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Abstract. A novel geometric framework for decomposition of tensor
distance into shape and orientation distances is proposed. We show that
such shape distance leads to the development of a novel and robust
anisotropy measure that reveals strikingly superior white matter profile
of DT-MR brain images than fractional anisotropy (FA) and analytically
show that it has a higher signal to noise ratio than FA. Using orientation
distance, we show how to rotationally interpolate tensors with a scalar
linear interpolation.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is a non-invasive imag-
ing technique that measures the self-diffusion of water molecules in the body;
thus capturing the microstructure of the underlying tissues. It results in a 3D
image where at each voxel the direction of water diffusion is locally modeled by
a Gaussian probability density function whose covariance matrix is a second or-
der 3x3 symmetric positive definite matrix (tensor). Processing and analysis of
DT-MR images such as noise reduction, segmentation, registration, visualization
etc therefore require appropriate metric be defined on tensors [1-4].

Several tensor distance metrics have been proposed such as the Frobenius
norm and difference in scalar parameters [5, 6]. Distance measures based on only
scalar parameters are intuitive but ignore the orientation of diffusion and thus are
not complete. Although the Frobenius norm works on the whole tensor, it is in-
appropriate because the space of tensors does not form a vector space. In fact av-
eraging using the Euclidean distance very often leads to tensor swelling effect [7,
8]. In order to remedy these shortcomings, more advanced methods have been
proposed recently that take into account the manifold of the space of tensors.
Such metrics include an affine invariant tensor dissimilarity measure(das) [7],
Log-Euclidean metric (drg) [8], and Riemannian metric (dgr) [9, 10] given by:
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These distance metrics, though developed on solid mathematics, do not pro-
vide the contribution of shape or orientation dissimilarities of tensors towards
the distance measured. Moreover, in some applications it may be considered more
desirable to decompose tensor distance into shape and orientation distances and
work with only either of them. In this paper, we propose a novel geometric frame-
work for the decomposition of tensor distance into shape and orientation dis-
tance measures. This is achieved by computing the shape distance as a function
of eigenvalues, while the orientation distance from the rotation matrix needed
to align the corresponding eigenvectors of tensors.

We show that such shape distance measure leads to the development of a novel
rotationally invariant anisotropy measure that reveals superior white matter
profile of brain image than fractional anisotropy (FA) and analytically show that
it has a higher signal to noise ratio (SNR) than FA. We also show that rotational
interpolation of tensors performed by interpolating rotation matrices [9] can be
achieved by a linear interpolation of angles using our orientation distance.

The paper is organized as follows: The proposed shape distance is presented
in section 2 followed by a new anisotropy measure in section 3 whose robustness
and noise immunity is analyzed in section 3.1. In section 4, we present the
proposed orientation distance and use it for rotational interpolation of tensors
in section 4.1. Section 5 concludes the paper.

2 Shape Distance

The shape distance is the distance between a pair of tensors whose eigenval-
ues are ordered, say in descending order. Intuitively such distance should be a
function of only the eigenvalues of the tensors. In fact, given tensors 77 and
Ty with ordered eigenvalues D; = diag(A1, A2, A3) and Dy = diag(p1, po, 1i3)
respectively both having the same eigenvectors matrix V (VV?! = VIV =T
where ¢ stands for matrix transposition), we get T; = VD,;V*, T,' = VD 'V?
and log(T;) = Vieg(D;)V*, i = 1,2. Noting that ||A|l2 = trace(A*A), it is

then easy to show that (1)-(3) simplify to da;(Ty,T) = 2 Zle W,

dpp(T1,Ty) = /37, (logt)? and dpr(Ty,Ty) = /37, (logt)?. Motivated
by these observations, we define our shape distance as follows:

Definition 1:- Let 77 and T be tensors with ordered eigenvalues (A1, A2, A3)
and (w1, ua, pg) respectively. Then we define the shape distance denoted as dgp,
between T and 15 as

dsn(T1,T2) =

In a way, the shape distance is defined as the sum of the squares of the differences
between corresponding ordered eigenvalues of the tensors. The denominator in
the expression accounts for scale invariance of the shape distance. Moreover



since rotating tensors does not change their eigenvalues, we notice that dgj is
rotationally invariant.

3 Shape Anisotropy Index

Given a tensor T', FA can be interpreted as the distance between T" and its closest
isotropic tensor T;s, = M where X is the mean of the eigenvalues of T and [
is a 3x3 identity matrix[11]. Since T differs from Tjs, only in shape but not in
orientation, we may as well measure the anisotropy of T as the shape distance
between T" and Tjs,. Because the range of FA is [0, 1] whereas the range of dg, as
defined in (4) is [0, +00), for comparisons with FA and for displaying purposes
we renormalized dgp, to tanh(dsp,) and define a novel anisotropy measure, which
we refer as Shape Anisotropy (SA), as follows:
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Fig. 1. Qualitative comparison of FA and SA maps using DT-MR brain image slice.

Definition 2:- Let T be a tensor with eigenvalues (A1, A2, A3). Then we define



the Shape Anisotropy (SA) measure of T as

SA= tanh(

Qualitative comparison of FA and SA maps is shown in figure 1 using a real
brain DT-MR image slice. We see from figures 1(a) and 1(b) that the SA map
is brighter than FA which can also be seen in 1(c) where we show the difference
between SA and FA maps (i.e. SA - FA). The intensity values of SA and FA
maps are inspected along the green line shown in 1(c¢) and plotted in 1(d) which
clearly shows SA map has higher intensity values than FA map along the line.

3.1 Noise Immunity Considerations

While figure 1 gives a qualitative comparison of FA and SA maps, we now an-
alytically show that SA has higher noise immunity than FA by comparing the
SNR of SA and FA. For any Anisotropy Index (AI) such as relative anisotropy
(RA), FA and SA; assuming that all \;’s are independent with the same stan-
dard deviation (s.d.) of noise, the SNR(AI) per unit s.d. of noise in A; is given
by [12]

3
SNR(AI) = AI/

OAIN?2
> (2

Following the approach in [12], we have calculated the values of AI and
SNR(AI) of RA, FA and SA for a prolate tensor whose mean diffusivity A\ =
(A1 + A2+ A3)/3 is kept constant at 0.7 - 1073mm? /s, in agreement with typical
values of the experimentally measured value for normal cerebral tissue. We then
vary A; from 0.7-1073mm?2 /s t0 2.1-10"3mm? /s and keep Ay = A3 = (3A—\;)/2.
Figure 2(a) shows plots of AI (RA, FA and SA) as a function of the dominant
principal diffusivity A\; that was normalized relative to the mean diffusivity \.
Figure 2(a) shows that SA is consistently greater than or equal to FA which, as
shown in [12] (c.f. fig 1(a)) and reproduced here, is greater than or equal to RA
for all anisotropy levels. The gap between SA and FA is pronounced more clearly
as we move away from isotropic case and decreases as we approach the case of
linear anisotropy. RA shows stronger linear variation with A; than both FA and
SA while SA depicts strongest non-linear variation. Since SA takes consistently
larger values than FA and RA, SA maps may provide a more detailed depiction
of anisotropic areas.

Figure 2(b) shows plots of SNR(AI) as a function of the normalized dominant
principal diffusivity A;. For small anisotropy levels, all RA, FA and SA have
comparably same SNR but their differences in noise sensitivity becomes more
prominent as anisotropy level increases with SA having better SNR than FA,
which has higher SNR than RA (c.f. fig 1(b) in [12]). Therefore the SA maps
will generally be more robust to noise than the FA and RA maps, exhibiting
little intensity variation within structures of uniform anisotropy. The differences



in the appearance of noise in the maps of the three Al is more pronounced for
the strongly anisotropic structures. Also note that SNR(SA) exceeds the axes
limits for A; values exceeding 2.5 (i.e. SA values exceeding 0.98).
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Fig. 2. Al and SNR(AI) of prolate tensor as its anisotropy varies from 0 to 1 as a
function of the dominant principal diffusivity A;.

4 Orientation Distance

The orientation distance is the distance measure we would expect between a
given tensor and a tensor obtained by rotating it, i.e., distance between ten-
sors having the same shape but oriented differently. Figure 3(a) depicts such
a scenario. We start with 77 and rotate it by 30°,60°,90°... about one of its
eigenvectors to get To,T3,Ty... We then ask the question: How is the distance
between pairs (T, T}) related with the angle needed to rotate T; to get T} or vice
versa? It is clear that T} and T, are more similar than say 77 and T3. Similarly
T1 and T3 are more similar than say T7 and Tj. This implies that the orientation
distance is proportional to the angle required in order to rotate one tensor to
get the other. But then we see that 77 and 75 are more similar than T} and T
although T5 was obtained by rotating 77 by 120° while T, was obtained by ro-
tating 17 by only 90°. This is because 75 can in fact be obtained from 73 by only
60° rotation in the opposite direction. Therefore we conclude that the distance
measure increases as the angle increases from 0° to 90° and then decreases as
the angle increases from 90° to 180°. This is a property exhibited by the Sine
function. Motivated by this observation, we define the orientation distance when
rotation is about an eigenvector as follows:

Definition 3:- Suppose 77 is a tensor with eigenvalues in descending order
(A1, A2, A3) and corresponding eigenvectors (v1,v2,v3). Let T be a tensor ob-
tained by rotating 77 by an angle 6 about an eigenvector v;,7 = 1,2, or 3. Then
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Fig. 3. Rotation of tensors and plots of tensor distances vs. rotation angles

we define the orientation distance between T and Ty denoted by d,,.(.,) as
Qoron (T, Te) = (A = M)sin(0); i # 5,0 # k. > k. ™)

The motivation for the multiplicative factor (A\; — Ax) in (7) may be illustrated
as follows: Suppose 77 is a tensor aligned along the standard 7, 7 k axes and
let T be obtained by rotating 77 by 90° about ¢. Then the elgenvalue along j
of T5 is equal to the eigenvalue along k of Ty and vice versa. In other words the
eigenvalues along 7 and k are swapped. Now observe that if the eigenvalues along
} and k of T1 were equal, then such 90° rotation of 77 would result in 75 that
is identical to T} and hence the orientation distance between T} and T3 should
be zero. This case is captured by the multiplicative factor. This intuitive orien-
tation distance is verified as shown in figure 3(b) which shows plots of tensor
distances (dar, dpg, drr and do,(,,)) versus rotation angles (0° —180°) between
T; with eigenvalues (6.0, 1.0, 1.0) and corresponding eigenvectors (l%, J, 1) and
T;,i=1,2,3, ... obtained by rotating T} about . It is clear from these plots that
when tensors have same shape, what all the tensor distance metrics measure is
the orientation distance between tensors which can be computed from the angle
of the rotation matrix needed to align the eigenvectors of the tensors.

Definition 4:- Let 77 and 75 be tensors with eigenvalues in descending or-
der (A1, A2, A3) and (p1, po, p3) and corresponding eigenvectors (v, v9,v3) and
(u1,usg, us) respectively. Suppose that (uq, ug, u3) is obtained by rotating (vy, ve, v3)
with an angle of 6 about an axis along an eigenvector v;,7 = 1,2 or 3 so that
Ai = p;. Then we define the orientation distance between 77 and T denoted by
dor(vi) as:

dor(vi)(TlaT2) - \/()\j - Ak)(ﬂj - ,uk)sm(ﬁ), { 7é j,Z 7é kv.] > k. (8)



Finally consider the case when the axis of the rotation matrix needed to align
tensors 177 and 75 is not along any of the eigenvectors of 17 or T5. In this case,
the orientation distance suddenly becomes more involved and does not follow
the pattern of the Sine function. We circumvent this difficulty by decomposing
the rotation matrix that aligns 77 and 75 into three rotation matrices whose axes
of rotation are about the eigenvectors of T;. Such rotation matrix decomposition
can be achieved using the method proposed by Wittenburg and Lilov [13]. The
orientation distance is then defined as:

Definition 5:- Given tensors 77 and T, with eigenvalues in descending or-
der (A1, A2, A3) and (p1, po, pi3) and corresponding eigenvectors (v, v2,v3) and
(u1,us,us) respectively, let R be a rotation matrix needed to simultaneously
align (v1,va,v3) to (ur,us, ug). Decompose R into three rotation matrices Ry, Ry
and R3 whose axes of rotation are v, v2 and vs and corresponding angles (known
as Bryant angles) 61, 62 and 65 respectively. Then we define the orientation dis-
tance between T and T3 denoted by d,, as:

3
doT(TlvTQ) = Z()‘] - Ak)(:u’] - Mk)san(ez)a { 7é .7’2 7é ka] >k (9)

i=1

Observe that (7) is a special case of (8) obtained when A; = p; and A\, = pg
and (8) is a special case of (9) obtained when the alignment rotation matrix has
an axis along an eigenvector of T7.

4.1 Rotational Interpolation of Tensors

As an application of orientation distance, we have computed the interpolation
between a prolate tensor with eigenvalues (1.0, 0.1, 0.1) and a tensor with same
eigenvalues but whose eigenvectors are rotated by 6 = 90°. Rotational interpo-
lation is performed by interpolating 6 linearly. The result of the interpolation is
shown in figure 4. The same result was obtained by interpolating rotation ma-
trices in [9]. When eigenvalues of the interpolated tensors are equal, arithmetic
interpolation preserves the trace of tensors and geodesic interpolation preserves
the determinant of tensors while rotational interpolation preserves both the trace
and determinant of the interpolated tensors (c.f. fig 2 in [9]).

5 Conclusions and Remarks

A novel geometric framework for decomposition of tensor distance into shape
and orientation distance measures is presented. The development of novel and
robust anisotropy measure from shape distance and rotational interpolation of
tensors using orientation distance is presented. Future work include, among other
things, comprehensive analysis of SA and its clinical applications, computation
of the orientation distance without having to decompose the alignment rotation
matrix, and optimal weighting scheme to combine the shape and orientation
distances for a single tensor distance metric.
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Fig. 4. Rotational interpolation of tensors obtained with a linear interpolation of ro-
tation angles.
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