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Abstract. Images of the MRI signal intensity are normally constructed
by taking the magnitude of the complex-valued data. This results in a
biased estimate of the true signal intensity. We consider this as a prob-
lem of parameter estimation with a nuisance parameter. Using several
standard techniques for this type of problem, we derive a variety of es-
timators for the MRI signal, some previously published and some novel.
Using Monte Carlo experiments we compare the estimators we derive
with others previously published. Our results suggest that one of the
novel estimators we derive may strike a desirable trade-off between bias
and mean squared error.

1 Introduction

Greyscale MR images are normally produced by taking the pixel-wise magnitude
of a complex-valued image with zero-mean complex additive white noise. The
magnitude operation performed on this data produces an image with a Rician
noise distribution [1,2]. This distribution has a spatially varying bias that is in-
versely related to signal strength, and thus reduces image contrast. In order to re-
duce the bias of this signal estimate, a variety of approaches have been presented
in the literature. The first major group assumes pixels are independent, and
attempts to construct a less-biased estimator for the signal value using only in-
formation recorded at a single location[1,3,4,5,6,7,8]. The second group assumes
that pixels are related either in signal or phase values and uses inference between
neighbouring pixels in order to estimate pixel values [9,10,11,12,13,14,15,16].

In this work, we will focus on the first group. In particular, we are interested
in how the notion of a nuisance parameter can be used to construct a variety
of different estimators from the established model of the MRI data. As we will
see, in the majority of MR imaging situations, only one of the two parameters is
of interest. The choice of how these parameters’ effects are separated is funda-
mental in determining what sort of estimator will be produced. However, despite
the rich statistical literature on estimation with nuisance parameters, the notion
does not seem common in the literature on MRI signal magnitude estimation
[17,18,19,20]. In this work, we will attempt to employ some of the variety of tech-
niques available for maximum likelihood estimation with a nuisance parameter.
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In doing so, we will derive some estimators that are previously published as well
as new estimators.

To begin, in section 2 we introduce the model we will use for the MRI data.
In section 3 we proceed to derive a variety of estimators using the maximum
likelihood framework. In section 4 we describe some other estimators for this
problem that have been presented in the MRI literature but do no arise from
the maximum likelihood estimator. Finally, in section 5 we compare all of the
estimators. Since closed form expressions for the bias and mean squared error
(MSE) are not available for all of the estimators we derive, our comparison is
based on Monte Carlo experiments using clinically realistic parameters.

2 MRI Data

For many clinically useful pulse sequences, the recorded MRI data f can be well
described at each pixel as a complex-valued signal with magnitude s and phase
φ, summed with two independent noises qr and qi which are both drawn from
the zero-mean normal distribution N (0, σ) with σ fixed for all pixels. The two
noises are aligned in the complex plane such that qr is noise in the real direction
and qi is noise in the imaginary direction. Thus, for a given pixel we have [3]

f = s exp(iφ) + qr + iqi . (1)

Since we are assuming that each pixel is independent and that the values of
s and φ and unrelated between pixels, we can model each pixel independently
with f = a + ib and the multinormal distribution

p(a, b; s, φ, σ) =
1

2πσ2 exp
(

− (a − s cos(φ))2 + (b − s sin(φ))2

2σ2

)
. (2)

Converting this to polar coordinates f = r exp(iθ), where we will find most of
our work more natural, we get

p(r, θ; s, φ, σ) =
r

2πσ2 exp
(

−s2 + r2 − 2sr cos(θ − φ)
2σ2

)
. (3)

Since multiple excitations are often used in order to repeat measurements, we
will use ai and bi to represent the measurements from the ith excitation and a
and b to represent the vectors of real and imaginary measurements at a given
location. Similarly, we will use ri and θi for the ith excitation and r and θ to
represent the vectors of polar measurements. Finally, we will simplify notation
in some places by using A =

∑n
i=1 ai and B =

∑n
i=1 bi.

In the majority of clinical imaging cases, we desire to display a greyscale
image where the intensities represent the value of s. This leaves φ, a nuisance
parameter required to complete the model but not of interest in producing our
images. We will be given n replicated samples from each pixel and asked to
produce an estimate of s from these values.
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Note that for the purposes of this paper, we will assume that σ is known.
In practice σ will usually be estimated either from a region of air where it is
known that s = 0 or from the aggregate of image pixels. In the latter case, we
take advantage of the fact that, for the pulse sequences we will consider, σ is
the same for all pixels in the image and so it is relatively easy to estimate given
more than one replication at each pixel.

3 Maximum Likelihood Estimators with Nuisance
Parameters

If we desire to estimate s cosφ and/or s sinφ, then the MLE is a good approach.
To find this estimate given the likelihood function L(s, φ; a, b), we set the score
function with respect to each parameter equal to zero, substitute in the measured
values of a and b, and then solve the system

∂

∂(s cosφ)
log L(s, φ; a, b) = 0 (4)

∂

∂(s sinφ)
log L(s, φ; a, b) = 0 . (5)

This produces an unbiased estimate of (s cosφ, s sinφ). However, unbiasedness
does not apply when we attempt to estimate s alone. Due to the nonlinear change
of parameters between (s cosφ, s sin φ) and (s, φ), there is not one estimator of s
that can be easily justified theoretically. In this section we will consider several
different approaches to estimating s without φ. Some of the estimators derived
are previously published, while some are new to the MRI literature.

3.1 Maximum Likelihood Estimate

Let (ŝML, φ̂ML) be the MLE of (s, φ) computed by solving

∂

∂s
log L(s, φ; r, θ) = 0 (6)

∂

∂φ
log L(s, φ; r, θ) = 0 . (7)

If we take ŝML as our estimate of s alone, this is also called the maximum
likelihood estimate. This is the same as substituting φ̂ML into the score function
for s, and then solving the equation

d
ds

log L(s; φ̂ML, r, θ) = 0 . (8)

Noting that ŝML is just the magnitude image computed at each pixel from the
average of the excitations, one should not be surprised to find this estimator is
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biased since it has a Rician distribution as discussed in section 1. The bias and
MSE of this estimator are

E[ŝML − s] =
√

2πσ

2
√

n
1F1

(
−1

2
; 1; −ns2

2σ2

)
− s (9)

E[(ŝML − s)2] = 2(s2 + σ2/n) − s
√

2πσ√
n

1F1

(
−1

2
; 1; −ns2

2σ2

)
, (10)

with 1F1 being the confluent hypergeometric function. Despite the non-zero bias,
this is the most prevalent form of MR signal estimate, being commonly known
as the ‘magnitude image’ in MRI.

For this problem, we also find that the maximum profile likelihood estimate
is the same as the maximum likelihood estimate [18]. The profile likelihood for
s is defined as

Lp(s; r, θ) = max
φ

L(s, φ; r, θ) (11)

We find that ŝML = max
s

Lp(s; r, θ) by noting the maximum value of L(s, φ; r, θ)
with s fixed is independent of the choice of s. Thus, for the problem of estimating
the MRI signal, the ŝML can be thought of as either the maximum likelihood
estimate or the maximum profile likelihood estimate.

3.2 Maximum Marginal Likelihood Estimate

We note that equation (3) can be marginalized with respect to θ to produce

p(r; s, φ) =
∫ π

−π

p(r, θ; s, φ, σ) dθ

=
r

2πσ2 exp
(

−s2 + r2

2σ2

) ∫ π

−π

exp
(

sr cos(θ − φ)
σ2

)
dθ . (12)

Using the identity
∫ π

−π exp (z cos(θ)) dφ = 1
2π I0 (z), where I0 (z) is the zeroth-

order modified Bessel function, we can rewrite this as

p(r; s, φ) =
r

σ2 exp
(

−s2 + r2

2σ2

)
I0

( sr

σ2

)
. (13)

We can see that by performing this marginalization we have removed the depen-
dence on φ since it does not appear anywhere on the right side of the equation.
Thus, if we measure only the magnitude and not the phase (or simply ignore the
measured phase) then φ has no effect on our magnitude measurement. We can
use this probability to produce a marginal likelihood function, which can then
be maximized to produce an estimate of s [18].

This procedure is exactly the one employed by Sijbers et al., although in this
previous work the justification for discarding the phase was the assumption that
bias correction was being performed given only a magnitude image [6]. Regardless



438 M.D. Tisdall, M.S. Atkins, and R.A. Lockhart

of how we justify the marginalization, given that we have n independent mea-
surements of this value, we can follow a similar derivation and write

p(r; s) =
n∏

i=1

p(ri; s)

=
n∏

i=1

ri

σ2 exp
(

−s2 + r2
i

2σ2

)
I0

(sri

σ2

)
. (14)

From this we can find

d
ds

log L(s; r) =
1
σ2

(
m∑

i=1

ri

I1
(

sri

σ2

)
I0

(
sri

σ2

) − ns

)
. (15)

Setting this equal to zero produces an equation whose solutions have been studied
previously using catastrophe theory [6]. The basic result of this previous work is
that the maximum marginal likelihood estimate of s is 0 when

∑n
i=1 r2

i ≤ 2nσ2.
Otherwise, there is one positive maximum which can be found numerically.

3.3 Maximum Integrated Likelihood Estimate

A very similar result to the above is produced if, instead of marginalizing out θ,
we choose a uniform distribution on the range (−π, π] as a prior for φ. The choice
of a uniform prior in this case can be supported with two arguments. First, for a
variable with a restricted range like φ, a uniform prior is often considered non-
informative in Bayesian terms [21]. Second, although it is known experimentally
that φ is likely to have a low-curvature structure [9,10,16], the estimators we
are considering assume that each pixel’s parameters are independent. With this
restriction, based on experimental results it is approximately equally likely that
a single pixel chosen at random could have any value for φ in the valid range.

Proceeding with the uniform prior, we can then write

p(r, θ; s) =
∫ π

−π

p(r, θ; s, φ)p(φ) dφ . (16)

We first note that

p(r, θ; s, φ)p(φ) =
1
2π

n∏
i=1

ri

2πσ2 exp
(

−s2 + r2
i − 2sri cos(θi − φ)

2σ2

)
. (17)

Then we can substitute this in and simplify to produce

p(r, θ; s) =
1
2π

∫ π

−π

n∏
i=1

ri

2πσ2 exp
(

−s2 + r2
i − 2sri cos(θi − φ)

2σ2

)
dφ

= exp
(

−ns2

2σ2

) (
n∏

i=1

ri

2πσ2 exp
(

− r2
i

2σ2

))
I0

(
s
√

A2 + B2

σ2

)
.(18)
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We can then write the score function as

d
ds

log L(s; r, θ) =
1
σ2

⎛
⎝√

A2 + B2
I1

(
s
√

A2+B2

σ2

)

I0
(

s
√

A2+B2

σ2

) − ns

⎞
⎠ . (19)

This can be set equal to zero and solved for s using the same approach as in the
previous section. The only difference between this new estimator and the one
in the previous section is that this approach first averages the measurements
together before applying the previous estimator.

3.4 Maximum Profile Likelihood Estimate with Saddlepoint
Correction

In section 3.1 we saw that the maximum profile likelihood estimate is ŝML =
1
n

√
A2 + B2. One approach to removing the bias from this estimate involves

a form of a technique called saddlepoint correction [19]. Using this approach,
we compute a correction to the score function, equation (8), and then set the
corrected score to zero and solve for our estimate. In our problem, the correction
suggested by Levin et al. is given by [19]

d
ds

log L(s; φ̂ML, r, θ) + B = 0 . (20)

with

B = − σ2

2ns2 E

(
∂

∂s

∂2

∂φ2 log p(r, θ ; s, φ)
)

= − 1
2s

. (21)

Setting the corrected profile score function to zero and solving for s gives the
maximum corrected profile likelihood estimate

ŝCorr =
ŝML +

√
ŝ2
ML − 2σ2/n

2
, (22)

where ŝML is the uncorrected profile likelihood estimate as defined in section 3.1.
This corrected estimator raises a difficulty when ŝ2

ML < 2σ2/n as our estimate
becomes complex valued. We will resolve this by taking the real part as the
estimate.

4 Other Published Estimators

In addition to the estimators derived above, there are several others that are
significant in the MRI literature. A variety of previous approaches to reducing
bias in magnitude MRI images are all based on noting that [1,3,4,5,8]

E[r2
i ] = s2 + 2σ2 . (23)
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The estimator proposed independently by McGibney et al. and Miller et al. was
created by replacing E[r2

i ] with r2
i in this equation, and then solving for s, giving

(in the general case with n measurements) [4,5]

ŝMM =

√√√√ 1
n

n∑
i=1

r2
i − 2σ2 . (24)

As with the corrected profile likelihood estimate, we take the real component of
equation (24) as the estimated value. Practically, this means setting ŝMM = 0
whenever 1

n

∑n
i=1 r2

i < 2σ2.
The estimator proposed by Gudbjartsson et al. is quite similar. Starting with

just the Rician-distributed magnitude measurements, they propose to make the
resulting estimator’s distribution closer to Gaussian by using [1]

s̃G =

√√√√
∣∣∣∣∣
1
n

n∑
i=1

r2
i − σ2

∣∣∣∣∣ . (25)

With the introduction of the absolute value inside the square root, we are guar-
anteed a real-valued estimate.

Lastly, the estimator due to Koay et al. was designed for the situation where
σ is unknown and may vary between pixels [8]. Since, for the purposes of our
experiment, we assume that σ is known or can be estimated well and further
that it is fixed for all pixels, we will not consider this estimator further.

5 Comparison of Estimators

5.1 Methods

It is hypothesized that the spatially varying bias of magnitude MRI images
causes difficulties for observers [12,22]. This is assumed to be due to the reduction
in image contrast. Bright image regions have essentially zero bias in magnitude
images while dark regions are biased positively. Experiments involving human
observers looking at biased and unbiased MRI images indicates that bias may
hamper detection of dim features against a dark background (e.g., weak edges)
[23]. Additionally, we assume that the variance of an estimator likely has some
impact on detectability as well. Noting this, we will compare estimators both in
terms of bias and MSE.

To perform these comparisons, we used Monte Carlo experiments under a
series of realistic conditions, similar to those presented by Sijbers et al.[6,7]
since we do not have analytic forms for the MSE and bias of the estimators.
The one exception to this was the MLE, where the bias and MSE are given in
equations (9) and (10) and so are simply evaluated directly. The experiments
were conducted with signals between 0 and 4 at intervals of 0.25 with noise
fixed at σ = 1. We tried each signal value with one, two, and four simulated
excitations. In order to ensure a low error in our experiment, we ran 20,000
iterations of each condition for use in computing the relevant statistics.
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Fig. 1. Biases of the estimators. Each plot displays the bias of one estimator (a: max-
imum likelihood, b: maximum marginal likelihood, c: maximum integrated likelihood,
d: maximum saddlepoint corrected profile likelihood, e: McGibney et al. and Miller et
al., f: Gudbjartsson et al.). The x-axis is the true signal value, and the y-axis is the
mean bias of the estimate either computed directly or via the Monte Carlo experiments.
The three lines in each plot correspond to n = 1 (solid), n = 2 (dashed), and n = 4
(dotted).



442 M.D. Tisdall, M.S. Atkins, and R.A. Lockhart

Fig. 2. MSEs of the estimators. Each plot displays the MSE of one estimator (a: max-
imum likelihood, b: maximum marginal likelihood, c: maximum integrated likelihood,
d: maximum saddlepoint corrected profile likelihood, e: McGibney et al. and Miller et
al., f: Gudbjartsson et al.). The x-axis is the true signal value, and the y-axis is the
MSE of the estimate either computed directly or via the Monte Carlo experiments.
The three lines in each plot correspond to n = 1 (solid), n = 2 (dashed), and n = 4
(dotted).
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5.2 Results and Discussion

In figure 1, we show the bias results. We can see that the McGibney et al. and
Miller et al. estimate (e), along with the integrated and marginal likelihood
estimators (b, c) are the least biased when the signal is 0. However, the corrected
profile likelihood (d) is the most quick to converge to having no bias as the true
signal increases. We note as the number of excitations increases the integrated
likelihood estimate improves more rapidly than the marginal likelihood estimate.
However, the corrected profile likelihood estimate converges to zero bias more
quickly than the others with one, two, or four excitations.

In figure 2, we show the MSE results. The maximum likelihood estimate (a)
produces the lowest MSE once s > 1.5. The next closest estimators are the
corrected profile likelihood (d) and the Gudbjartsson et al. estimator (f). For
signal values approaching 0, the McGibney et al. and Miller et al. estimator has
the lowest MSE, followed by the integrated and marginal likelihood estimators
(b, c). Again we note that the MSE of the integrated likelihood estimate improves
more rapidly than the marginal likelihood estimate. Additionally, we find that
the corrected profile likelihood estimate becomes increasingly competitive with
the integrated and marginal likelihood estimates in terms of MSE as the number
of excitations increases.

Considering these results together, our experiments suggest that the corrected
profile likelihood estimate (d) provides less bias than the maximum likelihood
estimate while trading a lower MSE at s < 1.5 for a slightly higher MSE at s >
1.5. These results seem to indicate that this new estimator offers a competitive
alternative to those already published.

One practical consideration is the computational costs of these estimators.
The marginal and integrated likelihood estimates both require several steps
of some optimization algorithm. Although an efficient optimization algorithm
for this problem has been previously presented [6], they are still substantially
more expensive to compute than the the maximum corrected profile likelihood,
McGibney et al. and Miller et al., or Gudbjartsson et al. estimators. As such,
we suspect that in a practical setting, the benefits achieved by applying the
maximum corrected profile likelihood estimator could be sufficient to offset the
minimal computational cost required for every image.

6 Conclusions

We have demonstrated that a variety of estimators for MRI, both previously pub-
lished and new, can be generated by applying some of the statistical approaches
to maximum likelihood estimation in the presence of nuisance parameters. Our
results suggest that the rich literature on this type of problem in statistics offers
useful tools that can be applied to signal estimation in MRI.

As there is no clear theoretical grounds for choosing one of these estimators, we
have used Monte Carlo experiments to compare the estimators. We have shown
that a novel MRI signal estimator, the maximum corrected profile likelihood,
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offers a decrease in bias compared to the magnitude image, in exchange for a
slight increase in variance. Additionally, our results suggest that in situations
with multiple excitations there can be substantial advantage to using this new
estimator. Due to the limitations of the metrics being used for the evaluations,
the results can only be considered to suggest further work. Experiments with
humans observing estimated images are necessary to determine if any of these
estimators provide a practical improvement in MR images.
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