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ABSTRACT

If the phase error at each pixel in a complex-valued MRI image is known the noise in the image can be reduced
resulting in improved detection of medically significant details. However, given a complex-valued MRI image,
estimating the phase error at each pixel is a difficult problem. Several approaches have previously been suggested
including non-linear least squares fitting and smoothing filters. We propose a new scheme based on iteratively
applying a series of non-linear filters, each used to modify the estimate into greater agreement with one piece
of knowledge about the problem, until the output converges to a stable estimate. We compare our results with
other phase estimation and MRI denoising schemes using synthetic data.
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1. INTRODUCTION

A variety of techniques have been presented in the literature for the removal of noise from MRI images. This topic
is increasingly significant as main magnetic field strengths are lowered, trading-off signal-to-noise ratio (SNR) in
favor of reduced cost and improved availability of MRI. Most of the suggested denoising algorithms come from
the signal processing literature and are based on wavelet thresholding or anisotropic diffusion. These approaches
attempt to describe significant features of the image mathematically and preserve them while removing noise.
The difficulty with these algorithms is the risk of over-smoothing fine details, particularly in images where the
SNR is quite low.

An alternate approach specific to the complex-valued MRI signal has been suggested less often in the litera-
ture.1–3 Phase-corrected real reconstruction relies on an estimate of the phase error to correct the phase of each
pixel so the imaginary component contains only noise and can be discarded. This approach offers the potential
for image denoising without the risk of over-smoothing. Additionally, phase error estimation is useful in display-
ing inversion recovery images and in partial k-space imaging. However, many of the suggested algorithms for
performing the estimation are computationally expensive and so are not considered practical. Those algorithms
that are efficient enough to be used do not produce correct results on inversion recovery images or produce phase
error estimates that suffer from artifacts.3, 4

We have developed a new phase error estimation scheme that requires modest computing power and operates
correctly on inversion recovery images. In sections 2 and 3 we summarize the current approaches to MRI image
processing and describe our proposed algorithm. Additionally, we have implemented several alternate MRI
denoising and phase error estimation schemes. In sections 4 and 5 we describe three experiments that we used
to compare our proposed algorithm with current work in the MRI literature. Finally, in section 6 we present our
conclusions and directions for future work.
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2. MRI NOISE AND DENOISING

MRI slices are acquired in the Fourier domain, also commonly called k-space. A spatial domain representation
of the data is produced by applying an inverse fast Fourier transform (FFT) to the k-space data. Letting X be
the spatial domain image, and X(p) the complex value of pixel p in image X, we can describe the result of the
inverse FFT as

X(p) = s(p) exp[iφ(p)] + nr(p) + ini(p) , (1)

where s(p) is the real-valued signal produced by the volume equivalent to pixel p, φ(p) ∈ [−π,π) is the phase
error, and nr(p) and ni(p) are two real-valued samples from a zero-mean Guassian distribution with a fixed
variance, σ, that does not vary between pixels. Since in any practical situation we expect φ �= 0 and σ �= 0,
we find that X(p) will be complex-valued. However, in order to display X on a grayscale computer screen, we
must reduce X(p) to a real value. The choice of how this reduction is performed has a significant impact on the
statistical properties of the image and the denoising algorithms that can be applied.

2.1. Magnitude reconstruction
The most common approach to this reduction is called magnitude reconstruction and operates by taking the
magnitude of each pixel as the intensity value to display. The benefit of this approach is that it is not affected by
φ. The downside is that the noise in the resulting image has a Rician distribution which tends to have a positive
bias in low-signal regions and so shows reduced contrast.5 Additionally, applying magnitude reconstruction
to inversion recovery images that may contain regions of negative signal results in the loss of the signal sign,
potentially reducing the diagnostic value of these images.

Two different approaches have been proposed to reduce the effects of noise when using the magnitude recon-
struction. The first denoising approach is to split the complex-valued images into two real-valued images, one
from the real components and the other from the imaginary components. A denoising algorithm designed for
Gaussian noise is applied to each of these images separately. They are then recombined to produce a denoised
complex-valued image and magnitude reconstruction is applied to produce the final image. An example of this
approach is the multi-scale wavelet algorithm of Bao and Zhang.6

The other denoising approach is to produce an algorithm designed specifically for Rician noise. Such an
algorithm can be applied after the magnitude reconstruction, requiring only one image to be denoised instead of
two. Additionally, there is the possibility that some pixels will have phase errors that orient the signal so it is
divided evenly between the real and imaginary components. If the two complex omponents are split and denoised
separately these pixels will suffer undesired truncation since neither of the split images contains a strong signal.
Denoising schemes for Rician noise, such as the wavelet algorithm presented by Nowak, avoid this problem by
operating on data after the phase has been discarded.7

2.2. Phase-corrected real reconstruction
An alternate reconstruction approach is to produce an estimate of the phase error, φ̂. This estimate can be used
to correct the phase error by a simple multiplication of the form

X(p) exp[−iφ̂(p)] = (s(p) exp[iφ(p)] + nr(p) + ini(p)) exp[−iφ̂(p)]

= s(p) exp[i(φ(p) − φ̂(p)] + (nr(p) + ini(p)) exp[−iφ̂(p)] .

Assuming the phase error estimate is good, we have φ(p)− φ̂(p) � 0 and the above equation can be simplified to

X(p) exp[−iφ̂(p)] = s(p) + (nr(p) + ini(p)) exp[−iφ̂(p)] .

The distribution of the complex-valued noise described by nr(p) + ini(p) changes probability with the complex
magnitude of the noise, but is constant with varying phase. Thus, while the rotation produced by the phase
error correction modifies the individual noise samples at each pixel, it does not affect their distribution. We can
consider the phase corrected noise to consist of two different samples, n′

r and n′
i taken from the same distribution

as nr and ni. Using this simplification, the equation for a phase-corrected pixel can be written

X(p) exp[−iφ̂(p)] = s(p) + n′
r(p) + in′

i(p) . (2)
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This equation shows that in a phase-corrected pixel, the real component contains the signal and an additive
Gaussian noise, while the imaginary component contains only noise. Simply discarding the imaginary component
and taking the real component as the display intensities will produce an image with Gaussian instead of Rician
noise. Additionally, by discarding the imaginary component we reduce the noise power across the image. Both
these effects result in improved signal detectability, particularly when considering weak signals.2 Compared
to applying wavelet- or diffusion-based denoising schemes, the phase-corrected real reconstruction allows for a
decrease in noise without the risk of introducing artifacts or over-smoothing fine features. However, the primary
difficulty in making this approach practical is efficiently computing the phase error estimate, φ̂.

3. PHASE ERROR ESTIMATION

3.1. Previous algorithms

While the noise reduction potential of MRI phase estimation has been known for some time, the majority of
phase estimation algorithms appear in the literature as part of algorithms for speeding up MRI acquisition by
performing partial k-space reconstructions.8–10 Usually the same phase estimation algorithms can be applied to
denoising, this is simply not their original focus. MRI phase estimation algorithms can generally be grouped into
two classes: low-pass filtering and polynomial fitting. The first of these two approaches convolves the complex-
valued image with a low-pass filter and then takes the pixel-by-pixel phase of the resulting image as the phase
error estimate. This approach was suggested for denoising under the name homodyne detection.3

The latter of the two approaches attempts to fit a polynomial of degree d in image coordinates x and y to
the real-valued phase image. This polynomial is then taken as the phase error estimate.1, 4, 8, 11 The primary
difficulty with these approaches is that the fitting is non-linear due to phase values being ‘wrapped’ onto the
range [−π,π). The complexity and instability of the search, even when fitting quartic polynomials, reduces the
practical value of these algorithms.2, 4

3.2. Proposed algorithm

We have developed a phase error estimation algorithm that takes a novel approach to the problem. Essential to
our approach is that the correct phase estimate is an approximate solution to several sub-problems that can be
efficiently solved. By iteratively making small changes, each moving our estimate closer to the solution of one
these sub-problems, we expect to converge at the desired phase error estimate. Our goal in using this approach
is produce an algorithm that is both efficient and open to further development by the modification of existing
sub-problems and the introduction of new ones.

Before any estimation is performed, a weight is calculated for each pixel based on its magnitude. This weight
is used to discount the effects of low-signal pixels and increase the input of high-signal pixels at each step in the
estimation process. Since the sub-problems we solve are localized to small neighborhoods of pixels, we found
that when small, high-signal features were surrounded by large low-signal areas, the modifications produced by
the sub-problems often did not represent the signal effectively. By weighting each pixel’s contribution, we were
able to produce better results in these cases. While we have had success with different weighting functions in
previous experiments, in the results reported here we calculate w(p), the weight of pixel p, as

w(p) = erf
( ||p|| tan ε

σ
√

2

)
, (3)

where ||p|| is the magnitude of pixel p, ε is a small value greater than 0, and erf is the error function encountered
when integrating the normal distribution, defined as

erf(z) =
2
π

∫ z

0

e−t2dt .

This weighting function can be thought of as an estimator for the probability that noise contributed less than ε
radians to the phase of pixel p. In our experiments we set ε = π/18 rads. The noise variance, σ, in the source
data was estimated using the unbiased sample variance of the imaginary components of a manually selected
region of interest (ROI) containing only air.
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Our first sub-problem is derived by noting that if a complex-valued image’s phase error is corrected, the
expected value of the sum of the imaginary components of the pixels in the image is zero due to their zero-mean
Gaussian distribution. This is true of the expected value regardless of the size of the image. However, given a
small range around zero, the probability of the sum of the imaginary components in any recorded phase-corrected
image being in our range increases as the image gets larger. Noting these facts, we specify a window size w1.
We can see that a w1 ×w1 patch of pixels will also have an expected imaginary component sum of zero and the
probability of it being inside a small range around zero will increase with w1.

Given an input phase error estimate, φ̂, and recorded source image, I, the goal of this step is to produce
a phase estimate, φ̂′, that is closer to making the sum of the imaginary components in each w1 × w1 window
zero. Additionally, we assume that the phase of each pixel will fall on the range (−π/2,π/2), the equivalent of
assuming there are no negative real components. Referring to equation (1) we can see that this assumption is
certainly not true in low-signal areas because the real noise component, nr(p), can take negative values greater
than the signal, s(p). In high-signal areas it also may not be true, depending on the pulse sequence used. Spin
echo images will produce only positive signals while inversion recovery images may contain regions of strong,
negative signal. We will address these issues in a later step, so for the purposes of this sub-problem, our ideal
output is assumed to take this limited range. The algorithm that is applied to each pixel, p, for this step is as
follows.

1. Apply the given phase correction, φ̂ to the recorded image, I to get our current best guess image, I ′.

2. Calculate the mean of the imaginary component of all the pixels in I ′ in a window of width w1 around p.

3. If the mean imaginary component is greater than ||p||, the magnitude of p, set p’s new phase estimate,
φ̂′(p), to be π/2 to correct as much as possible.

4. If the mean imaginary component is less than −||p||, set φ̂′(p) = −π/2 to correct as much as possible.

5. Set φ̂′(p) so p’s phase is on (−π/2,π/2) and its imaginary component cancels the mean component of all
the other pixels in the window.

The remaining two sub-problems that we solve are designed to reduce the curvature of the phase error
estimate. This is a standard assumption in the phase error estimation literature, having some experimental
justification.8 The first of these constraints attempts to fix errors introduced in the previous step when a pixel’s
real component was actually negative. If we have taken a pixel that was supposed to be positive and flipped it
into the negative orientation, then our phase error estimate for the pixel is incorrect by approximately π. This
step, then, consists of locating pixels that are closer to their neighbors when shifted by π radians and ‘flipping’
them as needed. Using a window width of w2 the algorithm is as follows.

1. Calculate the mean of the distances, wrapped onto the range [−π,π), from φ̂(p) to each other phase estimate
pixel in a window of with w2 centered on p.

2. Calculate the mean of the distances, wrapped onto the range [−π,π), from φ̂(p) + π to each other phase
estimate pixel in a window of with w2 centered on p.

3. If the second mean distance is smaller than the first, mark p as flipped.

The second smoothing constraint, and our third and final step, is a weighted averaging filter. Using a window
of width w3, we set each pixel’s phase estimate to be the weighted average of the phase estimates in a window
centered on the target pixel. The weights for this calculation are given by equation (3).

The three steps are applied in sequence and the sequence is looped until the phase error estimate converges
to a solution. In the first iteration, we set the initial phase error estimate to be zero for each pixel. We then
use the output from the first (zero imaginary mean) step as the input to the second (negative signal flip) step.
Pixels marked as flipped have π added to their phase estimates and are then smoothed in the third (weighted
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average) step. On subsequent iterations of step one, we multiply the differences between the input φ̂ and output
φ̂′ by the weights in equation (3) so that noisy pixels are changed very little. This promotes a stable descent
towards the desired solution.

Additionally, we must remember that any pixels marked as flipped in step two are aligned in the negative
direction by the phase error estimate but step one will align them in the positive direction. This ‘flip fighting’ is
a result of step one and two having different assumptions about the existence of negative signals in the data. To
resolve this problem, we use a ‘flip map’ to represent which pixels are flipped. This flip map is initialized to all
zeros initially and pixels are updated in step two with zero meaning positive aligned (‘unflipped’) and 1 meaning
negative aligned (‘flipped’). Step two is modified in its final line so that pixels that are already marked ‘flipped’
are marked as ’unflipped’ if the positive real orientation is closer to its neighbors. The flip map is then used to
ensure that all the pixels are ‘unflipped’ into the positive direction before every application of the first step, and
then returned to their corrected ’flip’ state before the application of the second and third steps.

The three steps should be repeated until the solution converges. Currently, we are still experimenting with
metrics that can be used to automatically determine convergence for the phase error estimate. In our experiments
we have chosen to stop the experiment when it has converged according to visual inspection (usually 3-6 iterations
of the loop). We have verified that running more loops does not lead to a worsening of the solution and so we
have not found an input image where convergence fails to occur.

4. METHODS AND MATERIALS

We compared three MRI image reconstruction and denoising approaches: phase-corrected real reconstruction,
the split-image wavelet scheme of Bao and Zhang,6 and the Rician wavelet denoising scheme of Nowak.7 Of the
variations presented by Nowak, we used the non-decimating Harr wavelet transform since it is suggested to have
superior denoising properties. In implementing the phase-corrected real reconstruction, we used three different
phase error estimation algorithms to produce three different results: the polynomial fitting of Bernstein et al.,11

the homodyne detection of Noll,3 and our proposed phase estimation algorithm. The non-linear polynomial
fitting required for the Bernstein et al. algorithm was performed using the Mathematica FindFit function which
implements the Levenberg-Marquardt method.12 The low-pass filtering required by the Noll algorithm was
implemented in the Fourier domain by zeroing all the coefficients outside a 16 × 16 box centered around the
origin.

The complex-valued image data used for comparison was synthetically generated to model an inversion
recovery phantom image (Figure 1). The image consists of strongly negative signal regions embedded inside
strongly positive signal regions and fine details surrounded by large areas with zero signal. The phase errors
were produced for the synthetic image using the linear function

φ(x, y) = 0.01x + 0.04y . (4)

This image is supposed to model the result of performing an inverse FFT on unprocessed k-space data.

For each output image, we have calculated the SNR using13

SNR = 0.655
µd

σu
,

where µd is the average signal and σu is the standard deviation of the noise in a zero-signal region. The contrast-
to-noise ratio (CNR) was calculated using6

CNR =
|µd − µu|√
0.5(σ2

d + σ2
u)

,

where µu is the average recorded signal in a region of air and σd is the standard deviation of a patch containing
signal. The mean-to-standard-deviation ratio (MSR) was computed using6

MSR =
µd

σd
.

The signal and noise regions selected from each image are shown in Figure 1.
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Figure 1. Regions of signal and noise used to calculate image quality statistics. The magnitude image is used as an
example background. Using the magnitude reconstruction makes the four large circles in the bottom two-thirds of the
phantom appear to have positive signal and so appear white along with the rest of the phantom. If the image is correctly
phase-corrected, these circles will appear black since their signal is actually negative while the phantom will remain white
since its signal is positive.

5. RESULTS

The results of the experiment can be seen in Figure 2. Each row of the figure represents a different algorithm
being applied to the source data. The top-most row is marked ‘Magnitude’ to indicate that it was produced
using only a magnitude transform without any filtering as described in section 2.1.

The left-most column shows the full image resulting from the application of the specified algorithm. Thus,
for the magnitude row, the left-most image is the same as the one shown in Figure 1. Although the data contains
both positive and negative signals, the images in this column are displayed with 0 and lower pixel values mapped
to black and the maximum pixel value of the magnitude image mapped to white. Thus, when it is correctly
displayed the four large circles in the bottom two-thirds of the phantom will appear black instead of white.

The middle column of each figure shows the difference between the magnitude image and the output of the
denoising process. The middle column has 0 and lower pixel values mapped to black and any value higher than
one tenth of the maximum pixel magnitude of the source image is mapped to white. This is done to improve
contrast and facilitate comparison. Ideally these images should not contain any signal. However, because the
magnitude transform reduces the effects of noise in high-signal regions, we do not expect the image to contain
a white-noise in the ideal noise removal case. Instead, we expect that regions of high signal will appear with
low-intensity noise in the difference image, as there is less noise to remove, while regions of low signal will appear
with bright noise in the difference image. The exception to this is the top image of each middle column. This
image is the phase map of the input image with −π mapped to black, π mapped to white, and 0 mapped to gray.

The right column shows a blow-up of the fine details in the top third of the phantom. These details are
composed of small squares, the smallest of which appear somewhat darker because they only take up part of the
pixel volume. These detail images are displayed with the same grayscale mapping as the left-most column, as
the noise is already significant enough to compare without narrowing the display window.

Looking at the left-most column we see that the first three algorithms are based on magnitude reconstructions,
and so cannot properly display the four circles in the data, mapping those pixels to white instead of black. We
also see the over-smoothing behavior of the Bao et al. wavelet algorithm. Looking at the right-most column we
see it has not only over-smoothed the data, but mistaken the lower of the two smallest, central detail points for
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Magnitude

SNR: 14.63

CNR: 15.49

MSR: 14.63

Bao et al. Wavelet

SNR: 53.19

CNR: 82.09

MSR: 87.12

Nowak Rician Wavelet

SNR: 13.45

CNR: 16.75

MSR: 15.29

Proposed Phase Estimate

SNR: 15.52

CNR: 17.02

MSR: 14.56

Homodyne Phase Estimate

SNR: 15.16

CNR: 16.91

MSR: 14.55

Bernstein Phase Estimate

SNR: 15.11

CNR: 16.87

MSR: 14.56

Figure 2. Results from synthetic inversion recovery phantom image.
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noise an completely removed the detail. Nowak’s wavelet denoising scheme is more conservative and so has done
a better job of retaining the fine points of the image while reducing the noise.

Of the three phase correction algorithms, we see that the homodyne detection algorithm has also failed to
align the negative signal in the correction direction. This is due to over-fitting of the phase estimate and so
the only solution for this image would be to reduce the number of Fourier coefficients retained in the homodyne
algorithm’s filtering step. To explore this we ran the algorithm with several different filters and found that any
solution to under-fit the circles would in turn under-fit the fine points in the top third of the phantom, drowning
them out with the average phase of the surrounding noise. Our experiment confirms the statements by Noll that
the homodyne algorithm will not necessarily work in cases with negative signal.3

The two algorithms that resulted in a correct display are the Bernstein polynomial fitting algorithm and our
proposed estimation approach. The success of the Bernstein polynomial fitting algorithm in the case can likely be
attributed to the fact that the phase error was synthetically produced using the linear function in equation (4).
Our synthetic example is the best-case scenario for the non-linear least squares fitting algorithm. Additionally, in
this experiment, the under-fitting was useful because it led to the correct error being estimated for the negative
signal regions as well. As noted by McGibney, this is not necessarily the case for polynomial fitting algorithms
when large regions of the image consist of negative signal and a very poor fit may result instead.4

6. CONCLUSIONS AND DISCUSSION

We have presented a novel algorithm for performing phase error estimation in MRI images that is more com-
putationally efficient than non-linear polynomial fitting. We have shown that the estimates produced by the
algorithm can be used as part of an image denoising scheme. We have also shown that, unlike homodyne de-
tection, our proposed algorithm can be used to reconstruct inversion recovery images with regions of negative
signal.

Beyond the need for further validation of our algorithm, it is also important to determine which pulse
sequences it can be applied to reliably. Our preliminary experiments on clinical data have shown our algorithm
to be effective with spin echo and short-tau inversion recovery data. However, gradient-recalled echo and EPI
images have phase errors with many discontinuities and too high a curvature to be estimated using any of the
phase estimation schemes discussed in this paper. More experiments on a variety of practical pulse sequences
are required in order to clarify the clinical value of our proposed algorithm.

Related to studying more pulse sequences, we mention in section 3.1 that phase error estimation is more
frequently discussed as a component of partial k-space MRI imaging. As our algorithm seems to have produced
good estimates using complete k-space data, we are interested to understand how it performs when given partial
k-space data and if our algorithm’s estimates are useful in supporting partial k-space imaging.

We have yet to optimize our implementation and calculate the computation time required on representative
systems. One significant note though is that each of our proposed algorithm’s three sub-problems are designed
so that each pixel can be calculated independently in any given step. Thus, while the output of any given
sub-problem depends on the output of the sub-problem before, inside of a given sub-problem all the pixels are
independent of each other, relying only on pixels from the previous sub-problem. This independence means
that our algorithm could be implemented using an efficient parallel setup. Implementations of this form will be
considered when optimization begins.

Finally, the clear conflict between the calculated MSR, CNR, and SNR values and a visual assessment of the
image output indicates that these quality metrics should be used with caution. We are currently working to
explore other models that may allow for more medically significant measures of MRI image quality.
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