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Counting Moles Automatically From Back Images

Tim K. Lee*, M. Stella Atkins, Michael A. King, Savio Lau, and
David I. McLean

Abstract—Density of moles is a strong predictor of malignant melanoma,
therefore, enumeration of moles is often an integral part of many studies
that look at malignant melanoma. An automatic method of segmenting
and countingmoles would help standardize studies, compared withmanual
counting. We have developed an unsupervised algorithm for segmenting
and counting moles from two-dimensional color images of the back torso
region, as part of a study to evaluate the effectiveness of sunscreen. The
method consists of a new variant of mean shift filtering that forms clusters
in the image and removes noise, a region growing procedure to select can-
didates, and a rule-based classifier to identify moles. When this algorithm
was compared to an assessment by an expert dermatologist, the algorithm
showed a sensitivity rate of 91% and diagnostic accuracy of 90% on the test
set, for moles larger than 1.5 mm in diameter.

Index Terms—Adaptive mean shift filters, biomedical image processing,
image segmentation, moles, nevi, noise removal.

I. INTRODUCTION

Cutaneous malignant melanoma is a potentially lethal form of skin
cancer. The mechanism of melanoma development is not yet deter-
mined, but mole density has been reported as the strongest risk factor
[1] with about 50% of melanoma originating from pre-existing moles
[2], andmoles have been considered as the precursor for the disease [3].
The important relationship between moles and melanomas makes mole
counting an integral part of many melanoma studies. However, manual
counting is costly and subjective and can be inconsistent, depending
upon the training of the counter. An automatic method of segmenting
and counting moles would help standardize studies, and would aid in
the registration and tracking of moles of patients who are at a high risk
of developing the disease and who need regular mole examinations.

In related work, the most common mole segmentation methods are
based on thresholding skin images [4]–[6]. Other methods require two
steps. Step one uses radial lines or profiles [7]–[10] crossing the mole
interior into the surrounding skin to determine the threshold, then in
step two the true boundary position on the radial lines or profiles is de-
termined. Texture features have also been exploited. Markov random
field model parameters were estimated from the first principal com-
ponent image in [11], while [12] used co-occurrence matrices in con-
junction with a pyramid-based region growing method on the inten-
sity image. Another region growing algorithm reported in [11] utilized
a nonlinear diffusion technique termed “stabilized inverse diffusion
equation”. Neural networks have been used to classify extracted mole
features in [13].
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The above methods have achieved various degrees of success. How-
ever, these methods were designed to work with images with exactly
one mole in the middle of the image surrounded by skin background,
and these methods cannot be applied without modifications to our
study, which attempts to identify all moles in a back torso. Currently,
only a few methods have been described to extract multiple moles
from images of large anatomic sites [14], [15]. In [14], the moles in
the front and the back torso are detected by thresholding the output of
a Sobel operation, which highlights the border of the moles. However,
a global threshold value is difficult, if not impossible, to obtain. In
[15], a stereoscopic mole mapping system has been proposed, which
utilizes a pair of stereoscopic cameras and a high resolution texture
camera. This system allows full three-dimensional reconstruction of
the trunk using eight views when a patient is rotated on a motorized
turntable, but the technical details of locating the moles are not given.
Our research team has been investigating the mole counting problem
and earlier results have been presented in [16], [17].

In this paper, we describe an automatic method of segmenting and
counting moles, using a new unsupervised algorithm for segmenting
and counting moles from two-dimensional color images of the back
torso region. This will help standardize studies, and can be used to track
moles and mole development. The remainder of the paper is structured
as follows. The materials and methods are given in Section II, and the
results in Section III. Section IV contains a discussion of the results,
and the conclusions presented in Section V.

II. MATERIALS AND METHODS

A. Materials

Data was obtained from color slides taken from an epidemiologic
study on broad-spectrum sunscreen use and mole development [18].
The study photographed the back of participants during their mole ex-
aminations according to the protocol specified in [19], and moles were
manually counted according to the protocol specifications, which de-
fine countable moles as brown to black spots that are well defined and
darker than surrounding skin. The images were digitized at 2000 dpi
with 24-bit color so that the resolution was about 4 pixels/mm. A test
set of eight digitized images was chosen at random and labeled by a
dermatologist trained for mole recognition. One of the test set of im-
ages was also digitized at 48-bit color, using the same digitizer.

B. Methods: Finding the Moles

The first stage is to identify the back, the region of interest, from
the digitized images.1 The second stage, to find moles from skin im-
ages, consists of three major steps, detailed below. The first step uses a
version of the mean shift algorithm [20]–[22] that removes noise from
the image while preserving the moles. The second step is a simple
merging algorithm that creates large clusters of pixels and identifies
the possible moles in the image. The final step classifies each candi-
date as moles or not.
1) Noise Removal Using the Mean Shift Algorithm: The general

mean shift algorithm [20] is a good clustering algorithm that preserves
edge boundaries as well keeping a representative color or intensity of
each cluster. It has been used with extensions [21], [22] for image
segmentation. We built another extension with an adaptive kernel for
use in segmenting moles, exploiting the fact that moles are clusters
of pixels that are darker than the surrounding skin. Our version of the

1An automatic segmentation program of the back torso was developed, but it
is not used in this paper.
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mean shift algorithm works on the intensity image of the back, whose
range is [0, 1], and is defined as follows.

Let S be a window of pixels centered at pixel x whose intensity is
I(x). The sample mean of x is determined by the pixels in S whose
intensity values are similar to I(x). The other pixels whose intensity
values are far away from I(x) are not used in the sample mean com-
putation. Mathematically, the sample mean m(x) is defined as

m(x) =
s2S

K(jI(s)� I(x)j)w(s; x)I(s)

s2S

K(jI(s)� I(x)j)w(s;x)
(1)

whereK is an adaptive Gaussian kernel defined in intensity space and
w is a weighting function in spatial space. The adaptiveGaussian kernel
K has a standard deviation inversely proportional to a function B(Y ),
which specifies the percentage of pixels having similar intensity to x
in a set Y � S as

K(z) = e�B(Y )z ; if z � a

0; otherwise

and B(Y ) =

c
y2Y

f(jI(y)� I(x)j)

Ty;

and f(z) =
1; if z � a

0; otherwise
(2)

where Ty is the number of elements in Y . For our application, we used
a window size of 17� 17 pixels, and made the simplification that all
the pixels in Y are in S. Thus, Ty is= 289. The constant a determines
the smoothness of the algorithm; as a is increased the smoother it gets
(i.e., as a tends toward infinity, it turns into just a mean filter). So the
value of a was chosen to balance smoothness while preserving edges;
the chosen value was 0.02. The value of c was chosen to allow typical
values to go between a flat to a Gaussian kernel; c was chosen to be
5000. Now as B(Y ) decreases, the kernel K resembles a flat kernel
which tends to smooth small objects and artifacts. On the other hand,
moles should have a largeB(Y ) since there are many mole pixels with
similar intensity clustered together. A highB(Y ) will result in a sharp
or spiky-shaped Gaussian kernel, which does not allow the skin pixels
with high intensity to influence the intensity of the mole pixels.

The functionw(s; x) of (1) controls the weight of contributing pixels
in the spatial domain and is defined as

w(s; x) =
1

1 +D(s; x)
(3)

where D(s; x) denotes the Euclidean distance between s and x. Since
moles are always solid in shape and without holes, giving nearby pixels
higher weight will help the edges stay within the mole cluster.

The mean shift filtering operation is an iterative algorithm, where
every pixel x is replaced by its sample mean m(x) simultaneously for
all pixels in the image in an iteration. The algorithm repeats until the
mean change between an iteration is less 0.002, which is 10% of an
intensity quantum as defined in the next step.

2) Selection of Candidate Moles: After the image has been pro-
cessed using the mean shift algorithm, an image with many clusters of
pixels with similar value is produced. We further quantize the output to
50 levels, so the distance between quanta is 0.02. All minimum inten-
sity regions are located. A cluster of such minimum intensity regions is
considered as a mole candidate if the cluster has a lower intensity than
any of the other clusters surrounding it, and it is not against the border
of the image. To find the entire area of a mole candidate, it is important
not to underestimate large moles where the center may be significantly
darker than the outer parts, so an iterative procedure is performed to
merge outer mole clusters to the central cluster. This growing stage is
now applied, by expanding each candidate region outward to include
the neighboring pixels if these pixel values are within a quantum dis-
tance of 0.02 from the minimum region. If there are no such pixels,

Fig. 1. Illustration of the three-step mole finding algorithm. (a) The selected
region of interest for one of the test images. (b) The smoothed image after three
iterations of mean shift filtering. (c) The selected candidates after the growing
step 2). (d) The final detected moles, highlighted in black.

growing is stopped for that region. Otherwise, growing is repeated for
a predefined number of times. The best number of iterations has been
determined experimentally to be six.
3) Use of Feature Space to Identify True Moles: Our program as-

sumes that a mole is 1.5–23 mm wide, dark, and has an elliptical shape.
We computed a set of properties for each candidate mole cluster and
stored them in an associated feature vector. The important features are
size (defined as the area), major axis length (which defines the diameter
of the circle containing the mole) and contrast (defined as the average
intensity of the pixels in the candidate divided by the average inten-
sity of the pixels neighboring the border of the candidate). We discard
small candidates whose size is less than 1mm2 as noise. Themajor axis
length must be between 1.5 mm and 23 mm, to enforce the assump-
tion about the diameter of the mole. Another supporting feature that is
used is the candidate’s shape, where the elliptical measure is defined
as the number of pixels within the mole’s convex hull divided by its
size, and elongation is the ratio between the major axis and the minor
axis of the mole. Setting the limits of both ellipticity and elongation
to 10 prevents errors from body folds and shadows from the shoulder
blades, which are typically long, thin, and dark. The minimum contrast
between the mole and its neighbor is set experimentally to 0.955, as
discussed in Section III-C. The program examines every candidate and
removes those that do not fall into the range. The rest are considered
true moles.

III. RESULTS

A. Segmentation of the Moles

The above three-step mole finding algorithm was implemented in
Matlab. To test the program, we manually selected the back from our
test images, processed the selected region of interest by the program
and compared the detected moles with the dermatologist’s labels,
which were considered as gold standard. Fig. 1(a) shows one of the
test images and Fig. 1(b) shows the corresponding smoothed intensity
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Fig. 2. (a) Sensitivity and (b) diagnostic accuracy of the program for different contrast threshold values. Sensitivity is plotted in the range of 0 and 1.

image after three iterations of mean shift filtering. The mean changes
for the three iterations were 0.003, 0.0021, and 0.0011, respectively.2

Fig. 1(c) depicts all mole candidates after the growing step. After
examining each candidate’s feature vector, 11 moles were detected by
the program. These moles are outlined in black in Fig. 1(d). Comparing
these detected moles with the gold standard, we found the detected
moles were all true positives (TPs), with no false positives (FPs) or
false negatives (FNs).

The left-most columns of Table I compare the program results for
all test images with the gold standard. Note that for test image 5, there
were nomoles larger than 1.5 mm in diameter and the program success-
fully found no moles. However, because TP, FP, and FN were all zero
we could not compute the sensitivity, which is defined as TP=(TP +
FN)�100%, and diagnostic accuracy, which is defined asTP=(TP+
FP+ FN) � 100%, for this image. Furthermore, the specificity of the
algorithm cannot be estimated, since we cannot numerate the number
of the true negatives (TNs). All normal skin area without incorrectly
identified mole is considered as TN; however, it is impossible to quan-
tify such a measure. Instead, we summed up all TPs, FPs, and FNs for
the entire set and computed the overall sensitivity and diagnostic ac-
curacy. With 52 TPs, 1 FP, and 5 FNs, the overall sensitivity and the
diagnostic accuracy for the test set were determined as 91% and 90%,
respectively.

B. Comparison of Our Algorithm With a Simple Mole Finding
Algorithm

It is of interest to compare our algorithm with a simple mole finder
consisting of a 3� 3 median filtering step followed by a local thresh-
olding step. We repeated the median filtering until the mean change
between iterations was less than 0.002 as in our algorithm.3 We im-
plemented local thresholding by dividing the image into a fixed set of
windows each of 65� 65 pixels. For each window, the pixels whose in-
tensities were three standard deviations lower than the window’s mean
intensity were selected as candidate moles. Finally the candidates were
classified by their feature vectors into moles, similar to our algorithm.
The right-most columns of Table I report the results of the simple mole
finder, which performed worse than our algorithm for all test images,
except for test image 3 where the simple mole finder had 1 TP and
1 FN, same our algorithm. The overall sensitivity for the simple mole

2All test images required two to three iterations of mean shift filtering.
3All test images required two iterations of median filtering.

TABLE I
COMPARISON WITH THE GOLD STANDARD OF THE NUMBER OF MOLES

DETECTED USING TWO ALGORITHMS, FOR EACH TEST IMAGE

finder was 68% and the diagnostic accuracy was 57%. We realized that
the local thresholding might increase FPs and might not capture the en-
tire mole since the center of a mole is often darker than the other parts.
Therefore, we replaced the local thresholding with the candidate selec-
tion step, step 2) of our algorithm. Suchmodification detected onemore
TP and reduced the FPs and FNs by 2 and 1, respectively. The overall
sensitivity and diagnostic accuracy were improved slightly to 70% and
60%, respectively, but they were still inferior to our algorithm using the
adaptive mean shift filter.

C. Sensitivity Analyses of the Program Parameters

Similar to many image analysis programs, our algorithm is con-
trolled by a set of parameters. The most important parameter is the con-
trast threshold, which controls whether a faint candidate, compared to
its neighbor, is accepted or rejected. Fig. 2(a) and (b) shows the overall
sensitivity and diagnostic accuracy for our algorithm when the con-
trast threshold was varied from 0.75 to 0.995. The overall sensitivity
increased as the threshold increased, because more faint moles were
detected. On the other hand, the diagnostic accuracy dropped after it
peaked at the threshold used by our program (marked as dotted line)
because of the increasing FPs. We found experimentally that choosing
a contrast threshold of 0.955 was appropriate for all our test images.
Furthermore, changing the contrast threshold changes the results in a
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predictable way, hence, if it was considered important to eliminate FPs,
it would be easy to decrease the contrast threshold a little.

The program behaved stably (i.e., the program results changed
slowly and predictably) when the other parameters (minimum lesion
size, major axis length, ellipticity, and elongation) changed.

D. The 48-bit Image

One of the test images that had many small moles around 1.5 mm
in diameter was scanned using 24-bit and 48-bit color resolution with
the same scanner in one session. Processing the images by the program
found that there was no difference in results. Potentially, the re-quanti-
zation of the image to 50 levels in the candidate selection step removed
the advantages of the 48-bit color image. Hence, we continued with ex-
periments only on the more compact 24-bit data.

IV. DISCUSSION

Sometimes it is difficult to distinguish moles from other skin
conditions, such as lentigos. Also, differentiating small moles (those
less than 2 mm in diameter) from freckles is not easy even clinically.
Lentigos and freckles often occur on sun-exposed areas of the upper
back, face, back of hands, and forearms. For our algorithm, these
problems are minimized since we focus on the back torso, not a
maximally sun-exposed area.

When our dermatologist labeled the test images, he could identify
moles less than 1.5 mm in diameter. Our program could also detect
these small moles, but with many FPs and FNs. At the current spatial
resolution, we set the size limit to a more realistic level of 1.5-mm
diameter.

We used a small number of test images to develop the program. How-
ever, these images show a large variety of scenarios. One of the images
had no moles larger than 1.5 mm in diameter; many images had small
moles around 1.5 mm, and many of these were very faint with a low
contrast. The largest mole was 5 mm in diameter. The program seems
to work well with these images, although a rigid validation with more
images is required to fully test the program.

The program has the advantage that no prior knowledge is needed
about the number of moles present on the skin. The adaptive mean shift
filter, unlike many other de-noising algorithms, preserves the shape of
the moles, allowing for accurate statistics to be gathered. The filter also
allows a large smoothing kernel for noise removal. The candidate se-
lection steps works locally where a decision is made in a small area
without global thresholds. Thus, the resultant program provides a re-
liable segmentation and enumeration of the moles without any human
intervention.

V. CONCLUSION AND FUTURE WORK

This paper presents an algorithm to segment moles from images of
backs. The imageswere obtained using an ordinary 35mmslide camera
with the intention for manual counting of the moles. We have shown
the feasibility of counting the moles accurately and reliably using a
computer aided approach on the digitized images. With 52 TP moles,
one FP, and 5 FNs for a test set, the overall sensitivity and the diagnostic
accuracy were determined as 91% and 90%, respectively.

To fully automate the enumeration process, we developed an objec-
tive method to segment moles from the torso skin images, using an ex-
tended mean shift filter, a region growing procedure, and a rule-based
classifier. The program does not require prior knowledge of the number
of moles present on the skin. Results so far are very promising, as the
identification of moles correlates well with the eight images manually
labeled by an expert dermatologist. In addition, analyses have shown
that our algorithm outperformed a simple mole finder consisting of a
median filter and local thresholding. Furthermore the sensitivity of the
results to the program parameters was stable and predictable.

Future work will include further validation of the segmentation of
moles in the data, and registration of the more recent images with the
earlier images, in order to track mole development.

Ultimately, the program may incorporate diagnosis of color and
shape of the lesions to make a complete analysis for the diagnosis of
melanoma.
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