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ABSTRACT

Some diagnostic tasks in MRI involve determining the presence of a faint feature (target) relative to a dark
background. In MR images produced by taking pixel magnitudes it is well known that the contrast between faint
features and dark backgrounds is reduced due to the Rician noise distribution. In an attempt to enhance detection
we implemented three different MRI reconstruction algorithms: the normal magnitude, phase-corrected real, and
a wavelet thresholding algorithm designed particularly for MRI noise suppression and contrast enhancement.

To compare these reconstructions, we had volunteers perform a two-alternative forced choice (2AFC) signal
detection task. The stimuli were produced from high-field head MRI images with synthetic thermal noise added
to ensure realistic backgrounds. Circular targets were located in regions of the image that were dark, but
next to bright anatomy. Images were processed using one of the three reconstruction techniques. In addition
we compared a channelized Hotelling observer (CHO) to the human observers in this task. We measured the
percentage correct in both the human and model observer experiments.

Our results showed better performance with the use of magnitude or phase-corrected real images compared
to the use of the wavelet algorithm. In particular, artifacts induced by the wavelet algorithm seem to distract
some users and produce significant inter-subject variability. This contradicts predictions based only on SNR.
The CHO matched the mean human results quite closely, demonstrating that this model observer may be used
to simulate human response in MRI target detection tasks.
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1. INTRODUCTION

MR images are the result of processing the complex-valued raw data with a reconstruction operation to produce
a real-valued image that can be displayed in greyscale. The most common reconstruction takes the magnitude of
the complex-valued pixel as the real-valued estimate. The raw complex data is corrupted with complex additive
white Gaussian noise (AWGN),1 so taking the magnitude produces an image with Rician noise.2 Images with
this noise distribution suffer from reduced contrast in dark regions. To alleviate this problem phase-corrected
real reconstruction can be employed to produce an image with Gaussian noise.3–6 Due to the nature of the Rician
noise distribution, these two approaches should produce approximately the same estimate in situations where the
signal-to-noise ratio (SNR) is greater than 3. Noting this similarity, in clinical imaging the magnitude estimate
is preferred because there is no possibility of error in its computation, unlike phase-correction.

Since the noise in MR images is often considered detrimental to viewers, many reconstruction techniques have
been proposed that include filters for noise reduction.7–9 However, in the literature presenting and comparing
these algorithms the quality of the output is usually represented in terms of summary statistics such as SNR,
contrast-to-noise ratio (CNR), or mean-to-standard-deviation ratio (MSR) calculated over a set of example
images.6–9

There is a substantial body of literature using human observers and mathematical models of human task
performance on simple detection tasks using x-ray,10, 11 nuclear-medicine,12, 13 and MR images.14 Noting this,
we used both human and model observers to compare three MRI reconstruction algorithms. As in our previous
work on MRI reconstruction quality, we used high-SNR MR images as backgrounds combined with complex
AWGN to produce our simulated low-SNR raw MRI data and then reconstructed it using three techniques.14
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In our previous work, we compared human and model observers in MR images where a faint target feature was
overlaid on bright regions of anatomy.14 The present experiment considers images where the target feature was
faint and overlaid in a dark region of the image next to anatomy. With this new data set, our detection task
was more highly sensitive to the image contrast and noise distribution. As before, our human observers were
volunteers without radiological experience.

We compared the humans’ performance against a channelized Hotelling observer (CHO)15, 16 in a two-
alternative forced-choice (2AFC) signal-known-exactly (SKE) detection task. We ‘tuned’ the model observers
to the human observers’ performance on magnitude MR images and then compared the ability of the model to
extrapolate the human performance in the other two reconstructions. Experiments structured this way would
allow researchers developing new reconstruction algorithms to quantify the results of their work without needing
new human studies for each new reconstruction.

In Section 2 we present a simple model of the complex MRI signal and describe the three reconstruction
techniques used. In Section 3 we present the process used to generate the synthetic data. Section 4 describes
the experiment performed by the human observers and describes the CHO used for comparison. The results of
our experiments are presented and discussed in Section 5. Section 6 contains our conclusions.

2. MRI RECONSTRUCTION

The image acquired from an MRI scanner is initially complex-valued and can be modeled by the equation

Y[x] = S[x] exp(iΘ[x]) + Nr[x] + iNi[x] , (1)

where x is the 2D index of a pixel, Y is the matrix of complex-valued image pixels, S is the matrix of real-valued
signals, Θ is the matrix of signal phases, and R and I are matrices of samples from a normal distribution N (0, σ)
representing thermal noise in the real and imaginary components respectively.17 It is important to note that Θ
is not the phase of the recorded pixel, but the phase of the signal component in the recorded pixel. The complex
AWGN represented with Nr and Ni will alter the phase of the recorded pixel. For a more detailed model of
MRI signal and noise, see Macovski.18

In order to display the image in greyscale, a real-valued matrix of pixels, Y′, must be produced. Ideally we
would display the real-valued S, but since we only know Y, we attempt to calculate and display a real-valued
Y′ that is as close as possible to the unknown S.

2.1. Magnitude reconstruction
The most common reconstruction algorithm in clinical practice is the magnitude transform.19 In this algorithm,
each pixel’s real value, Y′

m[x], is set to the magnitude of the recorded complex pixel. This approach benefits
from discarding the effects of the signal phase, Θ. However, the principle difficulty with the magnitude transform
is that the complex AWGN in Y is transformed to a Rician noise in Y′

m with the attendant problem of bias in
low-signal areas reducing image contrast.2

2.2. Wavelet reconstruction
A wavelet transform can be applied and particular wavelet coefficients thresholded to enhance contrast and
edges in an image. MRI reconstruction algorithms involving wavelets can be applied to the real and imaginary
components of Y before applying a magnitude transform9 or applied to the real-valued image after the magnitude
transform.7 Algorithms using the wavelet-then-magnitude format will smooth Gaussian noise in each component,
but may be affected by the phase of the signal. The alternative, magnitude-then-wavelet approach has the
advantage of working on data from which the phase has been discarded, but must be tailored to Rician noise.

We used a wavelet filter developed specifically for Rician noise by Nowak.7 Since this filter is designed for the
magnitude-then-wavelet approach, our wavelet reconstruction process begins with the magnitude reconstruction
described in the previous section. We then applied the wavelet filter to the real-valued magnitude data to
produce our final real-valued image, Y′

w. In particular, we implemented Nowak’s algorithm using the full-scale
Harr wavelet transform without any shift-invariant approximations. We chose this filter because it is often cited
in the MRI noise reduction literature as a point of comparison for new techniques.
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2.3. Phase-corrected real reconstruction

The phase-corrected real reconstruction is an alternative to using the magnitude transform either alone or with
wavelets.3–6 This reconstruction first estimates Θ with Θ̃. Assuming that Θ̃ � Θ and noting that the thermal
noise distribution is rotationally invariant, we can write

Y[x] exp(−i Θ̃[x]) � S[x] + Nr[x] + iNi[x] . (2)

The values of the noise samples will have changed, but their distribution will be the same.

Taking just the real component of Y[x] exp(−i Θ̃[x]) gives our final definition for Y′
p[x], the phase-corrected

real reconstructed image:
Y′

p[x] = Re
(
Y[x] exp(−i Θ̃[x])

)
� S[x] + Nr[x] . (3)

This shows that, assuming we have estimated Θ closely, the result of a phase-corrected real reconstruction is an
image containing the signal and a real AWGN.

It is important to note that while Y′
p is an unbiased estimator of S, when Y′

p is displayed on a monitor the
result is that dark regions will be biased positively simply due to the fact that a monitor cannot display negative
intensities. However, the displayed bias in Y′

p is less than that in Y′
m and so Y′

p will be closer to S than Y′
m.

3. SYNTHETIC IMAGES

When attempting to locate a target feature in an MR image there are two major sources of distraction: non-
target patient anatomy and thermal noise. In terms of Eq. (1) the anatomy and target feature combine to form
the image signal, S, while the thermal noise is the complex AWGN process, Nr + iNi. By producing synthetic
images with both of these components we propose that target feature detection in our synthetic images will have
approximately the same results as similar tasks in clinical MR images when using the reconstructions described
in section 2.

One important factor in comparing these reconstruction is the multiplicative feature of Rician noise. As
previously noted, when S[x]

σN
≥ 3 we find that Y′

m[x] � Y′
p[x].2 Thus, if we locate the target feature in such

a way that it sums with bright anatomy underneath, we will expect very little difference in detection outcomes
between the magnitude and phase-corrected images. This was confirmed in our previous work.14 In order to
ensure that our experiment considered the case where there is an expected difference, our synthetic images were
designed so that the target feature would be overlaid on a dim region of the image but immediately next to
bright anatomy. We simulated the task of detecting a faint anatomical feature next to bright anatomy in order
to consider the distracting effect of the background anatomy while still testing our particular combination of
faint feature and dark background.

We create a complex-valued image without a target feature via

Y = B + Nr + iNi , (4)

where B is a real-valued background anatomy image, and Nr and Ni are images containing real-valued AWGN.
Similarly, we produce a complex-valued image with a target feature using

Y = T + B + Nr + iNi , (5)

where T is the real-valued image containing only the target.

Equations (4) and (5) do not include signal phases. This is a substantial deviation from the model in Eq.
(1), but can be be justified by considering the processing that will be applied to these images. The result of the
magnitude transform on either feature-present or feature-absent images will be invariant to signal phase since the
reconstruction explicitly discards phase information. Similarly, because the wavelet transform being considered
operates on images after the magnitude transform, its result is also correct without needing a simulated signal
phase.
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Figure 1. Example of the user interface used in human observer study. In this case the target feature is in the right
image.

The phase-corrected real reconstruction does rely on an estimator of the signal phase and thus potentially
on a simulated signal phase. However, we note that in the best case, Θ̃ is exactly the same as Θ and so we can
simulate the best case result of phase correction dropping the iNi term from equations (4) and (5).

We also note that in practice, if a phase estimation scheme over-fits the data (i.e., if the phase due to
noise is fit, instead of just the signal phase) the result will be an approximation to the magnitude transform.
Alternatively, if the phase estimation under-fits the data there will be spatially varying signal intensity but the
noise power will remain the same. This will have the same effect as lowering the target feature intensity relative
to the thermal noise. Thus, while we do not simulate the failure conditions directly in our experiment, the
effects of both these types of failures will be discernible from the experiment results because we cover both the
magnitude and phase-corrected reconstructions at a range of target feature intensities and thermal noise powers.

As in our previous work, our target feature, T, was an anti-aliased circular object located in the center of
the feature-present image (see Fig. 1).14 For this experiment we set the radius of the circle to three pixels
and selected target brightnesses of b ∈ { 3

100 , 1
20 , 1

12} � {0.03, 0.05, 0.083} for each image. The complex-valued
thermal noise was simulated by first selecting σN ∈ { 9

200 , 3
40} � {0.045, 0.075}. Based on this choice, we randomly

generated two 128×128 pixel images for each synthetic MRI. Each pixel in these noise images was sampled from
N (0, σN). One of these images was taken as Nr and the other as Ni.

To simulate distracting anatomy, B, we used regions of slices from high-SNR MR head images of healthy
volunteer. These volunteers were scanned using a 3D inversion recovery pulse sequence on a Philips Gyroscan
Intera 3.0 Tesla MRI scanner. Each volume was reconstructed using the magnitude transform to give real-valued
images. These real-valued volumes were then sliced along the axial, coronal, and sagittal directions to produce
a library of 2D images from which appropriate 128 × 128 pixel sub-images were selected. 560 backgrounds were
produced in each of the 36 possible conditions (three reconstructions, three signal powers, two noise powers,
target feature present or absent).

As noted in section 2, the background images, B, produced by cropping and normalization had Rician noise
because the magnitude reconstruction was used to produce the real values. Since we used these images as our
real-valued data, this Rician noise was added to the Gaussian Nr and included in all of the synthetic image
reconstructions. However, because our anatomical images were scanned at 3 Teslas, the magnitude images, after
being normalized to the range (0, 1), had a standard deviation of approximately 0.002 measured in regions of air.
Since the lowest standard deviation, σN used for our simulated thermal noise was more than 20 times greater
than the inherent noise of our anatomical backgrounds, it is unlikely that the spurious noise included in the
anatomical images had any effect on our results.
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4. OBSERVERS

4.1. Human observers

Eight volunteer observers without any previous radiological training were recruited to participate in our study.
The experimental software presented participants with three images aligned horizontally (see Fig. 1). The center
image showed the target feature and the two exterior images represented choices in the 2AFC test. Since this was
an SKE task, crosshairs were superimposed over the images in order to reduce the possibility of confusion about
the target feature location. The crosshairs could be toggled on and off by the user to reduce visual distraction.
Participants were instructed that in every display, one of the exterior images would contain the target feature
and that they should use the mouse to click on whichever exterior image they felt most probably contained
the target. They were allowed to take as long as they wanted to reach a decision on each image pair. Once a
participant clicked on an exterior image, the screen was made completely black for 0.5 seconds and then the next
set of images was shown and the process repeated.

Each participant was given two training sets, composed equally of all 18 possible combinations of noise power,
target feature power, and reconstruction algorithm. If the training took less than ten minutes, they were then
instructed to wait until ten minutes had elapsed in order to ensure a constant dark adaptation time across all
participants. After the training and delay, the participants then proceeded through 16 experiment sets composed
equally of the 18 possible combinations for a total of 288 image pairs. In order to minimize order effects, the
ordering of the image pairs was selected randomly for each participant from a constant distribution of all possible
orderings. As the experiment lasted up to an hour, fatigue was reduced by displaying a black screen after every
18 image pairs and instructing users to take as long a break as they desired while the display was dark.

The experiments were conducted in a completely darkened room using a CRT monitor (SGI CMNB024B)
as a display. All participants viewed the monitor from approximately 50 cm away while wearing any corrective
lenses they would normally use for computer viewing. When displayed on the screen, the images had a diameter
of approximately 8.5 cm and so occupied an angle of approximately 10 degrees from the viewer’s eye position.
All negative image pixel intensities were truncated at 0 in the reconstructed images since negative intensities
are not displayable. The maximum pixel intensity in the set was found (∼ 1.2925) and all pixels’ intensities
were then scaled by the same value (∼ 197.29) to ensure the entire set fell on the range (0,255) for greyscale
display. By imposing a consistent scaling on all images, some (e.g., those with a low-intensity target feature and
low noise power) did not use the entire range of display intensities. Using the above scaling we see that target
feature intensity for b = 3

100 was mapped to 5.92 on the greyscale range, b = 1
20 was mapped to 9.86, and b = 1

12
was mapped to 16.44.

4.2. Channelized Hotelling observer

We applied the CHO15, 16 with Gabor channels to our synthetic images to compare the results with human per-
formance. Gabor channels in particular were used because it has been suggested they are a useful approximation
for the grating response of the human visual system.10, 11, 20 We have used a setup with forty channels, based
on the example of Eckstein,10, 11 with a filter width of 0.8825 octaves, angles of {0, 2π

5 , 4π
5 , 6π

5 , 8π
5 }, and central

frequencies of 2, 4, 8, or 16 cycles per degree. The 16, 384 × 40 channel matrix, C, is produced by rearranging
each channel, G, as a 16, 384 × 1 vector and making them each a column of C.

In order to derive the CHO for each of the 18 experimental conditions, we must also compute the specific
covariance matrix, Kc

u, for each condition, c. We first note that

Kc
u =

1
2
(Kc

u,0 + Kc
u,1) + Kc

ε (6)

where Kc
u,0 and Kc

u,1 are the covariance matrices of the channel responses in condition c’s target feature-absent
and -present cases respectively, and Kc

ε is the covariance matrix of the observer’s internal noise process in
condition c. This process is assumed to add noise independently to each response channel by sampling from a
Gaussian with zero mean and variance depending on the channel. Following the example of Eckstein, we define
Kc

ε = αCHO Diag
(

1
2 (Kc

u,0 + Kc
u,1)

)
where Diag() zeroes all the off-diagonal elements of its argument and αCHO

is a proportionality constant that can be varied to reduce the absolute performance of the model observer.11
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This leaves the problem of determining Kc
u,0 and Kc

u,1. Given that we have closed forms for neither the
pixel covariance of the anatomical backgrounds, nor the effects of the wavelet filter, we opted to estimate Kc

u,0

and Kc
u,1 from the synthetic data. Noting that Kc

u,0 and Kc
u,1 are each 40 × 40 matrices, we used the channel

responses from 400 signal-present and signal-absent images respectively to estimate each for each condition.
Since we had 560 target feature-present and 560 target feature-absent images in each of the 18 experimental
conditions, this left 160 image pairs for testing each condition.

Having derived all the necessary components, we can write the template, wc, applied by the observer in
condition c as

wc = C (Kc
u)−1 (〈uc

1〉 − 〈uc
0〉) , (7)

where 〈uc
1〉 and 〈uc

0〉 are the sample mean target feature-present and target feature-absent channel response
vectors for condition c. This template can be used to calculate the response, λ, to a reconstructed image Y′.
Reordering the 128 × 128 matrix Y′ to the 16, 384 × 1 vector y′ we write

λ = (wc)ty′ , (8)

where y′ was produced with conditions c.

The final step is to add the internal noise of the observer. Rather than compute a noise for each channel, we
can modify the computed response by adding a single sample, ε, from a zero-mean Gaussian distribution with
variance

σ2
ε =

[
(Kc

u)−1 (〈uc
1〉 − 〈uc

0〉)
]t

Kε (Kc
u)−1 (〈uc

1〉 − 〈uc
0〉) . (9)

Adding this noise sample gives our final estimate of the score a human observer would assign to the image:

λ′ = λ + ε . (10)

The image with the greater λ′ in each pair is considered the CHO selection in the 2AFC trial.

5. RESULTS AND DISCUSSION

5.1. Human observer study

For each participant, we computed the percentage correct, Pc, in each of the 18 experimental conditions. We
computed the median Pc over all the participants as well as the first and third quartiles. It can be shown that
in a 2AFC task, the Pc is also an estimator for the area under the curve (AUC) of the experiment’s ROC.21

Noting this, we have plotted the median, first quartile, and third quartile of the AUC in Fig. 2. Although the
width of the quartile measurements imply a large amount of inter-subject variability this is also an effect of our
experiment design. The resolution of our AUC quartile measurements is only 1

16 because we opted to cover a
variety of experimental cases and thus show each participant each condition only 16 times.

In each condition, we summed the number of correct and incorrect trials across all 8 participants to produce the
success and failure rate of the average participant. To compare equivalent conditions between two reconstructions,
A and B, we use the one-sided Fisher’s Exact test to evaluate the null hypothesis that viewers do not perform
better on average with A than B. We found that there was a significant performance gain to a particular
reconstruction when compared at almost all pairs of equivalent conditions (see Table 1). In particular, we found
that between magnitude and phase-corrected images in all cases there was either no significant difference, or a
significant difference in favour of phase correction at p ≤ 0.05. Similarly, we found that there was a statistically
significant difference at p ≤ 0.05 in favour of magnitude or phase correction over the wavelet processing in almost
every case.

The human results confirm the theoretical assertion that phase-corrected images should improve signal de-
tection in dark regions of the image. However, these results also conflict with the assertion that the wavelet
algorithm should enhance signal detection. Thus, we see that these human studies can be a valuable tool for
evaluating MRI reconstructions since they provide information that is not necessarily apparent from mean square
error (MSE) or other image distance metrics.
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Figure 2. Plot of the median, first quartile, and third quartile of AUC for the human observers in each of the 18
experimental conditions. The y-axis is the AUC score. Each experimental condition is represented by a symbol (one of
three shapes, either filled or unfilled) that locates the median AUC and two vertical lines that represent the first and
third quartiles of the AUC. The symbol’s shape represents a different configuration of target feature and noise power, as
explained in the legend at the top-right of the chart. The x-axis is divided into thirds, with each third containing results
from one of the reconstruction technique as labeled in the top-left corner of each third. Inside of each third, the x-axis is
further divided by the ratio of target feature to thermal noise standard deviation (complex feature-SNR). In some cases,
two experimental conditions have the same feature to noise ratio (e.g,. b = 1

12
, σN = 3

40
and b = 1

20
, σN = 9

200
) and so

appear in the same band on the diagram.

p-values for the one-sided Fisher’s Exact test
Condition Phased/Wavelet Phased/Magnitude Magnitude/Wavelet

b = 3
100 σN = 3

40 6.46 × 10−2 0.262 0.226

b = 3
100 σN = 9

200 1.40 × 10−5 4.82 × 10−2 7.87 × 10−3

b = 1
20 σN = 3

40 6.08 × 10−6 6.88 × 10−3 3.55 × 10−2

b = 1
20 σN = 9

200 7.06 × 10−3 0.215 6.77 × 10−3

b = 1
12 σN = 3

40 1.26 × 10−11 8.75 × 10−3 7.19 × 10−6

b = 1
12 σN = 9

200 5.35 × 10−3 0.5 1.50 × 10−2

Table 1. p-values for the one-sided Fisher’s Exact test in each in the 18 pairs of equivalent experimental conditions. The
columns are the pairs reconstructions that were compared, testing the null hypothesis that the first reconstruction does
not produce superior mean detection rate compared to the second. The rows indicate the level of signal and noise at
which the null hypothesis was tested. We rejected the null hypothesis at p ≤ 0.05 except in cases that are highlighted in
bold. Note that the comparison between phased and magnitude reconstructions fails at b = 1

12
σN = 9

200
(black square)

because of the design of the trial: Figure 2 shows that the majority of users were perfectly accurate in both trials. This
choice of noise and signal power does, however, allow us to distinguish the wavelet reconstruction from the other two.
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Figure 3. Plot of the mean AUC of the the model and mean AUC of the 8 human observers in each of the 18 experimental
conditions. The y-axis is the AUC score. Each experimental condition is represented by a symbol (one of three shapes,
either filled or unfilled) that locates the mean human observer AUC. The symbol’s shape represents a different configuration
of target feature and noise power, as explained in the legend at the top-right of the chart. Either directly above or below
the symbol will be one x-mark representing the CHO result for the experimental condition. The x-axis is divided into
thirds, with each third containing results from one of the reconstruction technique as labeled in the top-left corner of
each third. Inside of each third, the x-axis is then further divided by the ratio of target feature to thermal noise standard
deviation (complex feature-SNR). In some cases, two experimental conditions have the same PSNR (e.g,. b = 1

12
, σN = 3

40

and b = 1
20

, σN = 9
200

) and so appear in the same band on the diagram.

5.2. Model observer study

Ideally, we would compute the AUC or some similar metric directly from the description of our model observer
and the image statistics. However, due to the fact that we have neither stationary image backgrounds, nor
Gaussian-distributed model observer responses, λ, we calculated the AUC for the CHO by applying the template
to each synthetic image, computing λ′ using equation (10), and then to calculating the Pc. We performed this
operation for 50 separate instances of each model observer, and then computed the result of the mean observer
in each of the experimental conditions. As in the human observer case, the Pc values were taken as estimates of
the AUC.

The mean AUC of the model observers was fit to the mean human observer data by searching for the αCHO

that minimized the MSE between the human and model results in the magnitude reconstructed experimental
conditions. This was chosen to test the ability for the observers to extrapolate to other reconstructions with
different statistical properties based on human results with only the magnitude reconstruction. Using humans
to calibrate the models based on only magnitude images was a feasible model for how an experimenter might
proceed to test a new MRI reconstruction. With this approach the experimenter must only record human results
once for the magnitude reconstructions of a given data set and then could proceed to explore as many other
reconstructions as they desired using only the models to evaluate as long as the statistical properties of the data
set were unchanged.

For the CHO, we determined the best fit to the mean human results on magnitude images to be αCHO = 0.9
by searching on an initially coarse range of αCHO values and then gradually refining the range. The mean AUC
of the CHO is shown in comparison to the mean human results in Fig. 3 (note that Fig. 2 displays the median
human results while Fig. 3 displays the mean). Overall, the CHO shows a good match with the human study. The
orderings both between reconstructions and between conditions are approximately maintained with the exception
of the wavelet reconstruction. We see that the CHO has substantially over-estimated human performance for
the wavelet reconstruction. Noting that many of our human volunteers complained of ‘blurriness’ in the wavelet
reconstructed images, we suspect that the CHO may be more successful than humans when compensating for
the smoothing due to its use of the covariance matrix.
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6. CONCLUSION

Among our human observers, we found a statistically significant difference between the three reconstructions
at almost all of the target feature amplitude and noise variance levels tested. Interestingly, the preferences
displayed in our human studies supported the theoretical suggestion that phase-corrected reconstructions are
an improvement over the magnitude while disagreeing with the assertion that the wavelet filter would improve
detection. It is important to note that this difference was only found for a very specific task in MRI: the
detection of faint objects next to bright anatomy. While this was clearly the ‘best-case’ scenario for applying
phase-correction, it is unclear if a scenario exists where the wavelet filtering would be superior to the magnitude
reconstruction.

The model observers matched the human results well in all conditions when fit to only the magnitude human
results. In general, the models indicated the same preference for phase-correction and decrease in detection with
the wavelet filter. The over-estimate of human performance by the CHO in the wavelet reconstructions likely
has to do with the correlations introduced by the smoothing of the wavelet filter.
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