*100] were de-
rived in order to plot the ROC curve; the best value of 65 was
determined from the ROC curve. Similarly, from the obtained
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Table 1 True (TPR) and false (FPR) positive rates and accuracy, as
percentages, for automatically identifying eye blinks with increasing
values of 0, with {0, 04, 0,}=1{3, 5, 78}

Table 2 True (TPR) and false (FPR) positive rates and accuracy, as
percentages, for automatically identifying eye blinks with increasing
values of 0., with {f;, 04, 0,} ={0.40, 5, 78}

0s = 0.37 0.38 0.39 0.40 0.41 0. = 1 2 3 4 5

TPR(%) 92.1 91.1 90. 5 90.3 82.4 TPR(%) 93.4 91.7 90.3 89.2 87.8
FPR(%) 0.3 0.3 0.2 0.1 0.1 FPR(%) 0.3 0.2 0.1 0.1 0.1
Acc(%) 99.5 99.6 99.6 99.7 99.6 Acc(%) 99.6 99.7 99.7 99.7 99.7

0, and default values of 64 and 6, the best value of ¢, was
determined; 64 and 6, were then determined in the same way.

Results

In total, 270 true blinks were observed from the ten videos,
with a mean blink frequency of 6.9/min (£ 3.2/min) and a
mean duration of 179 ms (+ 38 ms). The results of the
algorithm for the ten videos, with {0, 04, 0} set by default
to {3, 5, 78} and 0 set to 0.37, 0.38, 0.39, 0.40, and 0.41,
are reported in Table 1.

ROC curves were created using true-positive rates as the
y-axis and false-positive rates as the x-axis, as is shown in
Fig. 5 (the solid curve). According to the rule that “north-
west is best” (Fogarty, Baker & Hudson, 2005), 6,=0.40
was the threshold that best balanced TPR and FPR.

Using 6,=0.40 as the blink starting ratio threshold and
{04, 0,} defaults of {5, 78}, we ran the algorithm with 6.=1,
2, 3, 4, and 5, with the results shown in Table 2. The ROC
curve was created as shown in Fig. 5 (the dashed curve).
The ROC curve shows that the highest TPR was achieved
when 6.=1, and when 6, was increased, the TPR decreased,

Fig. 5 ROC curves for
sensitivity and specificity.

The blue dashed curve was for
determining 6, using

{0e, 64, 0,3 =13, 5, 78}; the red
solid curve was for determining
0, using {0, 04, 0, } =

{0.40, 5, 78} 92 -

94

90 -

88 -

TPR(%)

86 -

84 -

82 +
0.09

but the FPR improved at the same time. Therefore, 6.=3
was the threshold that best balanced the FPR and TPR.
Similarly, 64 and 6, were determined by plotting ROC
curves, and we found 64=5 and 6,=78.
With the determined values {0, 8., 4, 0} =13, 0.40, 5, 78},
the overall performance of the algorithm was TPR=90.3 %,
FPR=0.1 %, and accuracy=99.7 %.

Conclusions

In this study, we developed an algorithm that captures eye
blinks from videos obtained from head-mounted eyetrack-
ers. We identified two major categories for blinks: complete-
ly closed eye blinks, in which the upper eyelid completely
drops over the pupil during a blink, and partially closed eye
blinks, in which the upper eyelid barely drops over the top
of the pupil. Thus, any algorithm for detecting blinks accu-
rately cannot rely on the pupil being covered during a blink.
Our algorithm is simple but quite robust, showing high
performance of TPR=90.3 %, FPR=0.1 %, and accuracy=
99.7 %. The algorithm works by detecting the start and end
of a blink by measuring the difference between consecutive

ROC curves for determing starting and
ending thresholds

1
T

0.37

=g differentending
thresholds

= @l— differentstarting
thresholds

0.19 0.24 0.29
FPR(%)

0.14
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frames for the start point of a blink, and measuring pupil
size for the end point.

Future work will extend this algorithm to work with
regular webcams, which have less resolution and generate
noisy data due to varying lighting conditions.

Author Note This research was supported by grants from the Cana-
dian Natural Sciences and Engineering Research Council (NSERC)
and the Royal College of Physicians and Surgeons in Canada
(RCPSC).
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