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Knowledge-Based Data Analysis: First Step Toward
the Creation of Clinical Prediction Rules Using a

New Typicality Measure
Mila Kwiatkowska, M. Stella Atkins, Najib T. Ayas, and C. Frank Ryan

Abstract—Clinical prediction rules play an important role in
medical practice. They expedite diagnosis and limit unnecessary
tests. However, the rule creation process is time consuming and
expensive. With the current developments of efficient data mining
algorithms and growing accessibility to medical data, the creation
of clinical rules can be supported by automated rule induction from
data. A data-driven method based on the reuse of previously col-
lected medical records and clinical trial statistics is cost-effective;
however, it requires well defined and intelligent methods for data
analysis. This paper presents a new framework for knowledge rep-
resentation for secondary data analysis and for generation of a new
typicality measure, which integrates medical knowledge into sta-
tistical analysis. The framework is based on a semiotic approach
for contextual knowledge and fuzzy logic for approximate knowl-
edge. This semio-fuzzy framework has been applied to the analysis
of predictors for the diagnosis of obstructive sleep apnea. This ap-
proach was tested on two clinical data sets. Medical knowledge
was represented by a set of facts and fuzzy rules, and used to
perform statistical analysis. Statistical methods provided several
candidate outliers. Our new typicality measure identified those,
which were medically significant, in the sense that the removal of
those important outliers improved the descriptive model. This is a
critical preprocessing step towards automated induction of predic-
tive rules from data. These experimental results demonstrate that
knowledge-based methods integrated with statistical approaches
provide a practical framework to support the generation of clini-
cal prediction rules.

Index Terms—Clinical prediction rules (CPRs), data analysis,
fuzzy logic, obstructive sleep apnea (OSA), typicality measure.

I. INTRODUCTION

C LINICAL prediction rules (CPR) are used by medical
practitioners as formal guidelines in diagnosis, prognosis,

and treatment [1]. The rules simplify and expedite diagnosis
and treatment for serious cases demanding immediate attention,
and limit unnecessary diagnostic tests for low-probability cases.
The rules provide quantitative predictive measures using factors
from medical history, physical examination, and laboratory tests
[2]. However, before the rules can be utilized in medical practice,
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they must be created, validated, and evaluated in clinical settings
[3], [4]. By its nature, the creation of CPRs is time consuming
and resource intensive. However, with the recent availability of
electronic patient records and access to medical databases, the
process of rule creation can be supported by machine learning
methods providing automated or semiautomated rule induction
from data [5]–[7].

Such a data-driven approach reuses existing data sets col-
lected for medical research and clinical records of diagnosed
patients. The secondary use of medical data reduces the cost of
data acquisition, provides access to rare medical cases, and al-
lows for analysis of diversified populations. On the other hand,
secondary analysis of data from heterogeneous sources presents
several challenges [8], [9].

� Sampling bias: Clinical studies use diverse collecting
methods, inclusion criteria, and sampling methods.

� Referral bias: Most clinical studies are based on patients
referred to specialists by the primary-care practitioners;
therefore, the data represent a preselected group with a
high prevalence of the disease.

� Selection bias: Clinical data sets include patients with dif-
ferent demographics such as gender, age, and ethnicity.

� Method bias: Clinical studies and patient records use di-
verse types and numbers of measurements and definitions
of outcome. Therefore, predictors have varied specifica-
tions, granularities, and precisions.

� Clinical spectrum bias: Patient records represent varied
severity of a disease and co-occurrence of other medical
problems.

Therefore, the reuse of medical data requires intelligent data
analysis as part of the preprocessing step in the knowledge dis-
covery (KD) process [10]. This step must explicitly incorporate
the medical knowledge required for the interpretation of the
measurements and handling of the imprecision and uncertainty
inevitably present in medical data.

In this paper, we present a new knowledge-based framework
for the secondary analysis of heterogeneous data. Our semio-
fuzzy framework is based on a semiotic approach for the con-
textual interpretation of the predictors and a fuzzy logic for the
representation of the imprecision of measurements [11]. We ap-
plied the semio-fuzzy framework in analysis of the predictors
used in the diagnosis of obstructive sleep apnea (OSA). As a
first step towards the creation of prediction rules, we have con-
structed a prototype for a medical knowledge base (KB) and
used it for data analysis from two dissimilar sources: a clinical
research study and a database of patients’ records.

1089-7771/$25.00 © 2007 IEEE
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We concentrated on four tasks: analysis of atypical values,
analysis of monotonic patterns, analysis of statistical outliers,
and comparison of atypical values and statistical outliers. The
results show that traditional statistical data analysis is not suffi-
cient for identification of atypical values in heterogeneous data
sets obtained through various data collecting methods and non-
random sampling techniques.

The paper is organized as follows. Section II provides a brief
background information on OSA, clinical prediction rules, and
predictors. Section III introduces the semiotic and fuzzy logic
framework for predictor representation. We define the concept
of typicality and describe a Fuzzy Inference System (FIS) for
an anatomical typicality measure of an important OSA predic-
tor, neck thickness. Section IV describes the clinical data sets.
Section V presents experimental results including the analysis
of typicality, monotonic patterns, and statistical outliers. Sec-
tion VI provides the discussion and conclusion.

II. BACKGROUND: CLINICAL PREDICTION RULES IN THE

DIAGNOSIS OF OSA

A. OSA

OSA is a common and serious respiratory disorder afflicting
approximately 2%–4% of the population [12]. OSA is caused
by the repetitive collapse of the soft tissues in the throat as
the result of the natural relaxation of muscles during sleep.
The soft tissue blocks the air passage and the sleeping per-
son literally stops breathing (apnea event) or experiences a
partial obstruction (hypopnea event). Apnea occurs only dur-
ing sleep and is, therefore, a condition that might go unno-
ticed for years. The gold standard for the diagnosis of OSA
is an overnight in-laboratory polysomnography (PSG) study
involving several recordings: electroencephalogram, electrocar-
diogram, electromyogram, airflow, breathing effort, and oxygen
saturation.

OSA is associated with other medical conditions such as hy-
pertension, congestive heart failure, and stroke [13]. Although
the diagnosis of OSA using PSG is relatively straightforward
and treatment is readily available, a large segment of the popu-
lation is not diagnosed because of limited access to the overnight
PSG. Therefore, patients suffering from OSA might spend sev-
eral months waiting for the diagnosis. However, several clinical
studies demonstrated that clinical prediction rules can be suc-
cessfully used for initiation of an early OSA treatment for very
severe cases (before formal diagnosis by PSG) [14], for pre-
assessment of symptomatic patients by general practitioners (in
this case, rules are often used in combination with overnight
at-home oximetry) [15], and for prioritization of OSA cases for
an urgent PSG [16]–[20].

B. Prediction Rules and Predictors

In general, the clinical prediction rules can be described as
IF-THEN rules or arithmetic formulas for calculation of OSA
probability based on particular predictors. A predictor, in a med-
ical context, is defined as an established or suspected symptom,

sign, correlate, or comorbid condition. The diagnostic predictors
for OSA involve six factors:

1) anatomical signs such as obesity and large neck;
2) nocturnal symptoms of snoring and breathing pauses;
3) diurnal symptoms of excessive daytime sleepiness;
4) demographic factors such as gender and age;
5) coexisting medical conditions such as hypertension and

diabetes; and
6) lifestyle factors such as smoking [21].
In this paper, we investigate an important OSA predictor, neck

thickness, which is measured clinically as a neck circumference
(NC) [22]. We study the association between NC and body mass
index (BMI), calculated as weight (in kilograms) divided by the
squared height (in meters).

III. FRAMEWORK FOR KNOWLEDGE REPRESENTATION

A. Semio-Fuzzy Approach

To represent the medical knowledge, we have used a frame-
work combining semiotics and fuzzy logic, i.e., a semio-fuzzy
approach. This framework addresses the imprecision of predic-
tors and contextualization of the predictor interpretation in the
diagnostic process.

A semiotic approach has been introduced into our model
using Peirce’s semiotic triangle to represent the concept, repre-
sentation, and interpretation [23], [24]. Therefore, predictors are
defined at three levels: conceptualization, representation (oper-
ationalization), and interpretation. The conceptualization level
defines the medical concept (ontology) in terms of its general se-
mantics. The representation level defines the possible measures
of the medical concept. The interpretation level involves three
aspects: a diagnostic value of the predictor, a practical utility of
the predictor in a clinical setting, and a knowledge base.

The KB for the predictors has two components: the Fact
Repository and the Typicality Measure System. The repository
contains four types of facts: purpose (e.g., diagnostic, prognos-
tic, treatment evaluation), context (e.g., specific subgroups), bias
(e.g., dependencies between predictors), and view (diagnostic
criteria used by the clinics).

B. Predictor Definition

We define the predictor as a quadruple, 〈C,M, I,KB〉. The
predictor conceptualization is represented by C, the set of appli-
cable measures for the concept by M , and the possible interpre-
tations by I . A knowledge base for the predictor is represented
by KB.

The interpretation I is defined as a pair, I = 〈V,U〉, where
V represents the diagnostic value of the predictor and U repre-
sents the utility of the predictor. The diagnostic value comprises,
for example, test specificity, sensitivity, and positive predictive
value. The utility of the predictor involves pragmatic aspects
such as test cost, difficulty, and health risks.

Fig. 1 shows the semiotic triangle of concept (neck thickness),
representation (neck circumference), and interpretation defined
by four aspects: purpose, context, bias, and view.
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Fig. 1. Knowledge representation using Peirce’s semiotic triangle.

C. Fact Repository for the Predictors

Based on published medical studies [17], [25]–[33], we cre-
ated a fact repository for neck thickness. The repository contains
seven facts (KB1–7) grouped into four aspects of interpretation:

1) Purpose: Diagnostic significance
KB1—A large neck is a characteristic sign of OSA [17],
[25]–[33].

2) Context: Subpopulation differences
KB2 (gender)—In general, the NC is significantly larger
in men than in women [17], [27]–[29], [31].
KB3 (ethnicity)—In general, Asians tend to have smaller
necks than whites [17].

3) Bias: Monotonic dependencies
KB4—Heavier people are expected to have larger necks.
However, the regional distribution of fat is gender-specific.
BMI measures generalized obesity, while the larger neck
reflects upper-body obesity, typical for men [27]. NC was
shown to be smaller in women despite a larger BMI [31].
KB5—Taller people are expected to have larger
necks [27].

4) View: Measurement domain
KB6—Neck circumference is measured at the level of the
cricothyroid membrane, using a measuring tape [17].
KB7—NC ranges from 25 to 65 cm for adults. Male NCs
can be divided into three groups (the ranges were selected
for the diagnosis of OSA): small to normal (<42), inter-
mediate (42–45), and large (>45) [26].

D. Typicality Measure for the Predictors

The concept of typicality has been studied extensively for the
classification of objects, especially graphical and image objects.
Recent studies described a typicality measure for shapes and col-
ors for image segmentation and retrieval [34], [35]. In general,
typicality describes how well a given object fits into a specific
category. The typicality measure depends on the representa-
tion of the category: rule-based, prototype-based, or exemplar-
based [36], [37]. In the rule-based representation, a category is
defined as a set of Boolean rules, which can be evaluated to
true (object belongs to the category) or false (object is not in
the category). In the prototype-based representation, the cate-
gory is defined by the most dominant member (prototype) and
the typicality is measured by the similarity of an object to the
prototype. In the exemplar-based representation, the category is
defined by all exemplars from a given category and the typicality
is measured by the similarity to all exemplars.

Fig. 2. FIS for ATM.

This paper proposes a semio-fuzzy typicality measure based
on prior medical knowledge represented explicitly by fuzzy
rules and membership functions. The typicality measure ranges
from 0 to 1. Low values (e.g., 0.1) represent atypical val-
ues, whereas high values, (e.g., 0.9) represent typical values.
This approach provides a practical method to detect medically
atypical values among data from heterogeneous samples and a
knowledge-based method to identify medically significant val-
ues among statistical outliers.

E. FIS for the Anatomical Typicality Measure

We applied our semio-fuzzy typicality measure to determine
the anatomical typicality of neck circumference in relationship
to BMI. We constructed a prototype of FIS using Fuzzy Logic
Toolbox for MATLAB v. 7.01. Fig. 2 shows the FIS with two
inputs: NC and BMI and one output, the anatomical typicality
measure (ATM). Using the Mamdani inference process [38] the
input values are fuzzified according to predefined membership
functions (Figs. 3 and 4). Subsequently, fuzzy rules are evaluated
and the results are aggregated into a single fuzzy set. Finally,
the results are defuzzified (centroid) to produce a single ATM
value.

We defined NC and BMI as two linguistic variables.
The predictor NC is defined as PNC

PNC = 〈NC, T (NC), [25, 65],M〉 (1)

where NC is the name of the variable, T (NC) is the set
of terms for NC: {small, typical, large, atypical}, an in-
terval [25, 65] is the domain for NC (in centimeter), and
M is the set of membership functions defining the terms,
M{µsmall, µtypical, µlarge, µatypical}. The membership func-
tions for NC in the general population (Fig. 3) were created
using KB7 and KB2.
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Fig. 3. Membership functions for four levels of NC in the general population.

Fig. 4. Membership functions for three levels of BMI.

The predictor BMI is defined as PBMI

PBMI = 〈BMI, T (BMI), [15, 60],M〉 (2)

where BMI is the name of the variable, T (BMI) is the set of
terms for BMI: {low, normal, obese}, an interval [15, 60] is
the domain for BMI (in kilogram per square meter), and M is
the set of membership functions, M = {µlow, µnormal, µobese}.
Fig. 4 shows the membership functions for the three levels of
BMI. In general, the BMI > 30 is classified as obese. However,
we adjusted the threshold value for the obesity to 35 kg/m2

to accommodate the fact that most patients referred to sleep
disorders clinic have a high BMI.

Based on the fact KB4, we created 12 fuzzy rules defining the
anatomical typicality for NC in relationship to BMI. In general,
an increased BMI should result in increased neck circumference
and vice versa: a low BMI should correlate with smaller neck.
For example, the following three rules define ATM for small
NC and three levels of BMI:
Rule 1 ) If NC is small and BMI is low, then ATM is high.
Rule 2 ) If NC is small and BMI is normal, then ATM is

medium.
Rule 3 ) If NC is small and BMI is obese, then ATM is low.

Fig. 5. Surface plot for anatomical typicality measure based on NC and BMI.

Fig. 6. Membership functions for four levels of NC adapted for males.

Fig. 5 shows a surface plot for ATM for the variable NC
in relation to the variable BMI. The typicality is measured on
a scale from 0 to 1.0. A low BMI and high NC significantly
reduce the typicality measure, and a very high BMI and high
NC elevate the typicality measure.

F. Contextual Interpretation of Typicality: Gender-Specific
Membership Functions for NC

Based on knowledge fact KB2, which states that males have
significantly larger necks than females, we created two addi-
tional sets of NC membership functions for males and females,
as shown in Figs. 6 and 7, respectively. Using the general and
gender-specific membership functions, the FIS calculates three
ATM values: ATMG for general population, ATMM for males,
and ATMF for females.
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Fig. 7. Membership functions for four levels of NC adapted for females.

IV. CLINICAL DATA SETS

The results presented in this paper are based on two data sets:
A (N = 239) and B (N = 147). Data set A was collected for
the clinical study of correlation between craniofacial measure-
ments and OSA [17]. Data set B contains data from an educa-
tional sleep disorder clinic. These two data sets represent two
categories of data mining sources: data collected for a clinical
study and medical records of patients.

A. Data Set A

Data set A contains the data of 239 patients: 199 males
(83%) and 40 females (17%); 164 Asian patients (69%) and
75 white patients (31%). The records have a mean age of 48.5
(±SD, ±12.0) (middle aged) and mean BMI 29.2 (±5.7) (mod-
erately obese).

B. Data Set B

Data set B contains the records of 147 consecutive patients:
104 males (71%) and 43 females (29%). The records have a
mean age of 51.7 (±12.4) (middle aged) and a mean BMI of
33.9 (±7.0) (moderately obese to obese).

C. Comparison of Data Sets A and B

Table I shows the mean, standard deviation (SD), minimum,
and maximum values for NC in data sets A and B. Data set A
has lower mean and SD values than set B for all subgroups of
patients.

In our study, we used three variables: NC, BMI, and gender.
Additionally, we used the variable ethnicity available in set A.

V. EXPERIMENTAL RESULTS

Knowledge-based data analysis concentrated on four tasks:
analysis of atypical values, analysis of statistical outliers, com-
parison of statistical outliers and atypical values, and analysis
of monotonic patterns.

TABLE I
MEAN (±Sd), MINIMUM, AND MAXIMUM VALUES FOR NECK

CIRCUMFERENCE (CM) IN DATA SETS A AND B

Fig. 8. Scatter plot for ATM based on NC and BMI (data set B). The black
square represents a very low typicality, Z = 0.1208.

TABLE II
TYPICAL NC VALUES (ATM ≤ 0.50) IN DATA SETS A AND B

A. Analysis of Atypical Values

The NC values for data set A and B were analyzed for their
anatomical typicality, in terms of their relationship to BMI. The
FIS, described in Section III-E, calculated the ATM values for
each record from data sets A and B.

Fig. 8 shows the general typicality ATMG (Z-axis) based
on BMI (X-axis) and NC (Y -axis). A data point marked by a
black square represents an atypically large neck circumference
(Y = 53 cm) for a low BMI (X = 23.8), with a low typicality
value Z = 0.1208.

We identified six anatomically atypical NC values using a
threshold of ATMG ≤ 0.50. Table II shows the atypical records
from data sets A and B. IDs are unique numbers within each
data set.

The very low typicality value seen in Fig. 8 corresponds to
the female patient ID 101.
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Fig. 9. Box plot for neck circumference (all patients, data set A).

B. Analysis of Statistical Outliers

In general, outliers in a data set can be defined after Barnett
and Lewis [39] as “an observation (or subsets of observations)
which appears to be inconsistent with the reminder of that set
of data.” There are several causes for outliers: data entry errors,
measurement errors, natural variation in studied population, or
unusual values due to the sampling error.

Outlier detection is an important subject studied in statistics
and, recently, in the context of data mining and machine learn-
ing [40]–[44]. The analysis of medical outliers involves three
steps: identification, explanation, and handling. Outliers in med-
ical data must be detected and individually evaluated since they
may represent interesting anomalies or exceptional cases. The
statistical methods have been successfully used for the detec-
tion of outliers in homogenous samples. However, medical data
reuse involves data sets and samples from heterogeneous groups.
Thus, we propose to combine purely statistical methods with a
knowledge-driven approach.

In this study, we performed statistical outlier detection in
two phases: univariate analysis and bivariate analysis (residual
and distance-based). In this section, we present the results from
the univariate outlier analysis and describe a knowledge-driven
approach for creation of the subgroups. In Section V-C, we
summarize our findings from the bivariate analysis.

We performed a univariate outlier analysis based on a median
value, interquartile range (IQR), and box plot diagrams [45].
Outliers are shown as small circles and are identified by IDs—
unique numbers within each data set.

1) Univariate Outlier Analysis for Data Set A: Fig. 9 shows
the median and quartile values for NC for all patients in data
set A. As seen in the figure, the box plot method did not identify
outliers. Thus, we applied the facts stored in the KB. Based on
KB2, we grouped the data by gender, as shown in Fig. 10.

Based on KB3, we grouped the data by ethnicity (Fig. 11).
Based on facts KB2 and KB3, we grouped the data by gender
and by ethnicity (Fig. 12). It is seen from Fig. 10 that males

Fig. 10. Box plots for NC by gender (data set A).

Fig. 11. Box plots for NC by ethnicity (data set A).

have much larger NC than females (confirming fact KB2) and
that there is one male outlier with a low NC (ID 16) and two
with high NCs (IDs 75 and 239). There are two female outliers,
both with very large NCs (IDs 70 and 73). Fig. 11 shows only
one outlier (ID 239) that also has been identified in subgroups
based on gender.

Fig. 12 shows three outliers: two outliers detected by gender
and ethnicity subgrouping (IDs 16 and 239), and one new outlier
(ID 217) of an Asian female with a relatively large NC.

Division of data into gender and ethnic subgroups provided
three male outliers (IDs 16, 75, 239) and three female outliers
(IDs 70, 73, 217).

2) Univariate Outlier Analysis for Data Set B: Fig. 13 shows
the median and quartile values for NC for all patients in set B.
There are three outliers: IDs 137, 21, and 129.

Based on KB2, we grouped the data by gender. Fig. 14 shows
three male outliers (indicated also by Fig. 13) and an additional
female outlier with a very large NC (NC = 53), ID 101.
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Fig. 12. Box plots for NC by gender and ethnicity (data set A).

Fig. 13. Box plot for neck circumference (all patients, data set B).

Fig. 14. Box plots for neck circumference by gender (data set B).

TABLE III
STATISTICAL OUTLIERS AND THEIR ATMS IN DATA SET A

TABLE IV
STATISTICAL OUTLIERS AND THEIR ATMS IN DATA SET B

C. Comparison of Statistical Outliers and Atypical Values

We studied medical outliers using two concepts: medically
atypical values and statistical outliers. In Section V-A, we iden-
tified 6 atypical NC records with ATMG ≤ 0.50 in data sets A
and B (Table II). In Phase I, described in Section V-B, we used a
combination of a simple univariate analysis with a knowledge-
driven grouping of data. As a result, we identified 10 univariate
outliers in both sets. In Phase II, we performed the statistical
outlier detection using bivariate analysis (residual analysis) and
distance-based analysis (Mahalanobis distance). As a result, we
identified 21 additional outliers: 9 by the residual analysis and 12
by the Mahalanobis distance. Then, we used the ATMG ≤ 0.50,
to select medically significant bivariate outliers.

1) Typicality Measures for the Outliers in Data Set A:
Table III shows the statistical outliers and their ATMs. Phase I
identified six outliers and Phase II detected 1 additional outlier
with ATMG ≤ 0.50, ID 32.

We applied the threshold value of ATMG ≤ 0.50 to outliers
identified in Phase I and obtained three atypical outliers: IDs
16, 239, and 217. Thus, from both phases, we identified four
anatomically atypical outliers in data set A: IDs 16, 32, 217,
and 239.

2) Typicality Measures for the Outliers in Data Set B:
Table IV shows the statistical outliers and their ATMs. Phase
I identified four outliers: three with high ATMs and one with
a low ATM. The IDs 21, 129, and 137 have relatively high
anatomical typicality. Although NC > 50 cm is large, this
value is not unusual among the obese to severely obese male
patients. The record ID 101 of a slim (BMI < 25) female has
low values for three ATMs. This indicates that a very large neck
(NC = 53) is unusual for a slim patient. For Phase II, the table
shows only one additional outlier with ATMG ≤ 0.50, ID 106.

We applied the threshold value of ATMG ≤ 0.50 to the out-
liers identified in Phase I and obtained only one outlier: ID 101.
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Fig. 15. Scatter plot of NC versus BMI for males and females in data set A.

Thus, from both phases, we identified two anatomically atypical
outliers in data set B: IDs 101 and 106.

D. Analysis of Monotonic Patterns

The monotonic patterns for NC and BMI are based on the
fact KB4: Heavier people are expected to have larger necks.
We studied the relationship between BMI and NC using the
Pearson’s correlation coefficient r and the coefficient of deter-
mination r2 [45]. The value of r2 describes the proportion of
the variation in the values of NC, which can be explained by
BMI.

1) Correlation Analysis for Data Set A: Fig. 15 shows a
scatter plot for NC versus BMI. Based on facts KB2 and KB4,
we marked the data points by gender: males are indicated by
open circles and females by black squares. We also added the
least-squares (LS) regression lines for males (line M), females
(line F), and all patients (line A). The anatomically atypical
outliers (ATMG ≤ 0.50) for females are marked by rectangles
with IDs.

The values of r2 (R Sq Linear in Fig. 15) are noticeably
different for each of the studied groups. For all patients, the
BMI explains only 37% of the variability of NC; however, the
explanation power of BMI increases when the data are grouped
by gender. For the male group, the BMI values explain 57% of
NC variability. For the female group, the BMI values explain
71% of NC variability.

2) Correlation Analysis for Data Set B: Fig. 16 shows a
scatter plot for NC versus BMI. Similar to Fig. 15, we used the
circles and squares to indicate gender and added LS regression
lines for males (M), females (F), and all patients (A). The value
of r2 is higher for the male group than for all patients. For males,
the BMI explains 57% of the variability of NC. Surprisingly, the
value of r2 for females is lower than for all patients. For females,

Fig. 16. Scatter plot of NC versus BMI for males and females in data set B.

TABLE V
COEFFICIENT OF DETERMINATION OF NC VERSUS BMI IN DATA SETS A, B,

AND SUBGROUPS

the BMI explains 28% of the variability of NC, whereas for all
patients the BMI explains 28.5%.

3) Comparison of the Correlation Between BMI and NC in
Data Sets A and B: We compared the strength of the correlation
between BMI and NC in both data sets (all correlations are
significant, p < 0.01). Table V shows the r2 for all patients and
subgroups of patients. In data set A, the correlation between
BMI and NC is stronger for both subgroups than for all patients.
In data set B, the correlation is stronger for the male group than
for all patients but weaker for the female group. The correlations
in combined data set (A + B) exhibit the pattern: higher values
for both subgroups and lower for all patients. Note that the
correlation in the female group in set B is noticeably lower than
in set A. However, the correlations for the male group are the
same in both sets. Thus, our further analysis concentrates on the
female groups.

4) Medical Outliers and their Effects on Correlation: We
studied the correlation between BMI and NC for the female
group in data sets A and B, and we examined the influence
of four outliers with ATMG ≤ 0.50 (Table II): IDs 217 and 32
from data set A (see Fig. 15) and IDs 101 and 106 from data set
B (see Fig. 16). Table VI shows the r and r2 values calculated
with and without the outliers. In data set A, the removal of
ID 217 increased only slightly the strength of the correlation,
while the removal of ID 32 did not change the correlation.
However, in data set B, the removal of ID 101 increased the
strength of the correlation from r2 = 0.28 to r2 = 0.50, and
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TABLE VI
CORRELATIONS OF NC VERSUS BMI FOR FEMALES IN DATA SETS A AND B

the removal of both outliers, IDs 101 and 106, increased the
strength to r2 = 0.57. Interestingly, the value 0.57 is the same
as the correlation strength for the male group in both data sets.

VI. DISCUSSION AND CONCLUSION

Clinical prediction rules are important and practical guide-
lines used in diagnosis, prognosis, and treatment. However, the
creation process of the prediction rules is lengthy and expen-
sive. In this paper, we have discussed a cost-effective method of
reusing existing medical data from clinical studies and patient’s
records. Furthermore, we have demonstrated that the reuse and
integration of data from heterogeneous data sources requires
explicit representation of the predictors, their measures, and
their interpretations. We have described a new framework based
on semiotics and fuzzy logic for knowledge representation and
secondary data analysis.

In this paper, we have concentrated on four important is-
sues in the preprocessing step of the KD process: 1) identifying
the medically atypical values; 2) finding the statistical outliers
using a combination of traditional statistical methods with a
knowledge-driven approach; 3) evaluating the medical typical-
ity of statistical outliers; and 4) determining the relationships
between predictors.

We addressed the first issue of medical typicality by in-
troduction of an anatomical typicality measure based on FIS.
We calculated ATM values for NC from two data sets A and
B, and selected six anatomically atypical records based on
ATMG ≤ 0.50.

The second issue was analyzed based on the medical facts
stored in the KB created by us for the neck-thickness predic-
tor. We observed that the statistical outliers are sensitive to the
medical variations of the subgroups of patients, e.g., the outliers
identified among female patients (e.g., 101 in set B) are not
outliers in the general population.

The third issue was addressed by evaluating the anatomi-
cal typicality of identified outliers. We used three methods for
outlier analysis: univariate, bivariate (residual analysis), and
distance-based (Mahanalobis). We identified 10 univariate and,
additionally, 21 bivariate outliers in both data sets. We clas-
sified six statistical outliers as medically atypical by applying
the threshold of ATMG ≤ 0.50. Interestingly, the six atypical
outliers are the same as the six anatomically atypical records
identified by FIS. We observed that the identification of outliers

within a single data set is sensitive to the particular distribution
of the data in that set. For example, univariate outlier ID 239
from data set A would not be detected by univariate analysis in
data set B. This outlier would be detected by residual analysis
but only after grouping by gender. However, the typicality mea-
sure provides a consistent quantification of typicality based on
prior medical knowledge. Thus, the outlier ID 239 would have
the same ATM values in any set of data.

The fourth issue was examined by analysis of monotonic pat-
terns in context of different subgroups of patients and removal
of medically atypical outliers. We have shown that the coef-
ficient of determination r2 significantly changes for the three
groups: the entire population, males, and females. Furthermore,
the removal of an outlier with a low ATM value (e.g., ID 101 in
data set B) noticeably increases the r2 value (from 0.28 to 0.50).

Our results demonstrate that the proposed semio-fuzzy frame-
work can be successfully utilized for secondary analysis of
medical data. Moreover, this framework provides a uniform
approach to predictor representation.

We would like to apply these methods to generate clinical
prediction rules for apnea diagnosis and evaluate these rules for
sensitivity and specificity on other clinical data sets. Further-
more, we would like to use these techniques in other medical
domains, including other respiratory disorders such as asthma,
and in nonmedical domains such as psychology and cognitive
science.
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