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ABSTRACT

Inpainting, a technique originally used to restore film and photographs, is used to disocclude hair from
dermascopic images of skin lesions. The technique is compared to the conventional software DullRazor, which
uses linear interpolation to perform disocclusion. Comparison was performed by simulating occluding hair on a
dermascopic image, applying DullRazor and inpainting and calculating the error induced. Inpainting is found
to perform approximately 33% better than DullRazor’s linear interpolation, and is more stable under heavy
occlusion. The results are also compared to published results from two other alternatives: auto-regressive (AR)
model signal extrapolation and band-limited (BL) signal interpolation.
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1. INTRODUCTION

Malignant melanoma poses a significant risk. While the overall age-standardized mortality rate of cancer is
decreasing in Canada, the mortality rate of melanoma continues to rise with a 2-3% annual increase in incidence
rates over the last thirty years.1 Prognosis for advanced melanoma remains poor, with a five-year survival rate of
around 50% for lesions thicker than 3.5mm. However if melanoma is detected early (while the lesions thickness
is less than 1.5mm), the ten-year survival rate is over 90%.2 Therefore, the early diagnosis of melanoma is
critical so that it can be completely excised while it is still localized. As a result, there is a considerable amount
of ongoing research into the automated diagnosis of melanoma from digital dermascopic images. Nearly all
published methods include a pre-processing step at the beginning of the analysis. Pre-processing is usually
responsible for transforming the image into a convenient and workable form, as well as segmentation: the process
by which the boundary of the skin lesion is determined. The disocclusion of hair is a vital part of pre-processing;
occluding hairs can mislead the segmentation algorithm as well as any further analysis. Disocclusion can be
broken into two distinct steps: 1) The pixels of the object to be disoccluded are first be identified, then 2) the
underlying color of the scene is estimated for these pixels. This paper applies a method to improve upon the
second stage of this process. A technique called inpainting is applied to increase the accuracy in estimating the
underlying color of occlusion pixels.

Inpainting is the art of modifying an image in a way that is undetectable to the casual observer. It was
originally used to restore damaged artwork, however recent automated inpainting methods have found many
modern applications in areas such as restoration, disocclusion, increasing resolution,3 filling ‘holes’ in 3D models4

and wireless transmission.5 It has largely been a manual process until Bertalmio, Sapiro et al.’s seminal paper in
2000.6 They consulted conservators at the Minneapolis Institute of Arts in order to analyze how experts inpaint.
While the experts disclaimed that there in no single correct way to inpaint, and that inpainting is largely a
subjective process based on both the artwork and artist, they described the overall process shown in figure 1.
Before beginning, the entire picture is analyzed to give guidance as to how specific areas should be filled. The
inpainting process then involves: (1) Continuing structural elements into the gap; (2) filling the gap with the
colour of the boundary; and (3) Adding texture.
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Figure 1. How experts inpaint: a) The entire image is analyzed to determine how to fill in the gap (white). b) Structural
elements are propagated. c) Colour is propagated. d) Texture is added.

(a) (b) (c)

Figure 2. Phantom image demonstrating the limitations of DullRazor a) The original image b) The masked image inter-
secting the image gradient at a 45 degree angle. c) The result from DullRazor

Section 2 reviews previous work in dermascopic hair disocclusion as well as inpainting. Section 3 describes
how the inpainting technique is compared to DullRazor;7 the seminal work in dermascopic hair disocclusion.
Section 4 reports qualitative and quantitative results of the comparison and section 5 concludes with discussion
and comparison to other published methods.

2. PREVIOUS WORK

2.1 Dermacopic Hair Disocclusion

The seminal work in dermascopic hair disocclusion is Lee et al.’s freely available program DullRazor.7 DullRazor
first identifies dark occluding hair by means of a grayscale morphological closing operation applied separately
to each of the colour channels.8 Next, for each hair pixel, the two closest non-hair pixels in the direction
perpendicular to the of the hair are determined and linear interpolation is used to estimate the underlying skin
color across the width of the hair. While generally quite effective, there are some instances in which DullRazor
performs poorly at estimating the replacement colour. Figure 2 illustrates one such instance: when a gradient
occurs in the image that is at an angle to the direction of the hair. Additionally, there is no means to ensure
smoothness among the pixels being replaced. This can cause artefacts in the resulting image, which may affect
the segmentation process. Also, the linear interpolation technique is inherently one dimensional and therefore a
reasonable direction in which to interpolate must be determined. This becomes more problematic as the amount
of occluding hair increases, as illustrated in Figure 3.

She et al. propose two alternate methods to estimate the underlying color of hair pixels.9 Their first method
is an auto-regressive (AR) model signal extrapolation technique. This stochastic process uses the N previous
outputs to recursively generate the current output. Their paper describes a 1-dimensional formulation of this
model. They use either side of the hair as initialization points and extrapolate across the width of the hair
in a similar fashion to DullRazor. As a result, this method suffers from the same problem as DullRazor: it
is a one-dimensional technique being applied to a two-dimensional image and thus a reasonable extrapolation
direction must be determined. Their second method is a band-limited (BL) signal interpolation technique. This
method takes the Fourier transform of the image, sets the response outside of a defined region to zero, takes the
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Figure 3. Difficult real-world examples of skin lesions with many occluding hairs. a), e) The original images b), f) The
masked images after the ‘hair pixels’ have been identified. c), g) The results from DullRazor’s linear interpolation. d), h)
The resulting inaccurate segmentations.

inverse Fourier transform and updates the pixels within the masked region accordingly. This process iterates
until convergence.

2.2 Inpainting

There now exists many inpainting algorithms for many different tasks. The original algorithm6 inpainted struc-
ture only, resulting in filled regions lacking texture (such as in figure 1c) however more recent work includes
algorithms to inpaint texture,10 video3 and to decompose an image into a structural component (which can be
inpainted) and textural component (which can treated with texture synthesis techniques11). The choice of the
most appropriate algorithm is a critical decision. While the texture inpainting algorithms tend to yield more
perceptually pleasing results, this comes at the expense of making larger assumptions about the underlying
data. Since accuracy in segmentation and analysis is our motivation and not perceptual consistency, such large
assumptions will surely induce more bias into these downstream processes. Therefore the original inpainting
algorithm6 that inpaints structure only, was chosen.

The key observation common to all algorithmic inpainting techniques is that preservation of structural ele-
ments is crucial.6 This is illustrated in figure 4. Let I represent the image in question, and Ω be a region of
the image to be inpainted (no assumptions as to the topology of Ω is made). Let δΩ represent the boundary
between the region Ω, and the rest of the image I. We now must propagate ‘information’ from the image I
into the region Ω. The ’information’ we choose to propagate is unimportant at this point; it could be colour,
texture, smoothness, etc. What is important is to decide how to propagate this information. For a given pixel p
on the boundary δΩ, instead of propagating information in the direction of the boundary normal (np) as linear
interpolation (and therefore DullRazor) does, the novelty provided by inpainting algorithms is that information is
propagated in the direction of structure. The structural importance of an area is determined by the magnitude of
the gradient. Since the gradient defines the direction of the greatest rate of change, the direction of propagation
is chosen to be perpendicular to the gradient (∇I⊥p ).

The original inpainting algorithm uses ’smoothness’ as the information to propagate into the region.6 The
Laplacian is used as the measure of smoothness, which is defined for a given pixel p as:

L(p) = Ixx(p) + Iyy(p) (1)
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Figure 4. Algorithmic inpainting. For each pixel p on the boundary δΩ, ∇I⊥
p is chosen as the direction of information

propagation (instead of np). The relative importance of information propagation is given by ‖∇I⊥
p ‖

Where Ixx and Iyy denotes the second derivative in the x and y directions respectively. The problem is modeled
as a differential equation. For each pixel along the boundary, smoothness is propagated in the direction of
∇I⊥p with a velocity of ‖∇I⊥p ‖. The formulation is solved using an iterative discreet scheme implementation.
Additionally, after A iterations of inpainting, B iterations of anisotropic diffusion are performed.

3. METHODS

This section describes how the inpainting technique described in section 2.2 was compared to DullRazor. A
dermascopic image of a benign nevus was selected. A certain number of simulated hairs were superimposed
onto the lesion, and then removed using both DullRazor, and inpainting. Error was calculated by measuring the
absolute difference between the resulting images and the original. This process was repeated several times, each
time changing the number of simulated hairs to be generated. Section 3.1 describes the creation of the simulated
hairs, section 3.2 describes how error is calculated and section 3.3 details the inpainting parameters used.

3.1 Simulating Hair

Simulated hairs were created by first generating a hair mask. A hair is generated by randomly selecting two
points (x1, y1) and (x2, y2) in the image. Pixels that intersect this line segment are added to the hair mask. This
is repeated n times. The resulting hair mask is then morphologically dilated with circle with a radius of 2. Once
the hair mask has been created, pixels within the mask are set to black (RGB value of (0, 0, 0)). These images
are then passed to the DullRazor and inpainting algorithms.

Additionally, tests were performed as She et al. describe.9 They describe three tests each involving a single
hair 3 pixels wide and 100 pixels long. Each tests uses a different hair orientation: horizontal, vertical or diagonal.

3.2 Calculating Error

Error is calculated by computing the sum of the absolute difference between the original and resulting images
across all color channels. Let Io and Ir represent an original and resulting image respectively. Let I(x, y, c)
represent the value of the image at location (x, y) in the cth color channel. Total error (TE) is then:

TE =
∑

∀(x,y,c)

|Io(x, y, c) − Ir(x, y, c)| (2)

and per-pixel error (PPE) is the total error divided by the number of pixels in the hair mask.

Error is also calculated as in She et al.’s paper,9 by computing the mean and standard deviation of the
pixel error. Since they do not take the absolute value of the error, negative errors and therefore negative means
are possible. A negative mean implies that the disocclusion algorithm tends to underestimate the underlying
intensity of the skin. Similarly, a positive mean implies a tendency to overestimate. Additionally the standard
deviation represents how consistent the algorithm is at performing estimations.

Proc. of SPIE Vol. 6914  691427-4



Inpainting DullRazor
Hairs % of pixels in mask TE PPE Mean error TE PPE Mean error

1 0.52 17679 13.55 -0.08±5.95 27069 20.74 1.48±15.26
4 1.99 58871 11.91 -0.15±5.37 78464 15.88 0.89±7.94
9 4.82 160114 13.35 -0.34±6.14 204996 17.09 0.45±8.10
16 6.69 213267 12.82 0.09±5.99 299334 17.99 0.32±8.65
25 9.27 287836 12.48 -0.10±5.76 413540 17.94 1.40±9.52
36 17.59 543969 12.43 0.04±5.70 717734 16.40 0.65±7.79
49 20.19 674724 13.43 -0.13±6.18 873449 17.39 0.56±8.42
64 25.81 830863 12.94 -0.13±6.01 1105938 17.22 0.67±9.05
81 32.67 1104086 13.58 0.21±6.34 1370704 16.86 0.86±8.56
100 37.88 1299338 13.79 0.02±6.37 1610241 17.08 0.77±8.74
121 44.18 1597838 14.53 0.13±6.73 1977745 17.99 1.23±9.97
144 46.55 1807199 15.60 -0.04±7.37 2275788 19.65 1.91±12.79
169 51.97 2017252 15.60 0.64±7.17 2482936 19.20 1.87±12.37
196 58.08 2475163 17.13 1.34±7.99 3722322 25.76 4.26±20.59

Table 1. Total error (TE), per pixel error (PPE) and mean error of DullRazor and inpainting with hair masks of varying
sizes.

Direction Inpainting DullRazor Linear Interpolation AR extrapolation BL interpolation
Horizontal 0.157 ± 3.92 −0.619± 3.58 −6.74 ± 35.68 −2.58 ± 15.24 −0.49± 9.42
Vertical −0.583± 2.54 −0.485± 2.94 −5.50 ± 29.87 −2.42 ± 15.80 −0.09± 10.78
Diagonal 0.069 ± 3.38 1.06 ± 3.52 −3.76 ± 24.97 −2.31 ± 16.67 −1.14± 12.74

Table 2. Mean and standard deviation of pixel error for Inpainting, DullRazor as well a reproduction of She et al.’s
published results9 for Linear Interpolation, AR extrapolation and BL interpolation.

3.3 Inpainting Parameters

The inpainting algorithm was implemented in Matlab. Peter Kovesi’s anisotropic diffusion implementation was
used.12 Certain parameters needed to be chosen for the inpainting algorithm. The number of iterations was set
to 4000, A (the number of inpainting steps) was set to 100 and B (the number of steps of anisotropic diffusion)
was set to 2. Parameters for anisotropic diffusion was set as follows: κ (conduction coefficient) was set to 50,
and λ was set to 0.25. It is worth noting that very little time was spent tuning these inpainting parameters. It
is very likely that the performance of inpainting would improve with further tuning.

4. RESULTS

Several trials were conducted, as described in section 3.1, each with varying amounts of simulated hair. Figure
5 illustrates the qualitative results of several trials. Error was calculated as described in section 3.2 and the
results are summarized in table 1. Inpainting performs on average 32.7% better than the linear interpolation of
DullRazor.

Single-hair tests described in section 3.1 designed to mimic she et al.’s testing procedure9 were also performed.
Our results, along with she et al.’s published results are summarized in table 2.

Additionally, real-world qualitative tests were performed by applying DullRazor and the inpainting algorithm
to the heavily occluded images in figure 3, and the results are shown in figure 6.

5. CONCLUSIONS AND DISCUSSION

From table 1, it can be seen that inpainting outperforms DullRazor. On average, inpainting performs 32.7%
than DullRazor. It is also more stable under heavy occlusion, which can been seen in figure 5 (Note the artefacts
in figure 5s).
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Figure 5. Qualitative results of applying inpainting and DullRazor to synthetic hair masks with 4, 16, 64, and 144 randomly
generated hairs respectively. a) The original image (ground truth). 1st column: The image with generated hair masks;
2nd column: Results from inpainting; 3rd column: Results from DullRazor; 4th column: Inpainting difference map; 5th
column: DullRazor difference map. (Difference maps are exaggerated for illustrative purposes)
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Figure 6. Real world qualitative results. a), d) Dermascopic images with many occluding hairs b), e) the results from
inpainting c), f) the results from DullRazor

The results were also compared to She et al.’s results9 in which a single simulated hair 3 pixels wide and 100
pixels long is disoccluded using linear interpolation as well as their proposed methods. Our results, as well as
their reported results are reproduced in table 2. It is surprising that DullRazor seems to consistently outperform
She et al.’s linear interpolation algorithm. The errors obtained for DullRazor are an order of magnitude smaller
than those reported by She et al. It is unclear why this is the case. Moreover both DullRazor and inpainting
seem to perform equally well under these test conditions. Additionally, DullRazor and inpainting outperform
She et al.’s AR model technique. From this comparison, it is unclear whether DullRazor, Inpainting or the Band-
Limited method is the superior algorithm, however the standard deviation of the error is significantly smaller
for DullRazor and Inpainting. This implies that DullRazor and inpainting perform more consistent estimations.
Also, since She et al. only performed tests with a single synthetic hair, it is unclear how their algorithms perform
under heavy occlusion.

Much insight can also be gained by examining the qualitative results in figure 6. While it is unclear which
results are more perceptually pleasing, the inpainting results don’t contain the strong gradients found those of
DullRazor. It is likely that this will aid in obtaining accurate segmentations. Also, it is interesting to compare
the real world results in figure 6 to that of the synthetic results in figure 5. It appears that both DullRazor and
Inpainting perform much better under synthetic conditions. Recall that hair disocclusion consists of two distinct
steps: 1) Identifying ‘hair pixels’, and 2) estimating the underlying color of these ‘hair pixels’. All the methods
discussed in this paper (linear interpolation, inpainting, She et al.’s techniques) are all techniques to deal with
the latter half of the hair disocclusion problem. While inpainting seems to be a viable approach to this part of
the problem, it is clear from the staggering differences between figures 6 and 5 that accurately identifying ’hair
pixels’ (and possibly accounting for the penumbra effect) is currently the ‘weak point’ in the dermascopic hair
disocclusion process.
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