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ABSTRACT

Fractional anisotropy (FA), defined as the distance of a diffusion tensor from its closest isotropic tensor, has been
extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI).
It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping
in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive
use in DT-MRI community, however, not much attention has been given to the mathematical correctness of
its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent
progress in DT-MRI have shown that the space of diffusion tensors does not form a Euclidean vector space
and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust
rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-
divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its
closest isotropic tensor is different for different tensor distance used. We demonstrate qualitatively that our new
anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it
has a higher signal to noise ratio than FA.
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1. INTRODUCTION

Diffusion tensor magnetic resonance imaging (DT-MRI) is a non-invasive imaging technique that measures the
self-diffusion of water molecules in the body; thus capturing the microstructure of the underlying tissues. It
results in a 3D image where at each voxel the direction of water diffusion is locally modeled by a Gaussian
probability density function whose covariance matrix is a second order 3×3 symmetric positive definite matrix
(diffusion tensor).

Measurement of diffusion tensors on a voxel-by-voxel basis has lead to the development of scalar quantities,
called indices of anisotropy, that resemble histological or physiological stains characterizing the intrinsic features
of tissue microstructure and microdynamics. The most commonly used such scalar diffusion anisotropy measure
is fractional anisotropy (FA),1 which is defined as the distance of a tensor from its closest isotropic tensor. It is
rotationally invariant and, therefore, objective and insensitive to the choice of laboratory coordinate system. It
has been widely used for revealing the white matter in brain images, as a parameter for seeding and stopping in
fiber tractography, and for the diagnosis and assessment of degenerative brain diseases such as multiple sclerosis,
Parkinson’s disease, schizophrenia, and Alzheimer’s disease and classification of patients and healthy subjects in
clinical settings.2–6

Despite the extensive use of FA in DT-MRI community, however, not much attention has been given to the
mathematical correctness of its derivation from diffusion tensors, which is achieved using generalized tensor dot
product in 9D Euclidean space;1 yet recent progress in DT-MRI research have shown that the space of diffusion
tensors does not form a Euclidean vector space and thus Euclidean norm is not appropriate for tensors. To
this end, new appropriate tensor distance measures that take into account the manifold of the space of diffusion
tensors have been proposed. These distance measures include the J-divergence,7 Log-Euclidean8 and Riemannian
distance metric.9,10 Therefore it is more consistent with the definition of FA to use these appropriate tensor
distance measures instead of Euclidean tensor dot products in deriving anisotropy measures for diffusion tensors.
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In this paper, we propose a novel and robust diffusion anisotropy measure that is rotationally invariant and
scale invariant derived using the J-divergence and Log-Euclidean distance measures. The proposed anisotropy
measure is computed by first decomposing the tensor distance metrics to shape and orientation distance compo-
nents11 and then use the shape distance component for measuring distance of a diffusion tensor from its closest
isotropy. An interesting consequence of applying different distance measures is manifested on the expression for
the closest isotropic diffusion tensor; i.e. given a diffusion tensor, different tensor distance measures give rise
to different closest isotropic tensor except for the Riemannian and Log-Euclidean distance measures which give
the same closest isotropic tensor. Our experiments show that while FA shows better contrast between tissue
classes within white matter, SA discriminates better between white matter and gray matter tissue classes. We
demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain
images and analytically show that it has a higher signal to noise ratio than FA.

The paper is organized as follows: We first briefly review previous works in section 2 by presenting the
mathematical development of FA in section 2.1 followed by the recently proposed tensor distance measures in
section 2.2. Computation of closest isotropic tensor using the J-divergence and Log-Euclidean tensor distances
is developed in section 2.3. Our new anisotropy measure is presented in section 3 and qualitatively compared
with FA in section 4.1. The tissue discrimination power and signal to noise ratio of our new anisotropy measure
is compared to FA in section 4.2 and section 4.3 respectively. Section 5 concludes the paper.

2. PREVIOUS WORK

2.1 Fractional Anisotropy Measure

The development of FA was first presented by Basser P.J. and Pierpaoli C..1 Given diffusion tensor D, the
authors propose decomposing D as

D = Diso + Dan with (1)

Diso = λ̄ I and (2)

Dan = D − λ̄ I (3)

where λ̄ is the mean of the eigenvalues of D and I is a 3 × 3 identity matrix. Clearly Diso is isotropic tensor
as it has equal eigenvalues λ1 = λ2 = λ3 = λ̄. Diso is commonly referred to as the closest isotropic tensor to
D. Having decomposed the diffusion tensor into its isotropic and anisotropic parts, the authors obtained scalar
measures of their respective magnitudes (or lengths) by taking generalized tensor product as follows:
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It is clear that FA has range [0, 1] and it is rotationally invariant, scale invariant and sorting independent.12

Moreover it has been demonstrated that FA map has a higher signal-to-noise ratio (SNR) than other anisotropy



measures such as relative anisotropy (RA) for any value of anisotropy greater than zero.13 Note also that λ̄ is
chosen so that it minimizes the distance between D and Diso, which can be solved by setting Diso = xI and
then minimizing the distance ‖D − Diso‖ =

√

(λ1 − x)2 + (λ2 − x)2 + (λ3 − x)2 to get x = λ1+λ2+λ3

3
.

2.2 Tensor Distance Measures

We consider two tensor distance metrics: The J-divergence distance measure(dJD)7 and the Log-Euclidean
distance metric (dLE)8 given by:
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dLE(D1,D2) = ‖log(D1) − log(D2)‖2 (9)

where tr denotes the trace of a matrix. Our aim is now to employ these distance metrics in order to compute
the distance of a given diffusion tensor from its closest isotropic tensor.

Denoting the eigenvectors matrix of D as V and its diagonal matrix of eigenvalues as Λ = diag(λ1, λ2, λ3) and
applying spectral decomposition, we obtain D = V ΛV T , where T stands for matrix transposition. Noting that the
closest isotropic tensor Diso has the same set of eigenvectors as D (see details in Basser P.J. and Pierpaoli C.1) and
denoting its eigenvalues matrix as Λ̄ = diag(λ̄, λ̄, λ̄), we obtain Diso = V Λ̄V T . Recalling that V V T = V T V = I,
D−1 = V Λ−1V T , log(D) = V log(Λ)V T , ‖D‖2 =

√

tr(DT D), and tr(D) = tr(V ΛV T ) = tr(Λ) = λ1 + λ2 + λ3,
it then easy to show that
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Similarly,

dLE(D,Diso) = ‖log(D) − log(Diso)‖2
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Before proposing our anisotropy measure, let us first determine the closest isotropy to a given diffusion tensor
for a given tensor distance measure.

2.3 Closest Isotropic Tensor

For the J-divergence distance measure, we start with Eq. 10 and set λ̄ to an unknown variable x so that to
minimize the function
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Noting that minimizing f is same as minimizing f2 because f is a non-negative function, we can find the value
of x that minimizes f by differentiating f2 with respect to x and setting the derivative to zero. After some
calculations, we find that f takes minimum when
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Similarly, using the Log-Euclidean distance measure we minimize
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to find ∗
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3. SHAPE ANISOTROPY INDEX (SA)

We make the following observations about Eqs. 10 and 11. Just like FA they are functions of eigenvalues only,
they measure the distance of a tensor from its closest isotropy, and as D and Diso differ only in shape but not
orientation what these equations actually measure is the tensor shape distance between D and Diso. However,
unlike FA Eqs. 10 and 11 have range [0, +∞). Therefore in order to derive anisotropy measure using these
equations, we need to scale their range to [0, 1). Although there are several ways to achieve this, in this work
we do this by taking the hyperbolic tangent of the distance of D from its closest isotropy as follows:
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where λ̄ is as shown in Eqs. 13 and 15. Since Eqs. 16 and 17 measure tensor shape distance scaled to the range
[0, 1), we refer to these anisotropy measures as Shape Anisotropy Index (SA). It is easy to see that SA, just like
FA, is rotationally invariant, scale invariant, sorting of eigenvalues independent and has range [0, 1].

∗Interestingly, the closest isotropy obtained in Eq. 15 using Log-Euclidean distance is the same closest isotropy obtained
using the Riemannian tensor distance as shown in Batchelor et al.10



(a) FA (b) SA

(c) SA minus FA (d) FA and SA profiles along the green
line

Figure 1. Qualitative comparison of FA and SA maps using DT-MR brain image slice.

4. APPLICATIONS AND RESULTS

4.1 Qualitative Comparison of FA and SA

Qualitative comparison of FA and SA maps is shown in Fig. 1 using a real brain DT-MR image slice. Here we
show only the result obtained using SAJD because the result obtained using SALE is very similar. The diffusion
weighted images were acquired using a Philips Achieva 3.0 Tesla scanner using 32 directions with slices parallel
to the anterior commissure-posterior commissure line. 60 continuous slices of 2.2 mm thickness were collected
with a field of view (FOV) of 212 mm, pixel size 0.8281 mm2. We see from Figs. 1(a) and 1(b) that the SA map
is brighter than FA which can also be seen in Fig. 1(c) where we show the difference between SA and FA maps
(i.e. SA − FA). The intensity values of SA and FA maps are inspected along the green line shown in Fig. 1(c)
and plotted in Fig. 1(d) which clearly shows SA map has higher intensity values than FA map along the line.

4.2 Tissue discrimination with FA and SA

Since SA takes consistently larger values than FA, we expect SA maps to provide better contrast between white
matter and gray matter in the brain. This is demonstrated in Table 1 and Fig. 2 by first manually segmenting a
slice of brain image to several different tissue classes and then calculating tissue detectability using FA and SA
maps between pairs of tissue classes. For a pair of regions of interest ROI1 and ROI2 in an image whose mean
and standard deviation intensity values are given respectively by (< A1 >, σ1) and (< A2 >, σ2), the tissue
detectability for a given map (such as FA or SA) is calculated as14
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Larger values of d between a pair of ROIs using a given map indicates that the map can better discriminate
between the ROIs. The values of d shown in bold face indicate that the anisotropy index given on that row
performs best in discriminating tissue classes given on the corresponding column. We observe that while FA
performs better in detecting differences among tissues within the white matter; SA detects differences between
white matter and gray matter regions better.

Figure 2. Single slice of FA map with corresponding regions of interest segmented: CC = corpus callosum, IC = Internal
Capsule, TH = Thalamus, GM = Gray matter, and SCW = Subcortical white matter

Table 1. Tissue detectability using FA and SA

AI\ CC vs CC vs CC vs CC vs IC vs IC vs IC vs TH vs TH vs GM vs
ROI IC TH GM SCW TH GM SCW GM SCW SCW
FA 0.24 0.95 2.01 0.52 1.46 2.69 0.86 2.07 0.45 1.82

SAJD 0.39 0.74 2.12 0.36 1.35 2.89 0.81 2.10 0.36 1.90
SALE 0.38 0.73 2.10 0.37 1.33 2.87 0.82 2.11 0.34 1.89

4.3 Noise Immunity Considerations

While Fig. 1 gives a qualitative comparison of FA and SA maps, we now analytically show that SA has higher
noise immunity than FA by comparing the signal to noise (SNR) of SA and FA. Once again, because the results
obtained with SAJD and SALE are very similar, here we report only the results obtained using SAJD.

For any Anisotropy Index (AI) such as FA and SA; assuming that all λi’s are independent with the same
standard deviation (s.d.) of noise, the SNR of AI per unit s.d. of noise in λi is given by13
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Following the approach of Papadakis et al.,13 we have calculated the values of AI and SNR of AI for FA and
SA for a prolate tensor whose mean diffusivity λ̄ = (λ1 + λ2 + λ3)/3 is kept constant at 0.7 · 10−3mm2/s, in
agreement with typical values of the experimentally measured value for normal cerebral tissue. We then vary λ1

from 0.7 · 10−3mm2/s to 2.1 · 10−3mm2/s and keep λ2 = λ3 = (3λ̄ − λ1)/2. Fig. 3(a) shows plots of AI as a
function of the dominant principal diffusivity λ1 that was normalized relative to the mean diffusivity λ̄. Fig. 3(a)
shows that SA is consistently greater than or equal to FA which, as shown in13 (c.f. fig 1(a)) and reproduced
here, is greater than or equal to RA for all anisotropy levels. The gap between SA and FA is pronounced more



clearly as we move away from isotropic case and decreases as we approach the case of linear anisotropy. RA
shows strongest linear variation with λ1 than both FA and SA while SA depicts strongest non-linear variation.

Figure 3(b) shows plots of SNR(AI) as a function of the normalized dominant principal diffusivity λ1. For
small anisotropy levels, all RA, FA and SA have comparably same SNR but their differences in noise sensitivity
becomes more prominent as anisotropy level increases with SA having better SNR than FA, which has higher
SNR than RA (c.f. fig 1(b) in 13). Therefore the SA maps will generally be more robust to noise than the FA
and RA maps, exhibiting little intensity variation within structures of uniform anisotropy. The differences in
the appearance of noise in the maps of the three AI’s is more pronounced for the strongly anisotropic structures.
Also note that SNR(SA) exceeds the axes limits for λ1 values exceeding 2.5 (i.e. SA values exceeding 0.98).

(a) RA, FA and SA of prolate tensor (b) SNR of RA, FA and SA

Figure 3. AI and SNR(AI) of prolate tensor as its anisotropy varies from 0 to 1 as a function of the dominant principal
diffusivity λ1.

5. CONCLUSION

A novel anisotropy measure for DT-MRI is derived using tensor distance measures and its performance compared
with existing anisotropy measures. Future work includes more validation of the proposed anisotropy measure
and and its clinical use for the diagnosis and assessment of degenerative brain diseases as well as its application
in the study of brain development. It remains to be seen if our method can be extended to higher order diffusion
tensors such as fourth order tensors and to the newly emerging imaging techniques of Q-ball imaging in HARDI.
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