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Using Human and Model Performance to Compare
MRI Reconstructions

M. Dylan Tisdall* and M. Stella Atkins

Abstract—Magnetic resonance imaging (MRI) reconstruction
techniques are often validated with signal-to-noise ratio (SNR),
contrast-to-noise ratio, and mean-to-standard-deviation ratio
measured on example images. We present human and model
observers as a novel approach to evaluating reconstructions
for low-SNR magnetic resonance (MR) images. We measured
human and channelized Hotelling observers in a two-alternative
forced-choice signal-known-exactly detection task on synthetic
MR images. We compared three reconstructions: magnitude,
wavelet-based denoising, and phase-corrected real. Human
observers performed approximately equally using all three recon-
structions. The model observer showed very close agreement with
the humans over the range of images. These results contradict
previous predictions in the literature based on SNR. Thus, we
propose that human observer studies are important for validating
MRI reconstructions. The model’s performance indicates that it
may provide an alternative to human studies.

Index Terms—Denoising, magnetic resonance imaging (MRI),
observers, signal detection, signal processing.

I. INTRODUCTION

IMAGES acquired using magnetic resonance imaging (MRI)
are initially complex-valued and corrupted with complex ad-

ditive white Gaussian noise (AWGN), mostly due to thermal
noise in the patient [1]. In order to display these images, each
complex pixel is first reduced by some reconstruction operation
to a real value that can be displayed as a greyscale intensity.
Since the signal-to-noise ratio (SNR) of the images is often quite
low, many reconstruction techniques have been proposed that
include filters for noise reduction [2]–[4]. However, in the liter-
ature presenting and comparing these algorithms the quality of
the output is usually represented in terms of summary statistics
such as SNR, contrast-to-noise ratio (CNR), or mean-to-stan-
dard-deviation ratio (MSR) calculated over a set of example
images [2]–[8]. Noting that the vast majority of magnetic reso-
nance (MR) images will be viewed by radiologists for diagnosis,
we propose that observer performance is a more relevant quality
metric for validating reconstruction techniques.

There is a large body of literature using human observers
and/or mathematical models of human response on simple de-
tection tasks using X-ray [9], [10] and nuclear-medicine images
[11]. It has been suggested that these models can assist in the
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selection of imaging parameters and comparison of different
equipment. Additionally, there has been work using similar
studies to determine the correct parameters for lossy image
compression algorithms [10]. We take a similar approach,
using both human and model observers to compare three MRI
reconstruction algorithms. In particular, we used high-SNR
MR images as backgrounds combined with complex AWGN to
produce our simulated low-SNR raw MRI data and then recon-
structed it using three techniques. Our human observers were
volunteers without radiological experience and we compared
their performance against a channelized Hotelling observer
(CHO) model [12], [13] in a two-alternative forced-choice
(2AFC) signal-known-exactly (SKE) detection task.

In Section II, we present a simple model of the complex MRI
signal and describe the three reconstruction techniques used. In
Section III, we present the process used to generate the syn-
thetic data. Section IV describes the experiment performed by
the human observers and describes the CHO model used for
comparison. The results of our experiments are presented and
discussed in Section V. Section VI contains our conclusion and
suggestions for future work.

II. MRI RECONSTRUCTION

The image acquired from an MRI scanner is initially com-
plex-valued and, for our purposes, can be described by the equa-
tion

(1)

where is the two-dimensional (2-D) index of a pixel, is
the matrix of complex-valued image pixels, is the matrix of
real-valued signals, is the matrix of signal phases, and and

are matrices of samples from a normal distribution
representing thermal noise in the real and imaginary compo-
nents, respectively. An example of a single pixel in this model is
presented in Fig. 1. It is important to note that is not the phase
of the recorded pixel, but the phase of the signal component in
the recorded pixel. The complex AWGN represented with
and will alter the phase of the recorded pixel. For a more
detailed model of MRI signal and noise, see Macovski [14].

In order to display the image in greyscale, a real-valued ma-
trix of pixels must be produced. Ideally, we would display
the real-valued , but since we only know , we attempt to cal-
culate and display a real-valued that is as close as possible
to the unknown . We will represent an MRI reconstruction for
an image with pixels as a mapping that gives

.
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Fig. 1. Example of an MRI pixel showing the relationship of the various com-
ponents in (1). Solid black lines represent the three components of our signal
model and the indicated angle is the signal phase. Dashed line shows the sum
of the components. This dashed line is the recorded value of the pixel while all
the other parts of the diagram are unknown.

A. Magnitude Reconstruction

The simplest and most common reconstruction algorithm is
the magnitude transform [15]. In this mapping, each pixel’s
real value is set to the magnitude of the complex pixel. If is
the complex vector of recorded data, is the real image ma-
trix resulting from the magnitude transform, and is used
to denote the complex conjugate of , the magnitude recon-
struction of pixels is written

(2)

This approach benefits from discarding the effects of the
signal phase . However, the principle difficulty with the
magnitude transform is that the complex AWGN in is trans-
formed to a Rician noise in with the attendant problem of
bias in low-signal areas reducing image contrast [16].

B. Wavelet Reconstruction

In order to enhance contrast and edges, a wavelet transform
can be applied and particular wavelet coefficients thresholded.
MRI reconstruction algorithms involving wavelets can be ap-
plied to the real and imaginary components of before ap-
plying a magnitude transform [4] or applied to the real-valued
image after the magnitude transform [2]. Algorithms using the
wavelet-then-magnitude format will smooth Gaussian noise in
each component, but may be affected by the phase of the signal.
The alternative, magnitude-then-wavelet approach has the ad-
vantage of working on data from which the phase has been dis-
carded, but must be tailored to Rician noise.

For the purposes of our experiment, we will use the magni-
tude-then-wavelet algorithm and denote it . This reconstruc-
tion relies on the magnitude transform and a wavelet filter,

, that are combined as

(3)

We used a wavelet filter developed specifically for Rician noise
by Nowak [2] as our implementation of . In particular, we im-
plemented Nowak’s algorithm using the full-scale Harr wavelet
transform without any shift-invariant approximations. We chose
this filter because it is often cited in the MRI noise reduction lit-
erature as a point of comparison for new techniques.

C. Phase-Corrected Real Reconstruction

The phase-corrected real reconstruction is an alternative
to using the magnitude transform either alone or with wavelets
[5]–[8]. This reconstruction first estimates with and then
performs a point-by-point multiplication of and .
Performing this multiplication on (1) gives

(4)

Assuming that , the signal phases cancel giving
. Additionally, rotating the

complex AWGN composed of and has no effect on
the distribution. Although the noise samples in any recorded
pixel will be rotated by the multiplication in (4), the underlying
distribution is not affected by the rotation. Noting this, we can
simplify our pixel model to

(5)

Taking just the real component of gives
our final definition for , the phase-corrected real recon-
structed image

(6)

This shows that, assuming we have estimated closely, the re-
sult of a phase-corrected real reconstruction is an image con-
taining the signal and a real AWGN.

It is important to note that while is an unbiased estimator
of , when is displayed on a monitor the result is that dark
regions will be biased positively simply due to the fact that a
monitor cannot display negative intensities. However, the dis-
played bias in is less than that in and so will be
closer to than .

III. SYNTHETIC IMAGES

When attempting to locate a target feature in an MR image,
there are two major sources of distraction: nontarget patient
anatomy and thermal noise. In terms of our signal model (1) the
anatomy and target feature combine to form the image signal
while the thermal noise is the complex AWGN process

. By producing synthetic images with both of these compo-
nents, we propose that target feature detection in our synthetic
images will have approximately the same results as similar tasks
in clinical MR images when using the reconstructions described
in Section II.

We create a complex-valued image without a target feature
via

(7)
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where is a real-valued background anatomy image, and
and are images containing real-valued AWGN. Similarly, we
produce a complex-valued image with a target feature using

(8)

where is the real-valued image containing only the target.
Equations (7) and (8) do not include signal phases. This is a

substantial deviation from the model in (1), but can be be justi-
fied by considering the processing that will be applied to these
images. The result of the magnitude transform on either the fea-
ture-present or feature-absent images defined above will be in-
variant to signal phase since (2) discards phase. Similarly, be-
cause the wavelet transform being considered operates on im-
ages after the magnitude transform, its result is also correct
without needing a simulated signal phase.

The phase-corrected real reconstruction does rely on an es-
timator of the signal phase and thus potentially on a simulated
signal phase. However, we note that in the best case, is ex-
actly the same as and so we can simulate the best case result
of phase correction with

(9)

in the target-feature-absent case and

(10)

in the target-feature-present case.
We also note that if a phase estimation scheme over-fits the

data (i.e., if the phase due to noise is fit, instead of just the signal
phase) the result will be an approximation to the magnitude
transform. Alternatively, if the phase estimation under-fits the
data, there will be spatially varying signal intensity but the noise
power will remain the same. This will have the same effect as
lowering the target feature intensity relative to the thermal noise.
Thus, while we do not simulate the failure conditions directly in
our experiment, the effects of both these types of failures will be
discernible from the experiment results because we cover both
the magnitude transform and a range of target feature intensities
and thermal noise powers.

Our target feature was an antialiased circular object located
in the center of the feature-present image (see Fig. 3). Each pixel
in this image matrix was given by

if
if
otherwise

(11)
where is the amplitude of the feature, is the index of the
image center, is the two-norm, and controls the width
of the feature. For our experiments, we set which was
equivalent to an anatomical feature with a diameter of 6 mm. We
selected
for each image.

The complex-valued thermal noise was simulated by first se-
lecting . Based on

this choice, we randomly generated two 128 128 pixel im-
ages for each synthetic MRI. Each pixel in these noise images
was sampled from . One of these images was taken as

and the other as .
To simulate distracting anatomy we used regions of slices

from high-SNR MR head images of healthy volunteer. These
volunteers were scanned using a three-dimensional (3-D) inver-
sion recovery pulse sequence on a Philips Gyroscan Intera 3.0-T
MRI scanner. Each volume was reconstructed using the mag-
nitude transform to give real-valued images. These real-valued
volumes were then sliced along the axial, coronal, and sagital
directions to produce a library of 2-D images. Each slice was
then cropped into 16 separate 128 128 pixel images. These
images were checked to see if they contained enough anatomy
by thresholding the central 64 64 pixel region of each image
and ensuring more than half of the pixels contained anatomy.
Images with sufficient anatomy were normalized so that their
pixel intensities were on the range (0,1) and retained for use as
backgrounds.

As noted in Section II, the background images produced by
cropping and normalization will have Rician noise because the
magnitude reconstruction was used to produce the greyscale
values. Since we used these images as our real-valued data, this
Rician noise will have been added to the Gaussian and in-
cluded in all of the synthetic image reconstructions. However,
because our anatomical images were scanned at 3 T, the mag-
nitude images, after being normalized to the range (0,1), had a
standard deviation of approximately 0.002 measured in regions
of air. Since the lowest standard deviation, used for our sim-
ulated thermal noise is more than 20 times greater than the in-
herent noise of our anatomical backgrounds, it is unlikely that
the spurious noise included in the anatomical images had any
effect on our results.

672 images were produced in each of the 36 possible con-
ditions (three reconstructions, three signal powers, two noise
powers, target feature present or absent). In Fig. 2 we show one
feature-present anatomical background in all 18 possible condi-
tions. To quantify our synthetic images’ quality using the same
calculations commonly used to describe clinical MRI, we de-
fine the PSNR as the ratio of the peak signal to the Rician noise
standard deviation in a region of air [16]

(12)

Due to our normalizing all the anatomical backgrounds to the
range (0,1), we know that . Thus, for images

where , we calculate and for
we have These are a little low,

but not implausible PSNR values for clinical MRI.

IV. OBSERVERS

A. Human Observers

Sixteen volunteer observers without any previous radiolog-
ical training were recruited to participate in our study. The ex-
perimental software presented participants with three images
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Fig. 2. Examples of feature-present synthetic images for all of the possible 18 experimental conditions. First row was produced with the magnitude reconstruction,
the second row with the wavelet reconstruction, and the third row with the phase-corrected real reconstruction. Each column was produced with a different simulated
signal intensity, as specified at the top. First three columns were produced using AWGN with � = 9=200 and the last three with � = 3=40.

Fig. 3. Example of the user interface used in human observer study. In this case, the target feature is in the right image.

aligned horizontally (see Fig. 3). The center image showed the
target feature and the two exterior images represented choices
in the 2AFC test. Since this was an SKE task, crosshairs were
superimposed over the images in order to reduce the possibility
of confusion about the target feature location. The crosshairs
could be toggled on and off by the user to reduce visual dis-
traction. Participants were instructed that in every display, one
of the exterior images would contain the target feature and that
they should use the mouse to click on whichever exterior image
they felt most probably contained the target. They were allowed
to take as long as they wanted to reach a decision on each image
pair. Once a participant clicked on an exterior image, the screen
was made completely black for 0.5 s, the mouse pointer was
warped to the center of the screen, and then the next set of im-
ages was shown and the process repeated.

Each participant was given two training sets, composed
equally of all 18 possible combinations of noise power, target

feature power, and reconstruction algorithm. If the training
took less than 10 min, they were then instructed to wait until
ten minutes had elapsed in order to ensure a constant dark
adaptation time across all participants. After the training and
delay, the participants then proceeded through 16 experiment
sets composed equally of the 18 possible combinations for a
total of 288 image pairs. In order to minimize order effects,
the ordering of the image pairs was selected randomly for each
participant from a constant distribution of all possible order-
ings. As the experiment lasted up to 1 h, fatigue was reduced
by displaying a black screen after every 18 image pairs and
instructing users to take as long a break as they desired while
the display was dark.

The experiments were conducted in a completely darkened
room using a CRT monitor (SGI CMNB024B) as a display.
The monitor’s spectrum was measured in both the left and
right image centers using a telephotometer (Photo Research
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Fig. 4. Luminance in cd=m of the monitor (y-axis) plotted against the digital
greyscale intensity sent to the video card (x-axis). Solid line is the luminance
measured at the location of the left image’s center and the dashed line is the
luminance measured at the right image’s center.

PR-650) over a range of digital pixel values. The luminance
was computed for each digital value using the CIE 1931 ob-
server [17] (see Fig. 4). All participants viewed the monitor
from approximately 50 cm away while wearing any corrective
lenses they would normally use for computer viewing. When
displayed on the screen, the images had a diameter of approx-
imately 8.5 cm and so occupied an angle of approximately
10 from the viewer’s eye position. All negative image pixel
intensities were truncated at 0 in the reconstructed images since
negative intensities are not displayable. The maximum pixel
intensity in the set was found ( 1.36) and all pixels’ intensities
were then scaled by the same value ( 186.94) to ensure the
entire set fell on the range (0,255) for greyscale display. By
imposing a consistent scaling on all images, some (e.g., those
with a low-intensity target feature and low noise power) did
not use the entire range of display intensities. Using the above
scaling, we see that target feature intensity for was
mapped to 9.35 on the greyscale range, was mapped
to 15.59, and was mapped to 25.96. The actual dis-
played intensity of the target feature was likely higher in almost
every image, due to additions from the anatomical background
underneath.

B. Channelized Hotelling Observer

We applied the CHO [12], [13] with Gabor channels to
our synthetic images to compare the results with human per-
formance. Gabor channels in particular were used because it
has been suggested they are a useful approximation for the
grating response of the human visual system [9], [10], [18].
The channels are defined by the response equation

(13)

where is the image center, is the central frequency of the
filter in cycles per pixel, is the filter width in octaves of ,

is the angle of the filter, and determines if it
is odd or even. We have used a setup with 40 channels, based
on the example of Eckstein [9], [10], with and

. To compute the cen-
tral frequencies, note that each pixel subtends 5/64 from the
viewer’s eye position. We would like our filters to have frequen-
cies of 2, 4, 8, or 16 cycles per degree. Converting this to cycles
per pixel gives . The 16 384

40 channel matrix is produced by rearranging each channel
as a 16 384 1 vector and making them each a column of .

We can then compute the 40 1 channel response vector, of
image by rearranging the image into the 16 384 1 vector,

and setting

(14)

where is the transpose of .
In order to derive the CHO for each of the 18 experimental

conditions, we must compute the specific covariance matrix
for each condition . We first note that

(15)

where and are the covariance matrices of the channel
responses in condition ’s target feature-absent and -present
cases, respectively, and is the covariance matrix of the ob-
server’s internal noise process in condition . This process is
assumed to add noise independently to each response channel
by sampling from a Gaussian with zero mean and variance de-
pending on the channel. Following the example of Eckstein [10],
we define where
zeroes all the off-diagonal elements of its argument and is a
proportionality constant that can be varied to reduce the abso-
lute performance of the model observer.

This leaves the problem of determining and . Given
that we have closed forms for neither the pixel covariance of the
anatomical backgrounds, nor the effects of the wavelet filter, we
opted to estimate and from the synthetic data. Since
we had 672 target feature-present and 672 target feature-absent
images in each of the 18 experimental conditions, we used the
channel responses from 400 images to estimate and
for each condition. This left 272 image pairs for testing each
condition.

With the 18 estimates computed, we can determine the
optimal channel weights for each condition, , according to
the Hotelling strategy as

(16)

where and are the sample mean target feature-present
and target feature-absent channel response vectors for condition
. From this, we can write the template applied by the ob-

server in condition as

(17)
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Fig. 5. Plot of the median, first quartile, and third quartile of AUC for the human observers in each of the 18 experimental conditions. The y axis is the AUC
score. Each experimental condition is represented by a symbol (one of three shapes, either filled or unfilled) that locates the median AUC and two vertical lines
that represent the first and third quartiles of the AUC. The symbol’s shape represents a different configuration of target feature and noise power, as explained in
the legend at the top-right of the chart. The x axis is divided into thirds, with each third containing results from one of the reconstruction technique as labeled
in the top-left corner of each third. Inside of each third, the x axis is further divided by the ratio of target feature to thermal noise standard deviation (complex
feature-SNR). In some cases, two experimental conditions have the same feature to noise ratio (e.g., b = 1=12, � = 3=40 and b = 1=20,� = 9=200) and so
appear in the same band on the diagram.

This template can be used to calculate the response, , to a re-
constructed image . Reordering the 128 128 matrix to
the 16,384 1 vector , we write

(18)

where was produced with conditions .
If there is no internal decision noise (i.e., if ) then

determining the model observer’s choice in a 2AFC experiment
requires calculating the for each of the two image choices and
then selecting the image with the larger score. However, when

, we must add the internal noise of the observer. Rather
than compute a noise for each channel, we note that the effect
of the channel decision noises is combined in the final response
score. Thus, we can modify the computed response by adding
a single sample from a zero-mean Gaussian distribution with
variance

(19)

Adding this noise sample gives our final estimate of the score a
human observer would assign to the image

(20)

As before, the image with the greater in each pair is consid-
ered the CHO selection in the 2AFC trial.

V. RESULTS AND DISCUSSION

A. Human Observer Study

For each participant, we computed the percentage correct,
, in each of the 18 experimental conditions. We computed the

median over all the participants as well as the first and third
quartiles. It can be shown that in a 2AFC task, the is also
an estimator for the area under the curve (AUC) of the experi-
ment’s ROC [19]. Noting this, we have plotted the first, second,
and third quartiles of the AUC in Fig. 5.

While the width of the first and third quartiles indicates sub-
stantial inter-subject variability, it seems that there is no clear
difference between the three reconstructions across all exper-
imental conditions. The resolution of our AUC quartile mea-
surements is only 1/16 because we opted to cover a variety of
experimental cases and thus show each participant each con-
dition only 16 times. Although this structure reduces the ef-
fect of observer variability, it also means that we are unable to
demonstrate statistically significant differences between the re-
constructions given the small effect.

Our human observers did not show a measurable increase in
performance when using the phase-corrected real reconstruc-
tion, despite the oft-noted fact that these images should have
higher contrast than the magnitude reconstruction [5], [6], [16].
The lack of effect here may be due the to fact that noise distri-
bution of a magnitude image becomes very similar to that of a
real-reconstruction when . Since many of our
target features were added on top of bright anatomy, these two
reconstructions should be effectively the same in many of the
tested cases. A difference might be found in the more specific
task of locating faint features in dark areas of MR images. Al-
ternatively, experiments could be conducted with substantially
higher , although the realism of increased noise powers given
current MRI technology is questionable.

Similarly, we do not show an improvement in signal detection
using the wavelet transform, despite the improved image SNR
demonstrated by the algorithm [2]. It is not clear if a specific task
would be better suited to this filter, since it has been described as
useful generally for MRI. Clearly, the wavelet basis underlying



1516 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 11, NOVEMBER 2006

Fig. 6. Plot of the mean AUC of the the model and human observers in each of the 18 experimental conditions. The y axis is the AUC score. Each experimental
condition is represented by a symbol (one of three shapes, either filled or unfilled) that locates the mean model observer AUC and one vertical line that represents
the AUC of the mean human observer. Longer vertical lines indicate a greater mismatch between the model and human observers. The symbol’s shape represents
a different configuration of target feature and noise power, as explained in the legend at the top-right of the chart. The x axis is divided into thirds, with each third
containing results from one of the reconstruction technique as labeled in the top-left corner of each third. Inside of each third, the x axis is then further divided
by the ratio of target feature to thermal noise standard deviation (complex feature-SNR). In some cases, two experimental conditions have the same PSNR (e.g.,
b = 1=12, � = 3=40 and b = 1=20, � = 9=200) and so appear in the same band on the diagram.

the filtering algorithm could be varied, and other wavelet pro-
cessing algorithms could be implemented as well. However, our
results indicate that claiming improved pixel SNR alone does
not necessarily imply improved signal detection in MR images

Considering the magnitude and phase-corrected real AUCs,
we note that in every case where two conditions share the same
ratio of target feature amplitude to thermal noise standard devi-
ation (vertical bands in Fig. 5), the condition with higher target
feature intensity outperforms the case with the lower target fea-
ture intensity. Since both the feature-to-noise ratio and anatom-
ical background intensity were held constant in these cases, the
only changes are the increase in target feature and noise intensity
relative to the anatomical background. We hypothesize that this
effect is due to the anatomical background obscuring the target
feature more often when the feature is less intense. In particular,
we note that at (the circles in Fig. 5), there is little
difference in the magnitude and phase-corrected real AUCs, de-
spite a change in thermal noise power. This seems to indicate
that the anatomical background has become the dominant dis-
tractor in the image at low target feature intensity. Combined
with anecdotal comments from our subjects, this encourages us
that using anatomical backgrounds to provide realistic distrac-
tors is important in studying feature detection.

Although the wavelet reconstruction produced similar results,
it is unclear if this also demonstrates the effects of the anatom-
ical background. The wavelet filter uses as an input to con-
trol the quantity of smoothing performed and so there is clearly
a nonlinear relationship, at least in theory, between AUC, the
target feature intensity, and the thermal noise power. For ex-
ample, we note that while the magnitude and phase-corrected
reconstructions had approximately the same results in the lowest
target feature intensity case (circles in Fig. 5), the wavelet re-
construction was still sensitive to the thermal noise power. We
cannot differentiate with our experiment whether the dominant
effect in these conditions is the thermal noise or the smoothing

artifacts. However, we note that there is still a tendency, al-
though weaker than in the other two reconstructions, towards
higher AUC with brighter signal intensity at each feature in-
tensity to thermal noise ratio. Since the brighter-feature/higher-
noise images should also have more smoothing artifacts, the fact
that they produced marginally higher AUCs than their darker-
feature/lower-noise equivalents is an indication that the anatomy
still played an important role as a distractor.

B. Model Observer Study

Ideally, we would compute the AUC or some similar metric
directly from the description of our model observer and the
image statistics. However, due to the fact that we have neither
stationary image backgrounds, nor Gaussian-distributed model
observer responses we calculated the AUC for the CHO by ap-
plying the template to each synthetic image, computing using
(20), and then calculating the . We performed this operation
for 50 separate instances of the model observer, and then com-
puted the result of the mean observer in each of the experimental
conditions. As in the human observer case, the values were
taken as estimates of the AUC.

The mean AUC of the model observers was fit to the mean
human observer data by searching for the that minimized the
mean squared error (MSE) of all 18 experimental conditions.
We determined the optimal setting to be

by doing exhaustive search on an initially coarse range
of values and then gradually refining the range. This computa-
tion took approximately 3 h on a 1 Ghz PowerPC G4. The mean
AUC of the 50 model observers are shown in comparison to the
mean human results in Fig. 6 (note that Fig. 5 displays the me-
dian human results while Fig. 6 displays the mean). Overall, the
model observer shows a very good match with the human study.
There is no appreciable difference between the three reconstruc-
tions according to the model observer. We note that there was
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a small disagreement between the model and mean human ob-
server on the ordering of some of the weaker signals, although
the inter-subject variability in these conditions was high as well.
Additionally, there is a tendency for the model observer to over-
estimate mean human performance at the highest target feature
intensity.

VI. CONCLUSION

Among our human observers, we noted no significant differ-
ence between the three reconstructions. This contradicts pre-
vious predictions based on the improvements in SNR produced
by phase correction or wavelet filtering. Studies with finer reso-
lution in their AUC estimates are required in order to better dis-
tinguish the effects of these reconstructions. It is also possible
that more specific tasks may demonstrate benefits from different
reconstruction techniques.

The model matched the human observers very well, also
showing no difference between the three reconstructions. Given
the computational efficiency of the CHO, and the close match
to human results, the CHO may be useful in situations where a
human study of MRI reconstruction is not feasible.

The contradiction between our experimental results and the
predictions made in the literature from SNR measurements in-
dicate that the use of observer studies seems preferable to SNR
and similar metrics for evaluating MRI reconstruction and fil-
tering. Our results also suggest that the choice of background is
important due to its distracting effects across the range of fea-
ture intensities and noise powers considered. Given the variation
in human responses, using a greater number of participants in a
study with finer resolution is likely necessary to determine small
effects. Additionally, while the difference between the CHO and
mean human AUC is very low, further investigation is needed to
determine if other model observers would further improve the
fit with human data.
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