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Generalizing Common Tasks in Automated Skin
Lesion Diagnosis

Paul Wighton, Tim K. Lee, Harvey Lui, David I. McLean, and M. Stella Atkins

Abstract—We present a general model using supervised learn-
ing and MAP estimation that is capable of performing many com-
mon tasks in automated skin lesion diagnosis. We apply our model
to segment skin lesions, detect occluding hair, and identify the
dermoscopic structure pigment network. Quantitative results are
presented for segmentation and hair detection and are compet-
itive when compared to other specialized methods. Additionally,
we leverage the probabilistic nature of the model to produce re-
ceiver operating characteristic curves, show compelling visualiza-
tions of pigment networks, and provide confidence intervals on
segmentations.

Index Terms—Automated skin lesion diagnosis (ASLD),
computer-aided diagnosis (CAD), dermoscopy, hair detection,
melanoma, pigment network, segmentation.

I. INTRODUCTION

FOR the past four decades, malignant melanoma has steadily
increased its burden on health care in the western world.

It is the seventh most common malignancy in women, the sixth
most common in men and its incidence rates are increasing faster
than any other cancer [1]. Since therapy for advanced melanoma
is poor [2], a large emphasis is placed on regular screening and
early diagnosis. In an attempt to reduce this burden, there has
recently been a considerable amount of research into automated
skin lesion diagnosis (ASLD) from digital dermoscopic images.
Dermoscopy employs either polarized light or oil applied to
the skin, which renders the stratum corneum translucent and
otherwise undetectable morphological structures become visible
[3]. An image is then acquired with a digital camera under

Manuscript received July 20, 2010; revised February 9, 2011; accepted April
21, 2011. Date of publication May 5, 2011; date of current version July 15,
2011. This work was funded by the Canadian Institutes of Health Research Skin
Research Training Centre (CIHR-SRTC) and by the Canadian Health Research
Program (CHRP).

P. Wighton is with the Department of Computing Science, Simon Fraser
University, Burnaby, BC V5A 1S6, Canada (e-mail: pwighton@sfu.ca).

T. K. Lee is with the Cancer Control Research Program and Integrative
Oncology Department, BC Cancer Research Centre, Vancouver, BC V5Z 4E6,
Canada, with the Department of Dermatology and Skin Science, University of
British Columbia, Vancouver, BC V6T 1Z4, Canada, and also with the School of
Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
(e-mail: tlee@bccrc.ca).

H. Lui is with the Department of Dermatology and Skin Science, University
of British Columbia, Vancouver, BC V6T 1Z4, Canada, with the Canadian
Institutes of Health Research Skin Research Training Centre, Ottawa, ON K1A
0W9, Canada, and also with the Vancouver General Hospital Photomedicine
Institute, Vancouver, V5Z 1M9, Canada (e-mail: harvey.lui@ubc.ca).

D. I. McLean is with the Dermatology and Skin Science, University of British
Columbia, BC V6T 1Z4, Canada (e-mail: david.mclean@vch.ca).

M. S. Atkins is with the Department of Computing Science, Simon Fraser
University, Burnaby, BC V5A 1S6, Canada and also with the Dermatology and
Skin Science, University of British Columbia, BC V6T 1Z4, Canada (e-mail:
stella@cs.sfu.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITB.2011.2150758

Fig. 1. Typical CAD pipeline usually adopted for ASLD. It is usually the
case that supervised learning is only applied in the final stage: classification.
Here, we apply supervised learning to create a generalized method capable of
performing other tasks in the pipeline (artifact detection, segmentation, and
feature extraction).

consistent lighting. Proper interpretation of these dermoscopic
images leads to increased clinical diagnostic accuracy [4].

Most ASLD methods adopt the standard computer-aided di-
agnosis (CAD) pipeline illustrated in Fig. 1, which consists of
five general stages. After the image is acquired, occluding arti-
facts (such as hair and oil bubbles) which could bias downstream
processes are identified. Next, the lesion is segmented from
the surrounding healthy skin. After segmentation, discrimina-
tive features are extracted from the lesion. Features are usually
inspired by the ABCD rule [5] (asymmetry, border irregular-
ity, color, and diameter). More recently, however, features have
been inspired by dermoscopic diagnosis algorithms including
the identification of specific patterns within the lesion known as
dermoscopic structures [6]. Finally, these features are fed into a
classifier and supervised learning is typically used to diagnose
unseen images. Supervised learning is a general technique of
estimating model parameters given a set of training examples.

It is usually the case that supervised learning is only per-
formed in the final stage: classification; it is seldom found
elsewhere in the pipeline. In the few cases where supervised
learning has been applied to other stages in ASLD, it is usually
done with the intent of solving one specific subproblem. For
example, in [7], logistic regression is used to segment lesions;
however, the model is not extended or applied to other tasks
(such as hair detection or feature extraction). There is only one
study in which a general supervised method is applied to various
tasks in ASLD [8].

In this paper, we apply supervised learning techniques and ar-
rive at a generalized method capable of performing many com-
mon tasks in ASLD. We apply our method to three crucial tasks:
segmentation (lesion segmentation task), hair detection (artifact
detection task), and the identification of the dermoscopic struc-
ture called pigment network (feature extraction task).

Lesion segmentation is crucial to ensure that surrounding
healthy skin is not included in the computation of features, as
well as to compute features off the lesion border directly [9].
We compare our method’s ability to segment lesions to five
other recently published methods [10]–[14] and achieve either
superior or comparable results.
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Accurately detecting occluding artifacts is also crucial to en-
sure biases are not induced into downstream processes. We com-
pare our method’s ability to detect hair to the popular software
DullRazor [15] and achieve comparable results.

Accurately identifying the dermoscopic structure pigment
network seems to be a promising way to enhance current diag-
nostic methods for two reasons. First, of all local dermoscopic
structures, atypical pigment network is most highly correlated
with malignant melanoma [16]. Second, the identification of
a pigment network is the first stage of the two-step algorithm
for differentiating between melanocytic and nonmelanocytic le-
sions [17]. If a lesion can be determined to be nonmelanocytic,
then the diagnosis of melanoma can be ruled out entirely. This
is of importance since a recent survey of automated diagnostic
systems determined that all systems studied tended to “overdiag-
nose” most seborrheic keratoses (which are nonmelanocytic) as
melanoma [18]. We report encouraging qualitative visualiza-
tions for the identification of pigment networks.

The remainder of this paper is organized as follows. In
Section II, we review previous work. Section III describes the
method. In Section IV, we present and discuss results. Finally,
we conclude in Section V.

II. PREVIOUS WORK

The closest related work is by Debeir et al. [8] in which
they begin by computing 168 features for each pixel in a digital
dermoscopic image (11 features computed at 5 scales across 3
channels, as well as the original RGB values). For each task,
some pixels are randomly selected (n = 2392) from 97 images,
labeled and used to train two classifiers (a decision tree and
a linear discriminant model using stepwise feature selection).
Tenfold cross validation is used to validate their method in each
task. Their first task is lesion segmentation, where they achieved
a sensitivity/specificity pair of 90%/91% and 91%/93% using
decision trees and linear discriminant analysis (LDA), respec-
tively. Although they apply their models to entire images (of
size 768 × 512) the validation is only performed on the subset
of randomly selected pixels. Next, they apply their method to
a five-class problem for detecting various dermoscopic struc-
tures (diffuse pigmentation, brown globules, black dots, blue-
white veil, and other). Their method remains the same and they
achieve impressive results, especially after merging two diffi-
cult to discriminate classes (brown globules and black dots).
While this approach proved promising, and while others have
employed similar techniques, no follow-up work on a general-
ized model has been reported by either Debeir et al. or other
research groups in over ten years. Recently, however, Celebi et
al. [19] employed a similar supervised technique to detect the
dermoscopic structure blue–white veil (and related structures)
and achieve an overall accuracy of 82.94%.

In the rest of this section, we briefly review other previous
work in hair detection, lesion segmentation, and pigment net-
work detection paying particular attention to the use of super-
vised learning.

A. Lesion Segmentation

Of all the subproblems in ASLD, lesion segmentation is per-
haps the most studied. Supervised methods, however, are very

rarely employed. A recent survey of dermoscopic segmentation
methods [20] that examines 16 articles includes only 2 which
use supervised learning. Here, we review these methods [7], [21]
as well as [22]. Additionally, we review the algorithms that we
compare against: K-means++ (KPP) [10], J-image segmentation
(JSEG) [11], dermatologist-like tumor area extraction algorithm
(DTEA) [12], statistical region merging (SRM) [13], and thresh-
old fusion (FSN) [14].

Donadey et al. [21] begin by using heuristics to select a point
within the lesion. 1-D intensity profiles are created radially from
this point on which the ground truth position of the lesion bor-
der is marked. These profiles are used to train a neural network
which then predicts the lesion border on unseen profiles. They
do not report any quantitative or comparative results. Tenen-
haus et al. [7] use intensity values at multiple scales and logistic
regression to segment images. They achieve an accuracy of
75%. Roberts and Claridge [22] employ many standard image
processing primitives (morphological operations, logical oper-
ations, thresholding, edge filtering, etc.) and genetic program-
ming to “evolve” segmentation algorithms. Quantitative results
are reported graphically, but it appears that approximately 60%
of the lesions are segmented with a sensitivity and specificity
greater than 90%.

The KPP algorithm [10] begins by spatially clustering an
image’s pixels based on its color as well as its distance from
the center of the image using the K-means++ algorithm [23].
It then finds the subset of clusters that minimizes an objective
function which measures the distance between color histograms
of the clusters as well as the textural gradient. The JSEG al-
gorithm [11] first quantizes the image into 20 classes based on
color. Next, scatter (ratio of interclass to intraclass variance)
is computed locally at various scales. Multiscale methods are
then used to merge the resulting “J-images” into a final seg-
mentation. The DTEA segmentation algorithm [12] first obtains
an initial segmentation by finding high-frequency components
via filtering and the Otsu method of image thresholding [24].
This subdivides the image into many small regions which are
then merged until they are of sufficient size (at least 5% of the
image). A rather elaborate series of rules is then used to se-
lect the subset of regions which is considered to belong to the
lesion. Finally, to mimic dermatologist’s tendency to conserva-
tively segment the lesion, the border is slightly expanded. To
account for interobserver agreement in experts’ segmentations,
ground truth is derived via agreement from the annotations of
five experts. The same research group has since proposed a
metric that operates directly on multiple ground truths [25]. The
SRM algorithm [13] is based on the statistical region merging
algorithm [26] which iteratively tests neighboring regions to
see if they should be merged based on the inter- and intraregion
variance. The FSN algorithm [14] takes the results of several
thresholding algorithms and fuses them using a Markov model
to arrive at a final segmentation.

B. Hair Detection

The most popular hair detection method is Lee et al.’s freely
available image processing software DullRazor [15]. DullRa-
zor applies a grayscale morphological closing operation with
a linear structuring element to detect dark hair. The operation
is performed 3 times (with the structuring element oriented at
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Fig. 2. Training phase of our method. Features are computed over a training set whose dimensionality is then reduced via LDA. The posterior probabilities of
the labels are modeled as multivariate Gaussian distributions and saved along with the eigenvectors obtained from LDA.

Fig. 3. Labeling phase of our method. For a previously unseen image, features are computed as before and the dimensionality of the featurespace is reduced
using the eigenvectors obtained from the training phase. MAP estimation is then used along with the posterior probabilities from the training phase to label the
image.

0◦, 45◦, and 90◦, respectively) and a mask is created by thresh-
olding over the maximal difference between the 3 resulting
images and the original. Such a mask is created for each chan-
nel (in RGB space) and the hair mask is obtained by a union
of these three masks. Schmid-Saugeon et al. [27] and Xie et
al. [28] employ similar techniques. Recently, Nguyen et al. [29]
take the absolute value of a matched filter to detect both light
and dark hairs. To date, aside from [8], there has been no other
hair detection method that employs supervised learning.

C. Pigment Network Detection

There is only one known work where supervised learning
has been used to detect the dermoscopic structure pigment net-
work. Serrano and Acha [30] use Markov random fields in a
supervised setting to classify 100 tiles (sized 40 × 40) that
have been labeled with one of five global patterns: reticular,
globular, cobblestone, homogeneous, and parallel. In the con-
text of the study, a reticular pattern can be considered equiv-
alent to pigment network. Using tenfold cross validation, they
achieve an impressive overall accuracy of 86%, considering
the difficulty of a five-class problem. It is unclear, however,
how the tiles were selected. It could be the tiles were difficult,
real-world examples, or that they were text-book-like definitive
exemplars.

III. METHOD

In this section, we describe our general method designed to
perform several tasks in ASLD. Our method, which is suffi-
ciently general to identify arbitrary structures, is divided into
two stages. In the training stage, parameters for multivariate
Gaussian distributions of each class to be learnt are estimated.
In the labeling stage, individual pixels from previously unseen

images are assigned a label using MAP estimation. An overview
of the training and labeling stages are illustrated in Figs. 2 and
3, respectively.

A. Training Phase

For each task, we begin with a set of NL mutually exclusive
labels L = {l1 , . . . , ln} as well as a set of labeled images. Im-
ages are first converted to CIE L*a*b* and all operations are
performed in this space. CIE L*a*b* was chosen because it is
approximately perceptually uniform and is, therefore, a natural
choice if attempting to mimic human behaviour. Additionally,
CIE L*a*b* separates intensity information (in the L* chan-
nel) from color (in the a* and b* channels). Other colorspaces
may yield marginal improvements; however, the emphasis of
this paper is not on discriminative features, thus this was not
considered. Pixel-based features are then computed over this
training set. Dermoscopic images have no intrinsic orientation;
therefore, all features should be rotationally invariant. Since the
emphasis of this paper is on the general model rather than dis-
criminative features, we consider two modest feature sets. The
first is filtering with a series of Gaussian and Laplacian of Gaus-
sian filters at various scales (σ = {1.25, 2.5, 5, 10, 20}) in each
color channel (for a total of 30 features); we call this feature set
G-LoG. The second is a histogram of oriented gradients [31]
computed over the L* channel with nine orientations and one
spatial bin over an 11×11 rectangular window. In order to make
this feature set rotationally invariant, this histogram is shifted
so that the dominant bin is in the first position; we call this fea-
ture set HoG. While the choice of window size was made rather
arbitrarily, methods exists for determining this empirically [32].
We evaluate the effectiveness of our features in Section IV-A by
comparing against the raw L*a*b* values.
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After extracting features, the spatial relationship between pix-
els is discarded and, henceforth, will be considered to be inde-
pendent; it is assumed that all relevant dependencies have been
captured by the features. The dataset is now viewed as a set
of labeled pixels. For larger datasets, sampling is performed on
this set to make the computation tractable. Even very aggressive
sampling (0.1%) was shown to have no effect on results.

LDA is then used to reduce the dimensionality of these pixels.
LDA finds the subspace which maximizes the separability of the
labels. This is achieved through an eigenvalue decomposition
of a scatter matrix, which represents the separability of the
classes (between class variance divided by within class variance)
with respect to each feature. Let Nli represent the number of
observations of class li , x

lj
i represent the ith observation (pixel)

of the class lj , μj the mean of class lj , and μ the overall mean
across all classes. LDA finds the eigenvectors of the scatter
matrix S−1

w Sb where [33]

Sw =
NL∑

j=1

Nl j∑

i=1

(xlj
i − μj )(x

lj
i − μj )T (1)

Sb =
NL∑

j=1

(μj − μ)(μj − μ)T . (2)

After applying LDA, a pixel p is represented as a 1 × (NL −
1) vector, where NL is the number of mutually exclusive la-
bels. The posterior probabilities P (p|li) in this subspace are
modeled as multivariate Gaussian distributions. We evaluate the
effectiveness of LDA in Section IV-A by comparing it to its
unsupervised counterpart principal component analysis (PCA),
we also evaluate performance when the dimensionality reduc-
tion step is skipped entirely.

B. Labeling Phase

To label an unseen image, features are computed as in the
training phase and dimensionality of the featurespace is re-
duced using the saved eigenvectors. We then wish to estimate
P (li |p) that is the probability that a pixel is labeled li given the
observations p. We then assign the most probable label

l∗ = argmax
li ∈L

(P (li |p)) . (3)

Applying Bayes’ rule (P (li |p) = P (p|li)P (li)/P (p)), ob-
serving that P (p) is constant with respect to li , then performing
a log transformation for computational convenience, we arrive
at the standard equation for maximum likelihood estimation

l∗ = argmax
li ∈L

(log P (p|li) + log P (li)) . (4)

While we could have estimated and saved the prior probabili-
ties P (li) in the training phase, in practice, we consider a range
of priors in order to sweep out an receiver operating character-
istic (ROC) curve and evaluate the method over the entire range
of sensitivities. We are, therefore, performing MAP estimation.
For the two-class case (L = {l1 , l2}), an ROC curve is created
by considering constraint P (l1) + P (l2) = 1 and varying the
values of P (l1) and P (l2) accordingly. Equivalently, one could
generate an ROC curve by computing the likelihood of a class

Fig. 4. Dermoscopic images (first row) and resulting segmentations (second
row) comparing our method (red) to expert ground truth (black) as well as the
KPP (green), JSEG (blue), DTEA (purple), SRM (yellow), and FSN (cyan) algo-
rithms. First column: lesion with multiple colors and textures. Second column:
lesion where the border is not clearly defined.

[see (5)] and considering a range of thresholds. In Section IV-A,
we compare MAP estimation to the simplest of segmentation
techniques: histogram thresholding.

Compelling visualizations are also possible by calculating the
likelihood of each label

Li(p) =
P (p|li)∑NL

j=1 P (p|lj )
(5)

and plotting each labels’ likelihood in separate color channels
of the image.

IV. RESULTS AND DISCUSSION

We now apply our method to three common tasks in ASLD:
lesion segmentation, hair detection, and the detection of the
dermoscopic structure pigment network.

A. Lesion Segmentation

To begin, we apply our model to segment lesions. A dataset
is created using images from atlases [34], [35]. Eighteen typical
as well as 100 challenging images are selected. Challenging
images are ones that are sometimes excluded from other studies
[11]. An image is considered challenging if one or more of the
following conditions is met: 1) the contrast between the skin
and lesion is low; 2) there is significant occlusion by either oil
or hair; 3) the entire lesion is not visible; 4) the lesion contains
variegated colors; or 5) the lesion border is not clearly defined.
Examples of challenging images are shown in Fig. 4. Each
image is segmented by a dermatologist and pixels are labeled
from the set L = {“lesion,” “background”}. The G-LoG feature
set is used and tenfold cross validation is employed to segment
the dataset. LDA, as well as the entire testing phase, is included
within the cross validation loop.

We compare our method to five other lesion segmentation
techniques: KPP [10], JSEG [11], DTEA [12], SRM [13], and
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TABLE I
COMPARISON OF OUR METHOD’S ABILITY TO SEGMENT LESIONS TO FIVE

PREVIOUSLY PUBLISHED METHODS

Fig. 5. ROC curve comparing our method’s ability to segment lesions to five
other published methods: KPP [10], JSEG [11], DTEA [12], SRM [13], and
FSN [14].

FSN [14]. We present sample segmentations in Fig. 4 as well as
quantitative results in Table I and Fig. 5. Since the other algo-
rithms return binary segmentations, we compare the resulting
sensitivity/specificity points, to the closest point on the ROC
curve for our method. Sensitivity is defined as the fraction of
correctly labeled lesion pixels. Specificity is defined as the frac-
tion of correctly labeled background pixels.

The JSEG, DTEA, and our algorithm give comparable re-
sults with the JSEG algorithm performing marginally better;
however, the JSEG algorithm was only able to segment 93 of
the 118 images, presumably due to the difficulty of the dataset.
The SRM algorithm slightly outperforms our method; how-
ever, it was only able to segment 114 of the 118 images. The
FSN algorithm performed comparably to SRM; however, un-
like SRM it managed to segment all 118 images. Our method
significantly outperforms the KPP algorithm, which appears to
perform poorly due to occluding hair. Results from the KPP,
JSEG, DTEA, and SRM algorithms were generously provided
by Professor Emre Celebi.

Additional improvements to this method are achieved by us-
ing resulting likelihood maps to initialize the random walker

Fig. 6. Confidence Interval based segmentation. (a) Dermoscopic image of a
seborrheic keratosis. (b) Resulting likelihood map (Llesion ) c) MAP segmen-
tation (black: Llesion ≥ 0.5) and 80% confidence interval segmentation (blue:
Llesion ≥ 0.1; red: Llesion ≥ 0.9).

algorithm [36]. The details and subsequent results are not re-
ported here, but can be found in [37].

We also examine the computational time required. A standard
image in this dataset is 750 × 500 pixels. For a typical PC
operating on images of this size, filtering, and sampling takes
75 s per image. Performing LDA and estimating the posterior
probabilities takes less than a second, and labeling a previously
unseen image takes 10 s. Both the filtering/sampling stage and
the labeling stage are amenable to parallelization.

Furthermore, due to the probabilistic nature of the model,
confidence intervals on segmentations are possible by comput-
ing Llesion and thresholding accordingly. For example, an 80%
confidence interval segmentation can be realized by considering
the segmentations Llesion ≥ 0.1 and Llesion ≥ 0.9. An example
of this is shown in Fig. 6. Due to the diagnostic importance
of the characteristics of a lesion’s border, this appears to be an
elegant way to explicitly define a “border region” from which
subsequent border features can be extracted.

Next, we evaluate the relative contribution of different as-
pects of our model by systematically substituting components.
The full model is named G-LoG/LDA/MAP since it employs
the Gaussian and Laplacian of Gaussian filters, uses LDA for
dimensionality reduction and MAP estimation to perform the
labeling. We evaluate the effect of LDA by comparing it to PCA
(G-LoG/PCA/MAP). For this task, LDA reduces the dimension-
ality of the featurespace to 1 (since NL = 2). We, therefore, ap-
ply PCA and use only the single largest mode of variation. We
also evaluate performance when the dimensionality reduction
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Fig. 7. ROC curves of the relative contribution of various aspects of the model
for the segmentation task; see text for details.

TABLE II
SYSTEMATIC COMPARISON OF VARIOUS ASPECTS OF OUR MODEL VIA

SUBSTITUTION OF VARIOUS TECHNIQUES FOR THE SEGMENTATION TASK

step is removed entirely (G-LoG/noDR/MAP). Next, we evalu-
ate the contribution of MAP estimation by comparing the model
to one that simply employs thresholding (G-LoG/LDA/Thresh).
We then evaluate the contribution of the featurespace by com-
paring the model to one that simply operates on the L*a*b*
values of each pixel (Lab/LDA/MAP). Finally, we compare to
the simplest segmentation algorithm: thresholding of the inten-
sity channel (L*/thresh). Results are presented in Fig. 7 and
Table II.

This relative evaluation admits several conclusions: 1) our
final model (G-LoG/LDA/MAP) outperforms similar counter-
parts; 2) the dimensionality reduction step in the model is
essential—removing it causes a drastic reduction in accuracy;
and 3) for the task of lesion segmentation, textural, or spatial
information (as captured by the G-LoG feature set) is not very
useful as it barely outperforms the simpler L*a*b* feature set.

B. Hair Detection

To evaluate our method’s ability to detect occluding hair, we
employ dermoscopic images overlaid with randomly generated
phantom hairs [38] and compare our results to DullRazor [15].
We consider two sets of 32 images. The first imageset contains

Fig. 8. Comparison of our method’s (curves) ability to identify occluding
hair to DullRazor [15]. DullRazor only identifies dark hair, hence the large
discrepancy in sensitivity between the two datasets.

TABLE III
COMPARING OUR METHOD’S ABILITY TO IDENTIFY OCCLUDING HAIR TO

DULLRAZOR [15]

Fig. 9. Comparison of our method to DullRazor. (a) Sample phantom hair
image (L* channel). (b) Sample result from our method. (c) Sample result from
DullRazor.

both light and dark colored hair. Since DullRazor is only capable
of detecting dark hairs, a second imageset is considered consist-
ing of entirely dark colored hair. Each pixel is labeled from the
set L = {“hair,” “background”}. The HoG feature set is used
and fourfold cross validation is employed to label images.

Fig. 8 compares the accuracy of our method to DullRazor
and quantitative results are presented in Table III. DullRazor
returns a binary mask; therefore, AUC is not reported. Reported
sensitivity/specificity pairs for our method is the point on the
ROC curve closest to those of DullRazor. Although DullRazor
outperforms our method on both datasets, as in the segmentation
task, the difference in performance is quite small.

Fig. 9 illustrates a typical result. DullRazor contains a post-
processing step that eliminates any candidate regions based on
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Fig. 10. Sample images from the pigment network training set along with
segmentations. Images were chosen because the structure occurs throughout
the lesion. Pixels outside the lesion are assigned the label “background” while
pixels inside the lesion are assigned the label “present” if the image contains a
pigment network or “absent” otherwise.

Fig. 11. Qualitative results of our method’s ability to identify the dermoscopic
structure pigment network. First column: original dermoscopic images. Second
column: red, green, and blue channels encode the likelihood that a pixel is
labeled as “background,” “absent,” and “present,” respectively.

shape which explains the “smoother” results obtained by Dull-
Razor. Incorporating an appropriate shape prior [39] into our
model would be an elegant way to replicate this behavior within
our framework.

C. Pigment Network Detection

The final task considered applies our method to detect the
dermoscopic structure pigment network. A pigment network is
defined as a “light- to dark-brown network with small, uniformly
spaced network holes and thin network lines distributed more
or less regularly throughout the lesion and usually thinning out
at the periphery” [16]. The dataset consists of 734 images from
a dermoscopy atlas [34]. Labels of either “absent” or “present”
for the structure pigment network are derived from the atlas.
Since pixel-based ground truth is not available, a custom train-
ing set is created consisting of 20 images where the pigment
network is present across the entire lesion and 20 images absent
of pigment network. Examples of training images containing
a pigment network are shown in Fig. 10. Pixels are assigned
a label from the set L = {“background,” “absent,” “present”}
as follows: for each image, pixels outside the segmentation are
assigned the label “background,” while pixels inside the seg-
mentation are assigned either the label “absent” or “present.”
By considering these three labels, we are simultaneously seg-
menting the lesion and detecting the structure pigment network.
The G-LoG feature set is employed. Since in this task, ground
truth is not defined on a per-pixel basis, we cannot objectively
evaluate performance. We, therefore, present visual results in
Fig. 11 by plotting Lbackground , Labsent , and Lpresent in the
red, green, and blue channels, respectively. We are currently in

the process of creating a expertly annotated dataset to provide
quantitative validation.

V. CONCLUSION AND FUTURE WORK

We have presented a model based on supervised learning
and MAP estimation that is sufficiently powerful and general to
perform competitively on a variety of common tasks in ASLD.
Since the model employs supervised learning, it can quickly be
applied to a variety of tasks and the resulting model parameters
are guaranteed to be optimal.

Although the model yields competitive results, there are many
directions in which it could be extended in order to obtain even
further improvements. Most hair detection and lesion segmen-
tation methods contain a “post-processing” step which attempts
to minimize any local discontinuities or noise. Extending the
model to include a suitable shape prior [39] seems to be a
promising way to generalize this “post-processing” step within
the context of supervised learning. Alternatives to the MAP
model could be explored such as the use of Markov models [40]
to weaken the assumption of the independence of pixels. Nonlin-
earities (such as those provided by SVMs) can be incorporated
by applying the so called kernel-trick to LDA [41] to expand
the set of concepts the model is capable of learning.

Finally, it is hoped the model will be successfully applied
to other tasks in ASLD such as the detection of black frames,
oil bubbles, other dermoscopic structures, as well as to other
problem domains entirely.
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